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Multifragmentation and the symmetry term of the nuclear equation of state
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We investigate the possibility of extracting the symmetry energy from multifragmentation data. The
applicability of the grandcanonical formula earlier proposed by Ono et al. [Phys. Rev. C 68, 051601(R) (2003)] in
the case of finite excited nuclei is tested within a microcanonical framework. Relatively good results are obtained
except for large residual nuclei, especially when large sources are highly excited. Effects of secondary particle
emission and the extent in which relevant information may be inferred from experimental observables are finally
discussed.
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I. INTRODUCTION

Isospin dependent phenomena are attracting increasing
interest as they hold the promise of revealing the asymmetry
term of the nuclear equation of state. At normal nuclear
density this quantity dictates the structure of the neutron-rich
and neutron deficient isotopes, while in other domains of
density and temperature its behavior is reflected in a variety of
astrophysical phenomena, such as the structure and evolution
of neutron stars and the dynamics of supernovae explosions.
In nuclear multifragmentation reactions, the asymmetry term
influences the neutron-proton composition of the break-up
fragments.

Interpreting multifragmentation in the light of first-order
phase transitions in multicomponent systems, the neutron
enrichment of the gas phase with respect to the liquid phase
comes out as a natural consequence of Gibbs equilibrium cri-
teria and a connection between phases chemical composition
and the symmetry term can be established [1,2]. Interestingly
enough, the phenomenon of isospin fractionation which is
systematically observed in analyses of multifragmentation
data [3–7], seems to be a generic feature of phase separation
independent of the equilibrium Gibbs construction [8]. Indeed,
dynamical models of heavy ion collisions [9–13] where frag-
ment formation is essentially ruled by the out of equilibrium
process of spinodal decomposition also exhibit fractionation.
Adopting an equilibrium scenario for the break-up stage
of a multifragmenting system, Ono et al. [12] derive an
approximate grandcanonical expression which connects the
symmetry term with the isotopic composition of fragments
obtained in the break-up stage of two sources with similar
sizes in identical thermodynamical states and differing in their
isospin content,

Csym = − α12T
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under the hypothesis that the isotopic distributions are essen-
tially Gaussian and that the free energies contain only bulk
terms. Here, α12 is the isoscaling slope parameter, Zi/Ai

stands for the isospin asymmetry of a fragment produced by

the source i(=1, 2) and T is the temperature of the decaying
systems.

In the limit of vanishing temperature, fractionation can be
neglected and Zi/Ai can be replaced by the corresponding
quantity of the sources [7] giving
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This expression, which was first proposed in the framework
of the EES model [14], as well as Eq. (1), has been used
extensively on experimental data and results ranging from
values compatible with the ground state bulk symmetry term
(≈25 MeV) to about half this value have been interpreted
as sign of dilute matter at freeze-out. Thus, Csym = 14 MeV
has been obtained in FRS experiments using midperipheral
collisions of 1 GeV/nucleon 124,136Xe beams on Pb targets [15];
values decreasing from 25 to 15 MeV have resulted from a vari-
ety of heavy ion collisions induced by a few tens MeV/nucleon
projectiles studied by the Texas A&M group [16–19], while
from the fragmentation of excited target residues produced
in the peripheral collisions of 12C on 112,124Sn at 300 and
600 MeV/nucleon incident energies the INDRA-ALADIN
collaboration extracts a symmetry coefficient which decreases
from 25 MeV for peripheral collisions to 15 MeV for central
collisions [20].

