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Modeling of electronic properties of electrostatic quantum dots
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Electrostatiqgated quantum dots are studied by computational methods. Electronic properties of the elec-
trostatic quantum dots are determined by the confinement potential, which is created by external voltages,
applied to the electrodes, and band offsets. We have solved the Poisson equation for the two-terminal quantum
dot nanodevice made of several GaAs and AlGaAs layers and obtained the confinement potential profile in the
entire nanodevice. We show how the confinement potential profile can be modeled, which allows us to
design—to some extent—the required electronic properties of the nanodevice. The results have been confirmed
by a good agreement with experimental data. We have discussed the similarities and differences between the
two- and three-terminal quantum dot nanodevices studied experimentally by AshabfiPhys. Rev Lett71,

613 (1993] and Taruchaet al.[Phys. Rev. Lett77, 3613(1996)], respectively.
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[. INTRODUCTION the confinement potential takes into account the voltages ap-
plied to the leads, the spatial distribution of the ionized do-
Electrons localized in a quantum d@D) by a confine- nors, and the electrons confined in the QD. The results of

: e e 20,21 - X
ment potential occupy atomiclike states with discrete energyalcglguoné very well agree with the experimental

levels. Therefore, the QD with the confined electrons isdate:’ . . .
Q Both types of electrostatic QD's, i.e., the first one made

caII’edz_Sthe 'art|f|C|aI a'Fon]l: In the electrostatic (gated by Ashooriet al® and the second one made by Tarucha et
QD’s,“>which are studied in the present paper, the confine-is A2 Re-

) . al>, are still intensively studied experiment
ment potential results from the external voltages, applied t(?:ently in the two-electrode QD the localization-

the electrodes, and band offsets. The confinement potential |§,qcalization transition has been fouficand in the three-

very sensitive to the voltages applied as well as the paramsjecirode QB the Kondo effect has been obsenfad.
eters of the nanostructure, in particular, the geometry of the |y our recent papef we have considered the two-
nanodevice and doping. The electronic properties of the nansjectrode QD, which was fabricated on the basis of the pla-
odevice are determined by the confinement potential. Thergygr nanostructure by Ashooeit al?>~*?” We have showif
fore, the knowledge of the realistic profile of this potential isthat the confinement potential can take on different shapes:
important for a design of the nanodevice with the requiredrom a flat-bottom and steep-wall potential, which can be
electronic properties and for a theoretical description of theypproximated by the rectangular potential well, to the
confined electron states. smooth potential, which can be approximated by either a
A direct experimental determination of the confinementgayssian or a parabolic potential.
potential is not possible. Therefore, the confinement poten- |n the present paper we extend this rese¥rahd perform
tials used in the majority of theoretical papers possess thg detailed study of the effects of the geometric structure and
model charactet® > The model parabolic potential and doping on the profile of the confinement potential. Taking
rectangular potential well are the most common of themjnto account the charges induced on the leads, we can deter-
Moreover, the Gaussighand power-exponentigl confine-  mine the dependence of the confinement potentials on the
ment potentials were also applied. These models usually n@pte voltage and the number of electrons confined in the QD.
glect the dependence of the confinement potential on thgve have verified the quality of the calculations by applying
voltages applied to the electrodes and nunibef electrons  them to a description of the capacitance spectroscopy’data.
confined in the QD. The model parabolic potential with thenaying at disposal a computational tool for determining the
confinement frequency dependent Nnwas also applied to  realistic confinement potentials, we have performed an opti-
the QD's**~**If the realistic profile of the confinement po- mization of the nanodevice parameters and studied the sen-

tential is unknown, an unambiguous interpretation of the exsitivity of the confinement potentials to the changes of these
perimental data is difficult or even impossible. The shape oparameters.

the confinement potential can be calculated by suitable the- The paper is organized as follows: in Sec. Il we present

oretical approache€" In self-assembled QD's, the con- the theoretical approach and check its reliability, and in Sec.
finement potential, which depends on the band offsets ang we provide the results of the optimization of the nanode-

the strain between the QD and substrate materials, can Rfce parameters. Section IV contains the discussion and Sec.
calculated in the framework of the elasticity thedfyn elec- v/ the conclusions.

