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Modeling of electronic properties of electrostatic quantum dots

S. Bednarek, B. Szafran, K. Lis, and J. Adamowski*
Faculty of Physics and Nuclear Techniques, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krako´w, Poland
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Electrostatic~gated! quantum dots are studied by computational methods. Electronic properties of the elec-
trostatic quantum dots are determined by the confinement potential, which is created by external voltages,
applied to the electrodes, and band offsets. We have solved the Poisson equation for the two-terminal quantum
dot nanodevice made of several GaAs and AlGaAs layers and obtained the confinement potential profile in the
entire nanodevice. We show how the confinement potential profile can be modeled, which allows us to
design—to some extent—the required electronic properties of the nanodevice. The results have been confirmed
by a good agreement with experimental data. We have discussed the similarities and differences between the
two- and three-terminal quantum dot nanodevices studied experimentally by Ashooriet al. @Phys. Rev Lett.71,
613 ~1993!# and Taruchaet al. @Phys. Rev. Lett.77, 3613~1996!#, respectively.
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I. INTRODUCTION

Electrons localized in a quantum dot~QD! by a confine-
ment potential occupy atomiclike states with discrete ene
levels. Therefore, the QD with the confined electrons
called the artificial atom.1 In the electrostatic~gated!
QD’s,2–5 which are studied in the present paper, the confi
ment potential results from the external voltages, applied
the electrodes, and band offsets. The confinement potent
very sensitive to the voltages applied as well as the par
eters of the nanostructure, in particular, the geometry of
nanodevice and doping. The electronic properties of the n
odevice are determined by the confinement potential. Th
fore, the knowledge of the realistic profile of this potential
important for a design of the nanodevice with the requi
electronic properties and for a theoretical description of
confined electron states.

A direct experimental determination of the confineme
potential is not possible. Therefore, the confinement po
tials used in the majority of theoretical papers possess
model character.1,6–12 The model parabolic potential an
rectangular potential well are the most common of the
Moreover, the Gaussian11 and power-exponential12 confine-
ment potentials were also applied. These models usually
glect the dependence of the confinement potential on
voltages applied to the electrodes and numberN of electrons
confined in the QD. The model parabolic potential with t
confinement frequency dependent onN was also applied to
the QD’s.13–15 If the realistic profile of the confinement po
tential is unknown, an unambiguous interpretation of the
perimental data is difficult or even impossible. The shape
the confinement potential can be calculated by suitable
oretical approaches.16–21 In self-assembled QD’s, the con
finement potential, which depends on the band offsets
the strain between the QD and substrate materials, ca
calculated in the framework of the elasticity theory.18 In elec-
trostatic QD’s, the confinement potential generated by
external voltages applied to the leads can be calculated f
the Poisson equation.16,17,19–21In Refs. 20 and 21, a self
consistent procedure was elaborated for the solution of
Poisson-Schro¨dinger problem in the three-electrode vertic
QD of Tarucha et al.5 The calculated20,21 realistic profile of
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the confinement potential takes into account the voltages
plied to the leads, the spatial distribution of the ionized d
nors, and the electrons confined in the QD. The results
calculations20,21 very well agree with the experimenta
data.5,22

Both types of electrostatic QD’s, i.e., the first one ma
by Ashoori et al.3 and the second one made by Tarucha
al.5, are still intensively studied experimentally.23–25 Re-
cently, in the two-electrode QD3 the localization-
delocalization transition has been found,23 and in the three-
electrode QD5 the Kondo effect has been observed.25

In our recent paper,26 we have considered the two
electrode QD, which was fabricated on the basis of the p
nar nanostructure by Ashooriet al.2–4,27 We have shown26

that the confinement potential can take on different shap
from a flat-bottom and steep-wall potential, which can
approximated by the rectangular potential well, to t
smooth potential, which can be approximated by eithe
Gaussian or a parabolic potential.

In the present paper we extend this research26 and perform
a detailed study of the effects of the geometric structure
doping on the profile of the confinement potential. Taki
into account the charges induced on the leads, we can d
mine the dependence of the confinement potentials on
gate voltage and the number of electrons confined in the Q
We have verified the quality of the calculations by applyi
them to a description of the capacitance spectroscopy d3

Having at disposal a computational tool for determining t
realistic confinement potentials, we have performed an o
mization of the nanodevice parameters and studied the
sitivity of the confinement potentials to the changes of th
parameters.