If these values really correspond to the break-up stage of
the decay, the implications are dramatic. First, if the primary
fragments at the equilibrated freeze-out are diluted, statistical
models which described successfully a wealth of experimental
data over more than two decades should be completely
reformulated. Starting from the geometrical extension of
fragments which dictates the free volume, to the binding
and internal excitation energies which enter energy balance
and affect fragments partitions, all quantities need serious
reconsideration. If, on the other hand, this diluteness would
reflect inter-fragment interactions at breakup, as advanced by
Botvina et al. [7], the situation would be even more severe
as it would refute the fundamental hypothesis of statistical
models, namely the lack of any fragment interaction except
the Coulomb one.
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Before leaving the discussion on the values of the symmetry
energy other than the one corresponding to the ground state and
their implications and approach the possibility to access this
quantity in multifragmentation data, we recall that values of
the symmetry energy decreasing with temperature have been
obtained in Ref. [21] for asymmetric nuclear matter within a
self-consistent model with an effective interaction while, more
recently, shell model Monte Carlo calculations for nuclei with
mass around A = 60 indicate the opposite trend [22].

Given the implications of the above-discussed measure-
ments, the present work aims to investigate the possibility
to extract the symmetry term from multifragmentation data
using Eq. (1). Sticking to the equilibrium hypothesis, Ono’s
formula has three drawbacks: (a) it is grandcanonical while
the grandcanonical approximation is known to be acceptable
only for relatively light fragments emitted by large systems
with high excitation energies, (b) it does not account for
full mass dependence of the binding energy, and (c) it holds
for the break-up stage of the reaction, impossible to access
experimentally. Equation (2), which was employed to obtain
Csym values as low as ≈10 MeV [20], contains the additional
approximation of neglecting isospin fractionation.

A quantitative estimation of the possible deformations
induced by these effects can be done in the framework of
a microcanonical equilibrium model [23]. The less serious
objection against Eq. (1), possible deviations produced by
omitting the contributions of surface [24], Coulomb and
asymmetry terms, may be overcome taking into account the
full dependence of the binding energy on the system size and
will be addressed first.

Thus, adopting the grandcanonical expression of the iso-
topic yield of an emitted cluster with N neutrons and Z protons,

Y (N,Z) ∝ exp

[
1

T
(B(N,Z) + µnN + µpZ)

]
, (3)

where µn and µp stand for neutron and proton chemical
potentials and B(N,Z) represents the binding energy, we use
as in Ref. [12] the Gaussian shape of Y (N,Z) distributions as
a function of N (Z) when Z (N ) is kept fixed to approximate
the value of N (Z) corresponding to the maximum of the
distribution with its average value. Under these assumptions,
the equation

∂(ln Y (N,Z))

∂N
= 0 = 1

T

[
∂B(N,Z)

∂N
|Z + µn

]
, (4)

applied for two isospin different similar nuclei in identical
equilibrium states, relates the isoscaling slope parameter α

with the difference of partial derivatives of B(A,Z) as a
function of N .

If we consider for the binding energy a liquid drop
parametrization including surface and Coulomb terms,

B(A,Z) = (avA − asA
2/3) − (aiavA − aiasA

2/3)I 2

+ acZ
2/A1/3 + aaZ

2/A, (5)

and account for full mass dependence of the bulk+surface,
isospin-dependent, and Coulomb contributions, the result-
ing equation will acquire additional terms corresponding to

surface, Coulomb, and asymmetry energies,
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The 〈A〉−n (n > 0) dependence of these quantities rend the
corrections negligible for heavy fragmentation products [12]
and quantitative results will be presented for a case relevant to
most multifragmentation reactions.