trostatic QD’s, the confinement potential generated by the

external voltages applied to the leads can be calculated from Il. THEORY
the Poisson equatiofi:”1°?*In Refs. 20 and 21, a self-
consistent procedure was elaborated for the solution of the
Poisson-Schidinger problem in the three-electrode vertical A schematic of the nanodevice considered in the present
QD of Tarucha et al.The calculatetf?! realistic profile of  paper is pictured in the inset of Fig. 1. The present model

A. Model nanodevice
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ap;roximates quite well the real QD’s studied by Ashari the ionized donor centers in timedoped layers, and the elec-
al.>~*?'The nanodevice® has a planar structure and consiststrons confined in the QD. In order to take into account the
of the doped and undoped GaAs and AlGaAs layers. Thelependence of the confinement potential on the confined
300-nm-thick GaAs substrate layer is heavily doped by docharge carriers, we apply the superposition principle and
nors and forms the bottom electrode. The subsequent layerseparat& potential® of the total electrostatic field into two

grown on the substrate, form the following sequence: th%omponents, which stem from different sources, i.e.,
60-nm GaAs spacer, the 12.5-nm AlGaAs tunnel barrier, the

17.5-nm GaAs quantum well, and the 50-nm AlGaAs block- D(r)=@1(r)+ @y(r), (1)
ing barrier, in which the lower 15-nm sublayer is undoped

and the upper 35-nm sublayer is doped by donors. In th&here ¢, is the potential of the electrostatic field, which is
nanostructurés"?’ a 6 doping of the blocking barrier was generated by the charges of the ionized impurities and the
applied. In the present calculations, we take this doping inte¢harges on the leads, arg is the potential of the electro-
account by smearing the charge of the ionized donors ovedtatic field created by the electrons confined in the QD. Po-

the entire upper 35-nm AlGaAs barrier sublayer. The 30-nmential ¢, is identified with the Hartree potenti&l.Potential
GaAs cylindrical cap of radiuR is grown on then-doped ¢, is found by solving the Poisson equation

AlGaAs barrier layer. The entire structure is covered with the
metal layer, which forms the top gate. The voltage applied o(r)
between the gate and bottom electrode is a source of the VZpy(r)=— oo 2
inhomogeneous electrostatic field, which—in the region be- 0
low the cap—generates the potential confining the electronghereo(r) is the density of the charge associated with the
laterally within the GaAs quantum well. The vertical con- jonized donors in the AIGaAs blocking barrier layer and in
finement results from the GaAs/AlGaAs conduction-banche thin interface layer of the GaAs substrate. In the present
offsets. The physical region of the QD is located within thecalculations, we take on the static dielectric constarior
GaAs quantum-well layer below the cap. For the fixed thick-GaAs. When solving Eq2), we impose the boundary con-
nesses and compositions of the layers the radius of the caftions on total potentiadb and calculate the boundary val-
determines the shape of the confinement potential. ues ofgp, from Eq.(1). This procedure, described in detail in
Ref. 21, allows us to include the charges induced in the leads
by the electrons confined within the QD.

The total electrostatic field that confines electrons in the The boundary conditions are put on the cylindrical surface
QD is generated by the external potential applied to the gateyith radiusR;, which encompasses the integration domain

B. Poisson equation
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(cf. inset of Fig. 1. The inner surfaces of the top gate and | | | |
bottom electrodes are taken as the cylinder bases. The poter 0 |- N=20 —
tials on these electrodes are set in experinfefiand there- \
fore are known. The boundary conditions on the cylindrical N=12

side surface are determined as follows: we assume that ra \
dius R; of the cylinder is so large that the electric field on 30 |—

this surface is approximately parallel to the cylinder axis. \
Next, we take the potential profile on this boundary surface
according to Fig. 1. In the nanostructure considered, Poisso
equation(2) possesses the full cylindrical symmetry and is
reduced to

/-//]/N /m /
7777
//

52 +l d . 52 e,z 2
2iratoe ¢y(r,z)= oeg ©)

We solve Eq.(3) by the finite-difference relaxation method
on the two-dimensional megh.Figure 1 also displays the
potential energy calculated along the cylinder axis. This po- -60 —
tential takes into account the band offsets and the Schottky

barrier, which act as additional fields in the verticaldirec- | |
tion. -400 -350 -300

Vg [mV]