The paper is organized as follows: in Sec. II we pres
the theoretical approach and check its reliability, and in S
III we provide the results of the optimization of the nanod
vice parameters. Section IV contains the discussion and
V the conclusions.

II. THEORY

A. Model nanodevice

A schematic of the nanodevice considered in the pres
paper is pictured in the inset of Fig. 1. The present mo
©2003 The American Physical Society33-1
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FIG. 1. Boundary conditions put on total po
tential energyUtot for r 5Rc ~dashed curve! and
Utot along the cylinder axis~solid curve! as func-
tions ofz. U0 andDU are the vertical and latera
confinement potential depths, respectively. Th
horizontal line corresponds to the Fermi energ
Inset: Schematic of the nanodevice used in t
calculations.
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approximates quite well the real QD’s studied by Ashooriet
al.2–4,27The nanodevice2,3 has a planar structure and consis
of the doped and undoped GaAs and AlGaAs layers. T
300-nm-thick GaAs substrate layer is heavily doped by
nors and forms the bottom electrode. The subsequent la
grown on the substrate, form the following sequence:
60-nm GaAs spacer, the 12.5-nm AlGaAs tunnel barrier,
17.5-nm GaAs quantum well, and the 50-nm AlGaAs bloc
ing barrier, in which the lower 15-nm sublayer is undop
and the upper 35-nm sublayer is doped by donors. In
nanostructures3,4,27 a d doping of the blocking barrier wa
applied. In the present calculations, we take this doping
account by smearing the charge of the ionized donors o
the entire upper 35-nm AlGaAs barrier sublayer. The 30-
GaAs cylindrical cap of radiusR is grown on then-doped
AlGaAs barrier layer. The entire structure is covered with
metal layer, which forms the top gate. The voltage appl
between the gate and bottom electrode is a source of
inhomogeneous electrostatic field, which—in the region
low the cap—generates the potential confining the electr
laterally within the GaAs quantum well. The vertical co
finement results from the GaAs/AlGaAs conduction-ba
offsets. The physical region of the QD is located within t
GaAs quantum-well layer below the cap. For the fixed thic
nesses and compositions of the layers the radius of the
determines the shape of the confinement potential.

B. Poisson equation

The total electrostatic field that confines electrons in
QD is generated by the external potential applied to the g
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the ionized donor centers in then-doped layers, and the elec
trons confined in the QD. In order to take into account t
dependence of the confinement potential on the confi
charge carriers, we apply the superposition principle a
separate21 potentialF of the total electrostatic field into two
components, which stem from different sources, i.e.,

F~r !5w1~r !1w2~r !, ~1!

wherew1 is the potential of the electrostatic field, which
generated by the charges of the ionized impurities and
charges on the leads, andw2 is the potential of the electro
static field created by the electrons confined in the QD.
tential w2 is identified with the Hartree potential.21 Potential
w1 is found by solving the Poisson equation

¹2w1~r !52
%~r !

««0
, ~2!

where%(r ) is the density of the charge associated with t
ionized donors in the AlGaAs blocking barrier layer and
the thin interface layer of the GaAs substrate. In the pres
calculations, we take on the static dielectric constant« for
GaAs. When solving Eq.~2!, we impose the boundary con
ditions on total potentialF and calculate the boundary va
ues ofw1 from Eq.~1!. This procedure, described in detail
Ref. 21, allows us to include the charges induced in the le
by the electrons confined within the QD.

The boundary conditions are put on the cylindrical surfa
with radiusRc , which encompasses the integration doma
3-2
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MODELING OF ELECTRONIC PROPERTIES OF . . . PHYSICAL REVIEW B 68, 155333 ~2003!
~cf. inset of Fig. 1!. The inner surfaces of the top gate a
bottom electrodes are taken as the cylinder bases. The p
tials on these electrodes are set in experiments2–4 and there-
fore are known. The boundary conditions on the cylindri
side surface are determined as follows: we assume tha
dius Rc of the cylinder is so large that the electric field o
this surface is approximately parallel to the cylinder ax
Next, we take the potential profile on this boundary surfa
according to Fig. 1. In the nanostructure considered, Pois
equation~2! possesses the full cylindrical symmetry and
reduced to

S ]2

]r 2
1

1

r

]

]r
1

]2

]z2D w1~r ,z!52
%~r ,z!