The approximations of Eqs. (1) and (2) may be judged
within a microcanonical multifragmentation model [23]. We
use the MMM version [25] where the equilibrated multi-
fragmenting source is characterized by its mass As , charge
Zs , excitation energy E, total momentum P, total angular
momentum L, and freeze-out volume V. All configurations
C : {{Ai, Zi, εi, pi , ri}, {i = 1, . . . , NF }} permitted by the
specific microcanonical conservation laws are spanned by a
Metropolis trajectory and average values of physical quantities
are calculated numerically on the basis of the statistical weight
of each configuration C. Break-up fragments are treated
as normal nuclear density malleable objects described by a
zero-temperature binding energy as in Eq. (5) where av =
15.4941 MeV, as = 17.9439 MeV, ai = 1.7826, ac =
−0.7053 MeV, and aa = 1.1530 MeV [26]. This liquid drop
description is consistent with a semiclassical Thomas-Fermi
approximation [27] or hot Hartree-Fock [28], where the
effect of temperature is a modified occupation of the single
particle eigenstates of the mean field Hamiltonian. The finite
temperature fragment energy functional in this approach
is thus modified respect to the ground state only for the
internal excitation energy (ε) coming from the occupation
of continuum states. To avoid double counting of the free
particles states [29], the internal energy is cut at the binding
level. In our microcanonical formalism, the temperature is
univocally defined through the thermodynamic equality T −1 =
∂S/∂E = 〈(3N/2 − 4)/K〉, where K represents the thermal
kinetic energy, N is the product multiplicity and the last
equality stems from the equipartition theorem applied to a non
interacting system of clusters [30]. It is worthwhile to mention
that, due to the high energy cutoff in the cluster level densities,
the internal fragment excitation energy cannot be used to
estimate the temperature, and a thermometer based upon
internal fragment properties would severely underestimate the
thermodynamic temperature. In the experimental evaluation
of Csym conversely, the temperature is also estimated from
fragment properties or model calculations, which may lead to
an extra source of uncertainty.

The break-up stage of the decay which contains all
information relevant for the equation of state is completed with
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a particle evaporation stage which simulates the subsequent
disintegration of the excited fragments [25]. This step is
important as well as it shows the capacity of experimentally
measurable quantities to access the physics at breakup.

The predictive power of Eqs. (1) and (6) has been
systematically checked by confronting their results with the
input symmetry energy which enters fragment definition via
the binding energy. We have considered a variety of situations
in which the size of the emitting sources was varied between
A = 230 and A = 100, the freeze-out volume covered the
usually accepted interval (V = 4V0–8V0) and the excitation
energy ranged between 2 and 10 MeV/nucleon. The lower
limit of the source size for which Eqs. (1), (6), and (2) hold
was conditioned by the possibility to calculate α out of the
isotopic composition of light emitted fragments. Indeed, for
small sources α manifests a relatively strong dependence on
the emitted cluster size, its calculation as an average value
getting disputable [31]. For completeness, the stability of
the above mentioned formulas was checked against sources
isospin variation as well. The conclusions are the same and
only few illustrative cases will be considered in the following.

Figure 1 illustrates the magnitude of the additional terms
of Eq. (6) corresponding to corrections due to surface,
Coulomb, and isospin energies as a function of the charge
of the considered fragment in a case typical for nuclear
multifragmentation reactions, (210, 82) and (190,82) with
V = 4V0 (V0 is the volume at normal nuclear density) and
E = 6 MeV/nucleon. The values of the order of unity rend
these corrections negligible even for light fragments, in
agreement with expectations of Ref. [12]. For this reason, the
discussion on the possibility to extract the symmetry energy
from multifragmentation data will address only the original
Eq. (1).

Figure 2 presents break-up stage predictions of MMM for
the asymmetry term as a function of the emitted fragment
charge. Results of Eqs. (1) and (2) are shown for the mul-
tifragmenting nuclei [(130, 50) and (110, 50)] (upper panel)
and [(210, 82) and (190, 82)] (lower panel) with V = 4V0

and excitation energy ranging from 2 to 10 MeV/nucleon. The
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FIG. 1. (Color online) MMM predictions for the additional
surface (dashed), Coulomb (dotted), and isospin (dot and dash)
contributions to the symmetry energy as a function of Z at breakup.
The solid curve depicts the sum of the above-mentioned terms. The
equilibrated systems are (210, 82) and (190, 82) with V = 4V0 and
excitation energy 6 MeV/nucleon.
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FIG. 2. (Color online) MMM predictions for the symmetry
energy as a function of Z at breakup. The equilibrated systems are
[(130, 50) and (110, 50)] (upper panel) and [(210, 82) and (190, 82)]
(lower panel) with V = 4V0 and excitation energies ranging from 2 to
10 MeV/nucleon. Solid curve: input symmetry energy of the model.
Csym calculated according to Eq. (1) is represented with symbols
while results of Eq. (2) are illustrated with dotted and dashed lines.