N
N

-30 P—

chemical potential

C. Reliability of the model FIG. 2. Chemical potentiaky as a function of gate voltage

In the calculations, we have taken the Schottky barrietVs for several numbersl of electrons confined in the QD. Dashed
between the gate and GaAs semiconducting layer to be 0.girizontal line displays Fermi energfe and thin vertical
eV (Ref. 28 and the shift of the conduction-band bottom of lines show the positions of the capacitance spectroscopy peaks
GaAs with respect to that of AlGaAs equal to 220 meV, Ino™ Ref. 3.
order to check the present model we have applied it to a
quantitative description of the capacitance-spectroscopy En—En-1, WhereEy is the ground-state energy bfelec-
data® The spectrum of electrons confined in the QD is addi-trons confined in the QD. In the present paper, en&sghas
tionally affected by a fluctuating potential, which stems frombeen calculated by the Hartree-Fock method. The results for
randomly distributed impurities and surface defects. In thehe artificial atoms witiN=1, 2, 6, 12, and 20 electrons, for
present model we neglect this fluctuating potential. Therewhich the electronic shells of the cylindrically symmetric
fore, for the test calculations we have chosen the(REX. 3 artificial atom are closed, are compared with the measured
with the possibly small radius, for which the effect of the positions of the capacitance-spectroscopy péake. deter-
fluctuating potential is the smallest. mine the positions of the capacitance peaks from the crossing
Among several parameters of the nanostructure, two opoints of the chemical potential df electrons confined in
them cannot be determined in experiments with the sufficienthe QD with the Fermi enerdf. Figure 2 shows that adjust-
precision. These are radii of the cap, which cannot be ing only two parameters we have accurately reproduced the
accurately measured because of the undercut of the GaAwmsitions of six capacitance peaks. The largest deviation of 5
cap due to the etchirfd,and concentrationy, of the ionized mV occurs forN=6. The results of Fig. 2 have been ob-
Si donors in the blocking barrier, since during the intentionakained with R=205 nm andnp=4.62x 10" cm™2, which
doping not all Si atoms occupy the donor sites in AlGaAscorresponds to the two-dimensional ionized donor concentra-
and moreover not all the donors are ioniZ&d@he radius of  tion 1.6x 102 cm™2 in the s-doped layer.
the cap determines the profile of the confinement potential, Using the fixed values of both adjusted parameters we
which in turn affects the energy separations between th@ave checked the reliability of the present model by calcu-
capacitance-spectroscopy peaks, while the concentration &ting the magnetic-field dependence of the first two capaci-
the ionized donors determines the gate voltage, for which theance peaks.In this case, we deal with the one- and two-
first electron becomes trapped in the QD. We have adjustedlectron systems, for which the energy levels can be
the values oR andnp, in order to reproduce the capacitance calculated with the arbitrary accuracy by the imaginary-time
peaks> which correspond to the closed shells of the artificialmethod®® These results are free of the correlation errors,
atom. which shift the critical magnetic fields for the phase
Let us note that—in the absence of external fields and atransitions>! Therefore, they can be treated as “exact.” Solid
zero temperature—Fermi enerfy of the entire nanodevice curves in Fig. 3 display the chemical potential, which corre-
is determined by the ground-state energy of the donors in theponds to the single-electron charging of the QD. We see that
substrate. Throughout the present paper, we take the Ferrtie agreement with the experimental daitagood. In par-
energy as the reference energy and it 0. ticular, the present calculations very well reproduce the po-
Figure 2 shows the chemical potential calculatedugs sition of the kink, which results from the singlet-triplet tran-
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FIG. 3. Chemical potential calculatgdolid curves for N=1
andN=2 electrons as a function of magnetic fi@d The experi-
mental datagRef. 3 are marked by squares.

sition in the two-electron QD-confined systéfr> This
agreement means that the shape of the potetdidillator

energy is correctly calculated from the Poisson equation. We
note that fitting the confinement energy to the magnetic-field

dependence of the one-electron ground state leadswtp
=5.4 meV? which in turn yields the position of the singlet-

triplet crossing overestimated by a factor of 2. We remark
that the curves calculated in the present paper slightly devi-

ate from the experimental plots at high magnetic fields,
which can result from neglecting some additional effects,

e.g., we cannot exclude a small shift of the Schottky barrier 0y

in the magnetic field.