««0
. ~3!

We solve Eq.~3! by the finite-difference relaxation metho
on the two-dimensional mesh.21 Figure 1 also displays the
potential energy calculated along the cylinder axis. This
tential takes into account the band offsets and the Scho
barrier, which act as additional fields in the vertical~z! direc-
tion.

C. Reliability of the model

In the calculations, we have taken the Schottky bar
between the gate and GaAs semiconducting layer to be
eV ~Ref. 28! and the shift of the conduction-band bottom
GaAs with respect to that of AlGaAs equal to 220 meV.
order to check the present model we have applied it t
quantitative description of the capacitance-spectrosc
data.3 The spectrum of electrons confined in the QD is ad
tionally affected by a fluctuating potential, which stems fro
randomly distributed impurities and surface defects. In
present model we neglect this fluctuating potential. The
fore, for the test calculations we have chosen the QD~Ref. 3!
with the possibly small radius, for which the effect of th
fluctuating potential is the smallest.

Among several parameters of the nanostructure, two
them cannot be determined in experiments with the suffic
precision. These are radiusR of the cap, which cannot be
accurately measured because of the undercut of the G
cap due to the etching,21 and concentrationnD of the ionized
Si donors in the blocking barrier, since during the intentio
doping not all Si atoms occupy the donor sites in AlGa
and moreover not all the donors are ionized.29 The radius of
the cap determines the profile of the confinement poten
which in turn affects the energy separations between
capacitance-spectroscopy peaks, while the concentratio
the ionized donors determines the gate voltage, for which
first electron becomes trapped in the QD. We have adju
the values ofR andnD in order to reproduce the capacitan
peaks,3 which correspond to the closed shells of the artific
atom.

Let us note that—in the absence of external fields an
zero temperature—Fermi energyEF of the entire nanodevice
is determined by the ground-state energy of the donors in
substrate. Throughout the present paper, we take the F
energy as the reference energy and putEF50.

Figure 2 shows the chemical potential calculated asmN
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5EN2EN21, whereEN is the ground-state energy ofN elec-
trons confined in the QD. In the present paper, energyEN has
been calculated by the Hartree-Fock method. The results
the artificial atoms withN51, 2, 6, 12, and 20 electrons, fo
which the electronic shells of the cylindrically symmetr
artificial atom are closed, are compared with the measu
positions of the capacitance-spectroscopy peaks.3 We deter-
mine the positions of the capacitance peaks from the cros
points of the chemical potential ofN electrons confined in
the QD with the Fermi energy.21 Figure 2 shows that adjust
ing only two parameters we have accurately reproduced
positions of six capacitance peaks. The largest deviation
mV occurs forN56. The results of Fig. 2 have been o
tained with R5205 nm andnD54.6231017 cm23, which
corresponds to the two-dimensional ionized donor concen
tion 1.631012 cm22 in the d-doped layer.

Using the fixed values of both adjusted parameters
have checked the reliability of the present model by cal
lating the magnetic-field dependence of the first two capa
tance peaks.3 In this case, we deal with the one- and tw
electron systems, for which the energy levels can
calculated with the arbitrary accuracy by the imaginary-tim
method.30 These results are free of the correlation erro
which shift the critical magnetic fields for the phas
transitions.31 Therefore, they can be treated as ‘‘exact.’’ So
curves in Fig. 3 display the chemical potential, which cor
sponds to the single-electron charging of the QD. We see
the agreement with the experimental data3 is good. In par-
ticular, the present calculations very well reproduce the
sition of the kink, which results from the singlet-triplet tran

FIG. 2. Chemical potentialmN as a function of gate voltage
Vg for several numbersN of electrons confined in the QD. Dashe
horizontal line displays Fermi energyEF and thin vertical
lines show the positions of the capacitance spectroscopy p
from Ref. 3.
3-3
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sition in the two-electron QD-confined system.32,33 This
agreement means that the shape of the potential~oscillator
energy! is correctly calculated from the Poisson equation.
note that fitting the confinement energy to the magnetic-fi
dependence of the one-electron ground state leads to\v0
55.4 meV,3 which in turn yields the position of the single
triplet crossing overestimated by a factor of 2. We rem
that the curves calculated in the present paper slightly d
ate from the experimental plots at high magnetic fiel
which can result from neglecting some additional effec
e.g., we cannot exclude a small shift of the Schottky bar
in the magnetic field.