MMM results (symbols) are compared to the input symmetry
energy of the model, aiav − aiasA

−1/3 (solid curve). As one
may notice, Eq. (1) shows a remarkable overall stability
against excitation energy variations but its behavior while
modifying the source size or excitation energy deserves a
more attentive investigation. Firstly, Eq. (1) shows a systematic
overestimation of the real value by up to 4 MeV for the largest
fragments. With the increase of the source size and excitation
energy, the overestimation slightly diminishes so that, for the
Z = 82 sources and the highest considered excitation energy,
10 MeV/nucleon, the calculated Csym exceeds by less than
1 MeV the real value. This is an interesting manifestation of
the applicability conditions of grandcanonical approaches in
the case of small systems. Thus, for relatively light fragments
emitted by highly excited large systems, grandcanonical
formulas give reasonable values while more modest results
are obtained at low excitation energies and for fragments
commensurable with the source size. This result should not be
surprising given that even the values of fragment multiplicities
are known to depend significantly on the employed statistical
treatment as illustrated, for instance, by the grandcanonical and
canonical versions of the analytically solvable thermodynamic
model of multifragmentation of Ref. [32] where the values
converge exclusively for relatively light fragments emitted by
highly excited sources.
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The bending of the curves calculated with Eq. (1) for the
Z = 50 sources at 2 and 4 MeV/nucleon is due to the mass and
charge conservation specific of a microcanonical ensemble.
Similar effect manifests also for the Z = 80 case, but the
limited charge domain in the right panel of Fig. 2 hides it.
The residual slight overestimation of the input value of Csym

in a domain where the grandcanonical approximation should
in principle be acceptable remains an open question and will be
addressed in the future. However, we have checked that it does
not depend on the value of the high energy cutoff exp(−ε/τ )
of the fragment internal density, as similar results are obtained
when τ → ∞.

As expected, Eq. (2) which approximates the isospin
content of fragments to the one of the source gives good results
only for very heavy fragments and low excitation energy.
However in the fragmentation regime it leads to a system-
atic underestimation of the symmetry energy. In particular,
Fig. 2 suggests that the low value Csym ≈ 15 MeV extracted
in some experimental analyses [15,20] may be compatible
with standard ground state values for the symmetry energy.
In this respect it is interesting to remark that the use of
Eq. (2) produces an unphysical apparent reduction of Csym

with increasing excitation, similar to the findings of Ref. [20].
The explanation of this evolution in the model lays in the
steep diminish of α not compensated by the temperature
increase [31].

Figure 2 was obtained for a specific choice of the frag-
menting sources. However it was proved in Ref. [31] that
the isoscaling parameter α manifests a complex dependence
on the considered pair of sources and their equilibrium state
under the microcanonical constraint. This fact requires a
detailed investigation of the persistence of Eq. (1) under
various freeze-out volumes, source isospin combinations,
and source sizes. Therefore, Fig. 3 presents the results of
Eq. (1) for the same sources [(210, 82) and (190, 82)]
with 6 MeV/nucleon excitation energy when the freeze-out
volume has different values (V = 4V0 and V = 8V0) (upper
panels), while the behavior with respect to sources isospin
modification is represented considering three pairs of Z = 82
nuclei [(190, 82), (200, 82) and (210, 82)] at V = 4V0 and
6 MeV/nucleon excitation energy (lower panels). As in the
previous case, the solid curve illustrates the (aiav − aiasA

−1/3)
term. The conclusions confirm the stability of Eq. (1) while
modifying source isospin and freeze-out volume. A more
increased predictive power is expected for larger sources with
a more advanced fragmentation, where the grandcanonical
approximation is more reasonable.