Ill. RESULTS

A. Confinement potential profile

Figure 4 shows the total potential energy of the electron

calculated for the nanodevice of Ashoetial> Total poten-
tial energyU,,; of the electron is the sum of the band offsets
and the electrostatic confinement potential enddgyvhich

is defined as

U(I’,Z)=—e(,ol(l’,z), (4)

wheree>0 is the elementary charge. The position of the
Fermi energy is marked by the thick solid line. In the
nanodevice;?’ the electrons can occupy the QD region in
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FIG. 4. Total potential energy,,; of the electron in the nan-
odevice as a function of cylindrical coordinateandz. Thick solid
line corresponds to the Fermi energy.

Figure 5 displays the electrostatic lateral confinement po-
tential energy, defined a$(r,zp) for z, fixed within the QD
region. The thick solid line corresponds to the Fermi energy,
which is shifted by the one-electron ground-state energy of
the quantized motion in thedirection. Figure 5 shows that
the lateral confinement potential energy can be approximated
by a parabolic function of. Figure 5 also shows the effect of
the charge confined in the QD. The increasimggative

UfeV]

‘0.03

FIG. 5. Electron confinement potential enetdys a function of

the quantum-well layer and also a part of GaAs spacer closgteral distance and gate voltag¥, . Thick solid line corresponds
to the barrier layer(cf. Fig. 4). In the present paper, we to the Fermi energy. The energy is measured with respect to the
consider only the electrons confined in the quantum well. one-electron ground-state energy of the vertical quantized motion.
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T — 0.1 . . which has been fitted to the numerical solutions of the Pois-
’ son equation. Parameterdetermines the lateral range of the
confinement potential and can be treated as a measure of the
size of the QD. The potential-energy profile depicted in Fig.
6(a) corresponds to the QD studied by Ashoeirial? In Sec.
Il, we have applied this potential energy to reproduce the
capacitance-spectroscopy datat Vg=—0.375V, the first
electron is bound in the QD in the atomiclike state. Figure
6(a) shows that the parabolic approximation of the confine-
ment potential energy is valid only far< 100 nm. In the
T T 04 A e — large part of the QD located farther from the center, the
(d) . ] confinement potential considerably deviates from the para-
bolic shape. If the cap radius increases, the lateral confine-
ment potential energy becomes more flat near the QD center

0.3

% § and more steep at the QD boundary. Figufie) 8hows that
p=13.5 Eféso - for R=800 nm the confinement_potential energy starts to
0. =800 nm ] 0.0 R=120 nm resemble the rectangular potential well. This profile of the
~ R=B00nm . . lateral confinement potential can be obtained using power-

0 600 1200 0o 10 30 exponential formuld5) with large values op andL. Due to
rinm] finm the flatness of the confinement potential the electrons local-

FIG. 6. Lateral confinement potential enefdyr,z,) as a func- ized in the Q.D are sensitive_ to the fluc_tuating potential cre-
tion of r. Dots show the numerical solutions of Poisson equa‘[ionated by th_e ionized _donors in _the barrier I_ayer. In the pres-
(3), solid curves show fitted power-exponential functi@, and ~ €NC€ of this fluctuating potential, the confined electrons do

dashed curves show fitted parabolic function. The resultéidhe not form a well-defined atomiclike shell structure, which can

QD with parameters compatible with those of Ref. 2 and3, ~€Xplain a bunching observed in the addition spetirgor
flat-bottom, steep-wall potential welic) Gaussian potential well, SmallR [cf. Fig. 6(c)] the confinement potential can be very
and (d) parabolic potential well over a large part of the QD. Cap Well fitted over the entire nanodevice by the Gaussian poten-
radiusR and fitted parameters, i.e., poweand range., of power-  tial well. The properties of one- and two-electron artificial
exponential potential5) are quoted. atoms with the Gaussian confinement have been studied in
Ref. 11.