III. RESULTS

A. Confinement potential profile

Figure 4 shows the total potential energy of the elect
calculated for the nanodevice of Ashooriet al.3 Total poten-
tial energyUtot of the electron is the sum of the band offse
and the electrostatic confinement potential energyU, which
is defined as

U~r ,z!52ew1~r ,z!, ~4!

where e.0 is the elementary charge. The position of t
Fermi energy is marked by the thick solid line. In th
nanodevice,3,27 the electrons can occupy the QD region
the quantum-well layer and also a part of GaAs spacer c
to the barrier layer~cf. Fig. 4!. In the present paper, w
consider only the electrons confined in the quantum well

FIG. 3. Chemical potential calculated~solid curves! for N51
andN52 electrons as a function of magnetic fieldB. The experi-
mental data~Ref. 3! are marked by squares.
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Figure 5 displays the electrostatic lateral confinement
tential energy, defined asU(r ,z0) for z0 fixed within the QD
region. The thick solid line corresponds to the Fermi ener
which is shifted by the one-electron ground-state energy
the quantized motion in thez direction. Figure 5 shows tha
the lateral confinement potential energy can be approxima
by a parabolic function ofr. Figure 5 also shows the effect o
the charge confined in the QD. The increasing~negative!

FIG. 4. Total potential energyUtot of the electron in the nan-
odevice as a function of cylindrical coordinatesr andz. Thick solid
line corresponds to the Fermi energy.

FIG. 5. Electron confinement potential energyU as a function of
lateral distancer and gate voltageVg . Thick solid line corresponds
to the Fermi energy. The energy is measured with respect to
one-electron ground-state energy of the vertical quantized moti
3-4
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MODELING OF ELECTRONIC PROPERTIES OF . . . PHYSICAL REVIEW B 68, 155333 ~2003!
gate voltage lowers the electron potential energy. This le
to the localization of the subsequent electrons in the Q
which in turn results in a further stepwise lowering of t
confinement potential energy. Figure 5 shows the modifi
tion of the confinement potential by the electrons confined
the QD. This effect is caused by the charge induced on
leads. A similar stepwise dependence on the number of Q
confined electrons has been found21 in the three-electrode
vertical QD.5 However, contrary to the three-terminal Q
nanodevice,21 the shape of the lateral confinement poten
in the two-terminal QD nanodevice remains unchanged w
changing the gate voltage.

We have applied the present approach to a modeling
the confinement potential profile. For this aim we study
QD considered in Sec. II, but we now vary cap radiusR and
gate voltageVg . The shape of the confinement potential
very sensitive to the cap radius, while the gate voltage
mainly responsible for the position of the potential-well bo
tom. Therefore, changingR we can model the confinemen
potentials with different profiles. The results are shown
Figs. 6~a!–6~d!. In each case, the value of gate voltageVg
has been chosen so that exactly one electron is bound in
QD. Figures 6~a!–6~d! show the lateral confinement pote
tial energyU(r ,z0)52ew1(r ,z0), calculated from Poisson
equation ~3!, where z0 is taken within the quantum-wel
layer. Figures 6~a!–6~d! also display the power-exponenti
model confinement potential energy,12 i.e.,

U~r !52U0exp@2~r /L !p#, ~5!