If the preceding figures suggest that for large systems and
high excitation energies, Eqs. (1) and (6) may allow one to
extract the symmetry energy coefficient at the fragmentation
stage from isoscaling observables, it is important to stress that
not only the average fragment isotopic composition, but also
the isoscaling parameter α should be known at the time of
fragment formation, while the measured α value may have
been distorted by sequential decay. The effect of secondary
decay on the isoscaling parameter is explored in Fig. 4. Since
in the MMM model the value of α is larger in the asymptotic
stage of the reaction than at breakup [31], Eqs. (1) and (6)
lead to an overestimation of the symmetry energy coefficient.
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FIG. 3. (Color online) MMM predictions for the symmetry
energy as a function of Z at breakup as obtained using Eq. (1) (open
symbols). The stability against freeze-out volume variation (V = 4V0

and V = 8V0) is illustrated for the equilibrated systems (190, 82) and
(210, 82) with 6 MeV/nucleon excitation energy (upper panel). The
stability against sources isospin modification is checked for three
pairs of Z = 82 nuclei with V = 4V0 and 6 MeV/nucleon excitation
energy (lower panel). Results of Eq. (2) are indicated using dotted
and dashed lines.

If fractionation is neglected using Eq. (2) these two errors
tend to compensate and the extracted values of Csym range
from 20 to 25 MeV, in better agreement with the real value
(if sufficiently heavy isotopes are analyzed for the surface
influence to be negligible, which is not the case in present
fragmentation data). It is important to stress that this compen-
sation entirely relies on the evolution of α from hot to cold
fragments. Unfortunately, in this respect, information in the
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FIG. 4. (Color online) MMM predictions for the symmetry
energy as a function of Z in the asymptotic stage of the decay as
obtained using Eq. (1) (open symbols). The equilibrated systems
are (190, 82) and (210, 82) with V = 4V0 and excitation energies
ranging from 2 to 10 MeV/nucleon. Results of Eq. (2) are indicated
using dotted and dashed lines. In all cases, asymptotic values of α

and break-up values of Z/〈A〉 have been used.
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literature is controversial. Thus, MSU-SMM [33] and Isospin
Quantum Molecular Dynamics (IQMD) [34] plead in favor of
negligible contribution of sequential evaporation on α as stated
in Refs. [14] and [35], respectively. Stochastic mean field [36],
Antisymmetrized Molecular Dynamics (AMD) [12], and the
Markov-chain SMM [37] with Csym >15 MeV indicate α

values decreasing from the breakup to the asymptotic stage
[20,38,39]. Finally, MMM, EES [40] and the Markov-chain
SMM with Csym <15 MeV predict the opposite effect: α

values increasing from the breakup to the asymptotic stage
[14,20,31]. The origin of these discrepancies could by due
to isospin population of break-up fragments, their excitation
energy and secondary decay procedure as well, but a pertinent
discussion of this issue goes much beyond the limits of present
paper.

To summarize, we investigated the possibility of inferring
the symmetry energy coefficient from isoscaling observables
in multifragmentation reactions. Our results indicate that,
in the limit of large systems and high excitation energies
where the use of a grandcanonical approach is reasonable,
Eq. (1) is a reliable tool to determine Csym out of the isotopic

composition of the break-up fragments but overestimations
of few MeV are expected for the systems usually produced
in multifragmentation reactions. In particular low values of
Csym respect to the standard saturation density bulk value
may be interpreted as an effect of surface contributions to
the symmetry energy.

Conversely, if we assume that the density of break-up
fragments is close to their ground state density [23], the
symmetry energy coefficient can be considered as known and
isoscaling measurements can be used to probe fractionation.
In particular spinodal decomposition is predicted to lead
to higher fractionation than phase separation at equilibrium
[41], and this effect could be accessed through isoscaling
observables. To realize this ambitious program it is essential
to experimentally control the effect of side feeding on the α

isoscaling parameter.
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