gate voltage lowers the electron potential energy. This leads The present modeling allows us to obtain the confinement
to the localization of the subsequent electrons in the QDpotential, which exhibits the best parabolicity in the large
which in turn results in a further stepwise lowering of the region of the QD[Fig. 6(d)]. We have optimized the cap
confinement potential energy. Figure 5 shows the modificaradius in order to obtain the parabolic confinement potential
tion of the confinement potential by the electrons confined irin as wide as possible a region of the nanodevice. We have
the QD. This effect is caused by the charge induced on théund that forR=120 nm the confinement potential energy
leads. A similar stepwise dependence on the number of QDPossesses the nearly ideal parabolic shape over almost entire
confined electrons has been foéhih the three-electrode region of the physical QIcf. Fig. 6d)].
vertical QD® However, contrary to the three-terminal QD  All the profiles[Fig. 6@)—6(d)] of the lateral confinement
nanodevicé! the shape of the lateral confinement potentialpotential have been calculated under the assumption that ex-
in the two-terminal QD nanodevice remains unchanged wheactly one electron forms the bound state in the QD. This
changing the gate voltage. assumption is fulfilled for the following gate voltageg,

We have applied the present approach to a modeling of —0.375;-0.470:+0.100, and—0.125V for Figs. €a),
the confinement potential profile. For this aim we study theb(b), 6(c), and &d), respectively. We note that the values of
QD considered in Sec. I, but we now vary cap raditiand  both characteristic lengths, i.€8, (cap radiu andL (range
gate voltageV,,. The shape of the confinement potential is of the model confinement potentiabre very close to each
very sensitive to the cap radius, while the gate voltage i®ther in the QD’s considereftf. Figs. Ga)-6(d)]. Sincel
mainly responsible for the position of the potential-well bot- provides a direct measure of the physical size of the QD, this
tom. Therefore, changin® we can model the confinement agreement means that cap radristself gives an accurate
potentials with different profiles. The results are shown inéstimate of the spatial extension of the QD.
Figs. §a)—6(d). In each case, the value of gate voltage S )
has been chosen so that exactly one electron is bound in the B. Optimization of nanodevice parameters
QD. Figures €a)—6(d) show the lateral confinement poten-  |n Sec. Il we have shown that the present model of the
tial energyU(r,zy) = —ee4(r,2p), calculated from Poisson electrostatic QD allows us to reproduce the experimental
equation (3), where z, is taken within the quantum-well data of Ashooret al?2In this section we apply this model to
layer. Figures @)—6(d) also display the power-exponential obtain the relevant physical quantities, which determine the

model confinement potential enertfyi.e., electronic properties of the nanodevice.
Figures 5 and 6 show that the lateral confinement poten-
U(r)=—Ugexd — (r/L)"], (5)  tial can be approximated quite well by the parabolic function

155333-5



S. BEDNAREK, B. SZAFRAN, K. LIS, AND J. ADAMOWSKI PHYSICAL REVIEW B68, 155333 (2003

T T T T T . I 40 T 4
+,” 7] -
.- ‘ Fiw,
.7 N=1 wetnsgpentas
* ofe. ~ Rl
*’ * 2)
. 2 .
3
+ - _e -
T — —_
3 / = % %
g + 'E ﬁ -40 —2 £
E 2 =
= \ + 3 S g
' + N=20 s i
-40 — \\ 48- > '~
N=1 - 3 Np=4.5 o ~ o
A -80 — Np=4.56 Ny evvvicniinnnen NN S
v nD=4.6 Ng S O~
! np=4.65ng — . — . NN
\ Np=4.7Mp = = - = = .
-80 —
- N
1 ~L 1 ] | 1 -120 I L l 0
0 40 30 120 -400 -360 -320 -280 -240
r [nm] V, [mV]
FIG. 7. Lateral confinement potential enetgyr,z,) (left scalg FIG. 8. Electron confinement potential-energy minimuuig