FIG. 6. Lateral confinement potential energyU(r ,z0) as a func-
tion of r. Dots show the numerical solutions of Poisson equat
~3!, solid curves show fitted power-exponential function~5!, and
dashed curves show fitted parabolic function. The results for~a! the
QD with parameters compatible with those of Ref. 2 and 3,~b!
flat-bottom, steep-wall potential well,~c! Gaussian potential well
and ~d! parabolic potential well over a large part of the QD. C
radiusR and fitted parameters, i.e., powerp and rangeL, of power-
exponential potential~5! are quoted.
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which has been fitted to the numerical solutions of the Po
son equation. ParameterL determines the lateral range of th
confinement potential and can be treated as a measure o
size of the QD. The potential-energy profile depicted in F
6~a! corresponds to the QD studied by Ashooriet al.3 In Sec.
II, we have applied this potential energy to reproduce
capacitance-spectroscopy data.3 At Vg520.375 V, the first
electron is bound in the QD in the atomiclike state. Figu
6~a! shows that the parabolic approximation of the confin
ment potential energy is valid only forr , 100 nm. In the
large part of the QD located farther from the center, t
confinement potential considerably deviates from the pa
bolic shape. If the cap radius increases, the lateral confi
ment potential energy becomes more flat near the QD ce
and more steep at the QD boundary. Figure 6~b! shows that
for R5800 nm the confinement potential energy starts
resemble the rectangular potential well. This profile of t
lateral confinement potential can be obtained using pow
exponential formula~5! with large values ofp andL. Due to
the flatness of the confinement potential the electrons lo
ized in the QD are sensitive to the fluctuating potential c
ated by the ionized donors in the barrier layer. In the pr
ence of this fluctuating potential, the confined electrons
not form a well-defined atomiclike shell structure, which c
explain a bunching observed in the addition spectra.34 For
small R @cf. Fig. 6~c!# the confinement potential can be ve
well fitted over the entire nanodevice by the Gaussian po
tial well. The properties of one- and two-electron artifici
atoms with the Gaussian confinement have been studie
Ref. 11.

The present modeling allows us to obtain the confinem
potential, which exhibits the best parabolicity in the lar
region of the QD@Fig. 6~d!#. We have optimized the cap
radius in order to obtain the parabolic confinement poten
in as wide as possible a region of the nanodevice. We h
found that forR5120 nm the confinement potential energ
possesses the nearly ideal parabolic shape over almost e
region of the physical QD@cf. Fig. 6~d!#.

All the profiles@Fig. 6~a!–6~d!# of the lateral confinemen
potential have been calculated under the assumption tha
actly one electron forms the bound state in the QD. T
assumption is fulfilled for the following gate voltages:Vg
520.375,20.470,10.100, and20.125 V for Figs. 6~a!,
6~b!, 6~c!, and 6~d!, respectively. We note that the values
both characteristic lengths, i.e.,R ~cap radius! andL ~range
of the model confinement potential!, are very close to each
other in the QD’s considered@cf. Figs. 6~a!–6~d!#. SinceL
provides a direct measure of the physical size of the QD,
agreement means that cap radiusR itself gives an accurate
estimate of the spatial extension of the QD.

B. Optimization of nanodevice parameters

In Sec. II we have shown that the present model of
electrostatic QD allows us to reproduce the experimen
data of Ashooriet al.2,3 In this section we apply this model t
obtain the relevant physical quantities, which determine
electronic properties of the nanodevice.

Figures 5 and 6 show that the lateral confinement pot
tial can be approximated quite well by the parabolic functi

n

3-5
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if the dot radius is not too large. Therefore, the electro
properties of many QD’s can be fairly well described usi
the parabolic confinement potential. Having at disposal
QD with a nearly parabolic confinement is very desirable d
to a possibility of a simple prediction of its electronic pro
erties. We can estimate how good is the approximate par
licity of the confinement potential if we plot the confine
charge-density distribution together with the realistic co
finement potential profile as functions of distancer from the
cylinder axis. This comparison is depicted in Fig. 7 forVg
520.375 V for N51 andVg520.292 V for N 5 20. The
electron charge density has been calculated by the Har
Fock method.21 In Fig. 7 the crosses correspond to the n
merical solutions of Poisson equation~3! and the solid and
dashed curves show the parabolic approximations of th
solutions. We see that the confinement potential is parab
within the region of the electron localization. The electro
only slightly penetrate the nonparabolic region of the co
finement potential. We note that the similar behavior w
found21 in the three-electrode QD of Taruchaet al.5

Let us consider the parabolic approximation of the late
confinement potential energy

Ũ~r !5U01
mev0

2

2
r 2. ~6!