as a function of for N=1 andN= 20 electrons confined in the QD. (left scalg and confinement energyw, (right scal¢ as functions of
Numerical solutions of the Poisson equation are depicted by crossggte voltageV, for several values of donor concentratiop ,
and the parabolic fits by solid and dashed curves. The correspon(ﬂ\lhereno:1017 cm 3,
ing electron charge density calculated fb+=1 andN= 20 is drawn
by the solid and dashed linésght scale. The thin horizontal line  ergy, i.e.,iwg, can be interpreted as the excitation energy
corresponds to the Fermi energy decreased by the one-electr@nd is usually called the confinement energy. Quantligs
ground-state energy of the space-quantized motion irettieec-  and# w, determine the electronic properties of the parabolic
tion. QD. We will show how these quantities depend on the pa-
rameters of the nanodevice, i.e., gate volty¥ge numberN
if the dot radius is not too large. Therefore, the electronicof electrons confined within the QD, concentratio of the
properties of many QD’s can be fairly well described usingionized donors, and raditR of the cap.
the parabolic confinement potential. Having at disposal the The dependence dfl, and #w, on the gate voltage is
QD with a nearly parabolic confinement is very desirable duaiisplayed in Fig. 8. The confinement energy—with a good
to a possibility of a simple prediction of its electronic prop- approximation—can be treated as a constant at different gate
erties. We can estimate how good is the approximate parabgoltages. Potential-well bottort), falls down almost lin-
licity of the confinement potential if we plot the confined early with increasing/, , which means that the gate-voltage-
charge-density distribution together with the realistic con-to-energy conversion factor is approximately constant and
finement potential profile as functions of distaniceom the  equal to~0.5e (cf. Fig. 8. We note that the two-electrode
cylinder axis. This comparison is depicted in Fig. 7 ¥y  QD, considered in the present paper, exhibits a different de-
=—-0.375V forN=1 andVy=—0.292 V forN = 20. The  pendence on the gate voltage from the three-electrode verti-
electron charge density has been calculated by the Hartregal QD> In the QD’s of Taruchaet al.® due to its more
Fock method™ In Fig. 7 the crosses correspond to the nu-complex geometry, the confinement energy strongly depends
merical solutions of Poisson equati¢8) and the solid and on the gate voltage and changes in the interval 6.7 meV
dashed curves show the parabolic approximations of these# w,=5.4 meV if N increases from 1 to 4. Moreover, the
solutions. We see that the confinement potential is paraboligosition of potential-well bottont, is a nonlinear function
within the region of the electron localization. The eIectronsof Vg_zl As a result, the gate-vo|tage-to-energy conversion
only slightly penetrate the nonparabolic region of the con<actor is a nonlinear function of, andN.?* The near inde-
finement potential. We note that the similar behavior Wa%:)endence of the conversion factor\j!j]in the two-electrode

found in the three-electrode QD of Tar_ucba_hal? QD (Ref. 3 results from its simple, plane-capacitor-like
Let us consider the parabolic approximation of the lateraktrycture. Figure 8 also shows that the increase of doping
confinement potential energy leads to the parallel downward shift of the linear functions
2 Uo(Vg). . )
Mewq QuantitiesU, and% wq vary nearly linearly with number

U(r)=Uy+ r2, (6)

N of electrons confined in the QOFig. 9). The position on

the potential-well bottomU, decreases with increasing
Potential energy6) is characterized by the two parameters:and confinement energyw, slowly increases with increas-
Uy, i.e., the position of the potential-well minimum, and, ing N. The confinement energy can be treated as almost in-
which determines the shape of the confinement potential erdependent oN. The dependence &f, on the number of the
ergy near the minimum. The quantum of the oscillator en-QD confined electrons shows an important physical property

2
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FIG. 9. U, (left scalg and zw, (right scalg¢ as functions of FIG. 11. Electron confinement potential-energy minimuy,
numberN of electrons confined in the QD for several values of lateral confinement potential well deptflU (left scalg, and con-

donor concentrationy , whereny=10 cm™2, finement energyt w, (right scal¢ as functions of cap radiuR for
fixed np=4.62<10"" cm™3 andVy= —0.375 meV.

of the nanodevice. This dependence results from the changgearly with increasingnp. The linear dependence &f,

of the induced charge distribution on the leads, which isand7w, on the ionized donor concentration is a rather un-

caused by the presence of electrons in the QD. This effecgixpected behavior.

considerably affects the electronic properties of the QD, but Contrary to the linear dependencies shown in Figs. 8—10,

cannot be determined experimentally in a direct way. the dependencies of both, and7 wy on cap radiuk are
Figure 10 shows the dependencelsf andfwy on the  highly nonlinear (Fig. 11). Potential-well minimumU,

concentratiomp, of the ionized donors for the three values of quickly falls down with R. Confinement energyiw, is a

the cap radius. The donor concentration regime considered imonmonotonic function oR. It increases with increasing

Fig. 10 corresponds to the values Of, centered around for R<65 nm, takes on the maximum &=65 nm, and

zero. We have found that—in this donor concentrationnext decreases witR. It is interesting that the maximal value

regime—confinement energyw, is almost independent of of Zwy=7 meV corresponds to the nearly ideal Gaussian

np and potential-well bottomJ, falls down approximately —shape of the lateral confinement potenfdl Fig. 6(c)]. Fig-

ure 11 also shows quantityU (cf. Fig. 1), which is defined

asAU=U(R.,z,)—U(0,z,), whereR; is the radius of the

cylindrical surface, on which we put the boundary condi-

tions, andz, is taken at the edge of the quantum weallJ

can be interpreted as the depth of the lateral confinement

potential well and is responsible for the lateral confinement

of the electrons. This lateral confinement depth is a mono-

tonically increasing function oR.