Potential energy~6! is characterized by the two paramete
U0, i.e., the position of the potential-well minimum, andv0,
which determines the shape of the confinement potential
ergy near the minimum. The quantum of the oscillator e

FIG. 7. Lateral confinement potential energyU(r ,z0) ~left scale!
as a function ofr for N51 andN520 electrons confined in the QD
Numerical solutions of the Poisson equation are depicted by cro
and the parabolic fits by solid and dashed curves. The corresp
ing electron charge density calculated forN51 andN520 is drawn
by the solid and dashed lines~right scale!. The thin horizontal line
corresponds to the Fermi energy decreased by the one-ele
ground-state energy of the space-quantized motion in thez direc-
tion.
15533
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ergy, i.e.,\v0, can be interpreted as the excitation ener
and is usually called the confinement energy. QuantitiesU0
and\v0 determine the electronic properties of the parabo
QD. We will show how these quantities depend on the
rameters of the nanodevice, i.e., gate voltageVg , numberN
of electrons confined within the QD, concentrationnD of the
ionized donors, and radiusR of the cap.

The dependence ofU0 and \v0 on the gate voltage is
displayed in Fig. 8. The confinement energy—with a go
approximation—can be treated as a constant at different
voltages. Potential-well bottomU0 falls down almost lin-
early with increasingVg , which means that the gate-voltag
to-energy conversion factor is approximately constant a
equal to;0.5e ~cf. Fig. 8!. We note that the two-electrod
QD, considered in the present paper, exhibits a different
pendence on the gate voltage from the three-electrode v
cal QD.5 In the QD’s of Taruchaet al.,5 due to its more
complex geometry, the confinement energy strongly depe
on the gate voltage and changes in the interval 6.7 m
>\v0>5.4 meV if N increases from 1 to 4. Moreover, th
position of potential-well bottomU0 is a nonlinear function
of Vg .21 As a result, the gate-voltage-to-energy convers
factor is a nonlinear function ofVg andN.21 The near inde-
pendence of the conversion factor onVg in the two-electrode
QD ~Ref. 3! results from its simple, plane-capacitor-lik
structure. Figure 8 also shows that the increase of dop
leads to the parallel downward shift of the linear functio
U0(Vg).

QuantitiesU0 and\v0 vary nearly linearly with number
N of electrons confined in the QD~Fig. 9!. The position on
the potential-well bottomU0 decreases with increasingN
and confinement energy\v0 slowly increases with increas
ing N. The confinement energy can be treated as almos
dependent ofN. The dependence ofU0 on the number of the
QD confined electrons shows an important physical prope

es
d-

ron

FIG. 8. Electron confinement potential-energy minimumU0

~left scale! and confinement energy\v0 ~right scale! as functions of
gate voltageVg for several values of donor concentrationnD ,
wheren051017 cm23.
3-6
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MODELING OF ELECTRONIC PROPERTIES OF . . . PHYSICAL REVIEW B 68, 155333 ~2003!
of the nanodevice. This dependence results from the cha
of the induced charge distribution on the leads, which
caused by the presence of electrons in the QD. This ef
considerably affects the electronic properties of the QD,
cannot be determined experimentally in a direct way.

Figure 10 shows the dependence ofU0 and \v0 on the
concentrationnD of the ionized donors for the three values
the cap radius. The donor concentration regime considere
Fig. 10 corresponds to the values ofU0 centered around
zero. We have found that—in this donor concentrat
regime—confinement energy\v0 is almost independent o
nD and potential-well bottomU0 falls down approximately

FIG. 9. U0 ~left scale! and \v0 ~right scale! as functions of
numberN of electrons confined in the QD for several values
donor concentrationnD , wheren051017 cm23.

FIG. 10. U0 ~left scale! and \v0 ~right scale! as functions of
concentrationnD of the ionized donors for three values of cap r
dius R.
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linearly with increasingnD . The linear dependence ofU0
and \v0 on the ionized donor concentration is a rather u
expected behavior.

Contrary to the linear dependencies shown in Figs. 8–
the dependencies of bothU0 and \v0 on cap radiusR are
highly nonlinear ~Fig. 11!. Potential-well minimum U0
quickly falls down with R. Confinement energy\v0 is a
nonmonotonic function ofR. It increases with increasingR
for R<65 nm, takes on the maximum atR565 nm, and
next decreases withR. It is interesting that the maximal valu
of \v0.7 meV corresponds to the nearly ideal Gauss
shape of the lateral confinement potential@cf. Fig. 6~c!#. Fig-
ure 11 also shows quantityDU ~cf. Fig. 1!, which is defined
asDU5U(Rc ,zb)2U(0,zb), whereRc is the radius of the
cylindrical surface, on which we put the boundary con
tions, andzb is taken at the edge of the quantum well.DU
can be interpreted as the depth of the lateral confinem
potential well and is responsible for the lateral confinem
of the electrons. This lateral confinement depth is a mo
tonically increasing function ofR.

IV. DISCUSSION

Let us compare the basic properties of the two types
the electrostatic QD’s, namely, the two-electrode QD
Ashooriet al.2,3 and the three-electrode QD of Taruchaet al.5

In the electrostatic QD’s the confinement potential depe
on several parameters. The most important of them are
following: the geometry and composition of the nanodevi
the voltages applied to the electrodes, the spatial distribu
of ionized impurities, and the charge confined in the Q
Since the dependence of the confinement potential on
structure of the nanodevice and the external electric field
rather well recognized, we shall concentrate on the effec
the ionized donor distribution and the electrons confined
the QD.

f
FIG. 11. Electron confinement potential-energy minimumU0,

lateral confinement potential well depthDU ~left scale!, and con-
finement energy\v0 ~right scale! as functions of cap radiusR for
fixed nD54.6231017 cm23 andVg520.375 meV.
3-7
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The total confinement potential energy@Eq. ~1!# is
strongly dependent on the charge, i.e., number of electr
confined in the QD~cf. Figs. 5 and 9!. The electrons confined
within the QD create the electric field, which induces t
charge on the leads, which in turn changes the net elec
static field in the nanodevice. Therefore, we deal with
induced-charge effect, which can be taken into account ei
by the image charge method13 or by separating both poten
tials @cf. Eq. ~1!# and putting the proper boundary conditio
on the total potential.20,21

The confinement potential in electrostatic QD’s was c
culated in few papers.16,17,19–21Bruce and Maksym19 consid-
ered the three-electron Poisson-Schro¨dinger problem for the
QD with the structure similar to that of Ashooriet al.2,3 but
built on the basis of slightly different layer sequence. In t
present model and in the nanodevice of Ashooriet al.,2,3 the
electrons are localized in thez direction in the GaAs poten
tial well, which is separated from the substrate by the Ga
spacer and AlGaAs tunnel barrier. The model introduced
Bruce and Maksym19 does not contain the potential well, bu
the electrons are bound in the inversion layer close to
interface of the AlGaAs barrier. The authors19 included the
interaction with the charge induced on the leads by
Green-function method.

The confinement potential in the three-electrode QD5 was
calculated by Matagneet al.16,17 The calculated addition en
ergies forN51, . . . ,20 were compared17 with the experi-
mental data5 and the qualitative agreement was obtained
the first seven addition energies. The lack of the quantita
agreement can be explained by the neglect of the redistr
tion of the ionized donors in the nanodevice. The authors16,17

assumed the uniform distribution of the ionized donors in
entire doped region. In fact, the distribution of the ioniz
donors depends on both coordinatesr and z and moreover
changes with the voltages applied to the nanodevice and
charge confined in the QD, which in turn considerably mo
fies the confinement potential.20,21 For the three-electrode
QD the good quantitative agreement of the outcome of
calculations20,21with experiment5 results from taking into ac-
count all the effects of crucial importance in this nanodevi