100 4
| [

IV. DISCUSSION

Uy [meV]
hiw, [meV]

Let us compare the basic properties of the two types of
the electrostatic QD’s, namely, the two-electrode QD of
Ashooriet al?®and the three-electrode QD of Taruateal
In the electrostatic QD’s the confinement potential depends
on several parameters. The most important of them are the
following: the geometry and composition of the nanodevice,
the voltages applied to the electrodes, the spatial distribution
of ionized impurities, and the charge confined in the QD.

np, [10"7 cm'3] Since the dependence of the confinement potential on the
D : N
structure of the nanodevice and the external electric field is

FIG. 10. U, (left scalé and%w, (right scal¢ as functions of rather well recognized, we shall concentrate on the effect of
concentratiomp, of the ionized donors for three values of cap ra- the ionized donor distribution and the electrons confined in
diusR. the QD.

-100 I | 0
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The total confinement potential enerd¥q. (1)] is  scheme for solving Poisson equati@).

strongly dependent on the charge, i.e., number of electrons, The present results indicate that in the two-terminal QD
confined in the QOcf. Figs. 5 and 8 The electrons confined nanodevicé the gate-voltage-to-energy conversion factor is
within the QD create the electric field, which induces theconstant, which results from the simple, plane-capacitor-like
charge on the leads, which in turn changes the net electr@eometry of the device. In the QD of Taruckaal® this
static field in the nanodevice. Therefore, we deal with thefactor is a nonlinear function of the gate voltage, which is
induced-charge effect, which can be taken into account eithéfu€ to more complex geometigircular gate surrounding
by the image charge methtdor by separating both poten- the QD layef and the strong dependence of the volume oc-

tials [cf. Eq.(1)] and putting the proper boundary conditions cupied by the ionized impurities and the lateral confinement
on the total potential®?: energy on the gate voltage. In both types of the electrostatic

The confinement potential in electrostatic QD’s was cal-QD's, *° the bottom of the confinement potential is lowered
culated in few paper%‘?”'lg‘”Bruce and Maksyﬁn" consid- whe_n an acjdmonal electron entgrs the dot, which is due to
ered the three-electron Poisson-Sdlinger problem for the f[he mteracuqn between the confined charge and the charge
QD with the structure similar to that of Ashocet al23but ~ induced outside the ddin electrodes and-GaAs layers
built on the basis of slightly different layer sequence. In the! his effect, obtained in the present paper and in Ref. 21 from
present model and in the nanodevice of Ash@bral,?? the the_solunon of the P0|s_son e_quatlon, can also be qualitatively
electrons are localized in tredirection in the GaAs poten- derived from the consideration of the image charges.
tial well, which is separated from the substrate by the GaAs V\ée note that there is a striking difference between the
spacer and AlGaAs tunnel barrier. The model introduced byWo-" and three-terminal QD nanodeviceis the confine-
Bruce and Maksyrd? does not contain the potential well, but Ment potential dependence on the number of electrons con-
the electrons are bound in the inversion layer close to thdned within the QD. In both nanostructuré$numberN of _
interface of the AlGaAs barrier. The authbréncluded the confined electrons is controlled by the gate voltage, which,
interaction with the charge induced on the leads by thd'OWeVer, in the three-electrode QD of Ta(ucettaal.,S IS ap-
Green-function method. plied to the third electrode placed on the side of the vertically

The confinement potential in the three-electrode®@@s etched pillar. Therefore, in .the three-electrode Qhe gate
calculated by Matagnet al1®” The calculated addition en- Voltage has a pronounced influence on the shape of the con-
ergies forN=1, . .. ,20were compare’d with the experi- finement potential. In particular, _the confme_ment potential
mental datdand the qualitative agreement was obtained ford€tS fl_attelr when the gate voltage increases, i.e., becomes less
the first seven addition energies. The lack of the quantitativ@egat'vez-, As a consequence the average electron density in
agreement can be explained by the neglect of the redistribdl® QD is nearly independent of the nsumbgr of confined
tion of the ionized donors in the nanodevice. The autiidrs  electrons(cf. Fig. 4 in Ref. 2]. Koskineri® derived the ap-
assumed the uniform distribution of the ionized donors in thg?roximate expression for the dependenegN) assuming
entire doped region. In fact, the distribution of the ionizegthat the ponfmed charge densﬁy is constant. According to this
donors depends on both coordinateand z and moreover e>_<pre53|o?f’ the lateral confinement frequency de_clyfases
changes with the voltages applied to the nanodevice and tHth the number of QD-confined electrons @&, ~N .
charge confined in the QD, which in turn considerably modi-The applicatiod” of this formuld® leads to a qualitative
fies the confinement potent@?* For the three-electrode 29regment between the calculatifh@nd the measured
QD the good quantitative agreement of the outcome of th&lata” However, the approximate formﬁFa_\has a rather lim-
calculation&2 with experimert results from taking into ac-  1ted appllcatlgn and the qualitative descripioof the QD of
count all the effects of crucial importance in this nanodevice.Taruchaet al.” seems to be accidental. In the QD of Ashoori

The Poisson-Schidinger problem for the three-electrode et al’, thewy(N) dependepce possesses a different character,
electrostatic QBwas solved in Refs. 20 and 21 with the help "@mely, the lateral confinement energy slowly grows as
of a self-consistent procedure. The application of the selfi@o~N (cf. Fig. 9. In consequence, the average confined
consistent calculation scheme was necessary, since in ti§@arge density is not independenthfbut also grows if the
vertical gated QB the spatial distribution of the ionized do- Number of confined electrons increages Fig. 7). We note
nors was unknown. This distribution, determined by the selffhat the slow growth of the lateral confinement energy with
consistent proceduré,turned out to be a complicated func- N. obtained in the present papéfig. 9), is in qualitative
tion of coordinates, gate voltage, and number of electronggreement with the conclusions of Hawryféidrawn on the
confined in the QD! In the two-electrode electrostatic §p, Pasis of the image charge approach.
studied in the present paper, the spatial distribution of the
ionized donors is homogeneous in the barrier layer. In the
heavily doped substrate layer all the donors are entirely ion-
ized in the thin layer close to the spacer, which is in contrast In the two-electrode electrostatic QD, studied in the
to the three-terminal nanodevitein which the ionized- present paper, the potential confining the electrons depends
donor region penetrates deeply intaloped layeré! In the  on the gate voltage, the donor concentration, the number of
present simulation of the two-electrode QD the spatial distri-electrons confined in the QD, and the cap radius. We have
bution of the ionized donors in the thin, heavily doped, sub-determined these dependencies from the numerical solutions
strate layer close to the spacer is nonhomogeneous and 6$ the Poisson equation in the entire nanodevice. We have
taken into account by the quickly convergent self-consistenshown the ways of modeling the confinement potential pro-

V. CONCLUSIONS
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file, which in turn leads to the required electronic properties In summary, the following effects are found to be of cru-

of the nanodevice. In particular, we have studied the changeial importance when determining the electronic properties
of shape of the lateral confinement potential from the flatof the electrostatic QD’s: the composition and geometry of
bottom, almost rectangular, potential well to the Gaussianhe nanodevice, the gate voltage, the distribution of the ion-
potential well with smooth boundaries. The power-jzed impurities, and the charge induced on the leads by the
exponential formul appears to be flexible enough to adjust charge confined in the QD. We have shown that the model,
all these potential profiles. We have found that the radius ofyhich properly takes into account all these effects, leads to a

the GaAs cap is a very important parameter that determinggood quantitative agreement with the experiment.
the shape of the confinement potential. The present calcula-

tions have been verified by a good agreement with the ex-
perimental data. The properties of the two-electrode QD of
Ashooriet al® have been compared with those of the three-
electrode QD of Taruchat al.® and the similarities and dif- This work was supported in part by the Polish Govern-
ferences of both nanodevices have been discussed in detaihent Scientific Research Committéd€BN).
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