The Poisson-Schro¨dinger problem for the three-electrod
electrostatic QD5 was solved in Refs. 20 and 21 with the he
of a self-consistent procedure. The application of the s
consistent calculation scheme was necessary, since in
vertical gated QD5 the spatial distribution of the ionized do
nors was unknown. This distribution, determined by the s
consistent procedure,21 turned out to be a complicated func
tion of coordinates, gate voltage, and number of electr
confined in the QD.21 In the two-electrode electrostatic QD3

studied in the present paper, the spatial distribution of
ionized donors is homogeneous in the barrier layer. In
heavily doped substrate layer all the donors are entirely
ized in the thin layer close to the spacer, which is in contr
to the three-terminal nanodevice,5 in which the ionized-
donor region penetrates deeply inton-doped layers.21 In the
present simulation of the two-electrode QD the spatial dis
bution of the ionized donors in the thin, heavily doped, su
strate layer close to the spacer is nonhomogeneous an
taken into account by the quickly convergent self-consist
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scheme for solving Poisson equation~3!.
The present results indicate that in the two-terminal Q

nanodevice3 the gate-voltage-to-energy conversion factor
constant, which results from the simple, plane-capacitor-
geometry of the device. In the QD of Taruchaet al.5 this
factor is a nonlinear function of the gate voltage, which
due to more complex geometry~circular gate surrounding
the QD layer! and the strong dependence of the volume
cupied by the ionized impurities and the lateral confinem
energy on the gate voltage. In both types of the electrost
QD’s,3,5 the bottom of the confinement potential is lower
when an additional electron enters the dot, which is due
the interaction between the confined charge and the ch
induced outside the dot~in electrodes andn-GaAs layers!.
This effect, obtained in the present paper and in Ref. 21 fr
the solution of the Poisson equation, can also be qualitativ
derived from the consideration of the image charges.13

We note that there is a striking difference between
two-3 and three-terminal QD nanodevices5 in the confine-
ment potential dependence on the number of electrons
fined within the QD. In both nanostructures,3,5 numberN of
confined electrons is controlled by the gate voltage, whi
however, in the three-electrode QD of Taruchaet al.,5 is ap-
plied to the third electrode placed on the side of the vertica
etched pillar. Therefore, in the three-electrode QD,5 the gate
voltage has a pronounced influence on the shape of the
finement potential. In particular, the confinement poten
gets flatter when the gate voltage increases, i.e., becomes
negative.21 As a consequence the average electron densit
the QD5 is nearly independent of the number of confin
electrons~cf. Fig. 4 in Ref. 21!. Koskinen35 derived the ap-
proximate expression for the dependencev0(N) assuming
that the confined charge density is constant. According to
expression35 the lateral confinement frequency decreas
with the number of QD-confined electrons as\v0;N21/4.
The application36 of this formula35 leads to a qualitative
agreement between the calculations36 and the measured
data.5 However, the approximate formula35 has a rather lim-
ited application and the qualitative description36 of the QD of
Taruchaet al.5 seems to be accidental. In the QD of Ashoo
et al.3, thev0(N) dependence possesses a different chara
namely, the lateral confinement energy slowly grows
\v0;N ~cf. Fig. 9!. In consequence, the average confin
charge density is not independent ofN, but also grows if the
number of confined electrons increases~cf. Fig. 7!. We note
that the slow growth of the lateral confinement energy w
N, obtained in the present paper~Fig. 9!, is in qualitative
agreement with the conclusions of Hawrylak,13 drawn on the
basis of the image charge approach.

V. CONCLUSIONS

In the two-electrode electrostatic QD, studied in t
present paper, the potential confining the electrons depe
on the gate voltage, the donor concentration, the numbe
electrons confined in the QD, and the cap radius. We h
determined these dependencies from the numerical solut
of the Poisson equation in the entire nanodevice. We h
shown the ways of modeling the confinement potential p
3-8
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file, which in turn leads to the required electronic propert
of the nanodevice. In particular, we have studied the cha
of shape of the lateral confinement potential from the
bottom, almost rectangular, potential well to the Gauss
potential well with smooth boundaries. The powe
exponential formula12 appears to be flexible enough to adju
all these potential profiles. We have found that the radius
the GaAs cap is a very important parameter that determ
the shape of the confinement potential. The present calc
tions have been verified by a good agreement with the
perimental data. The properties of the two-electrode QD
Ashoori et al.3 have been compared with those of the thre
electrode QD of Taruchaet al.,5 and the similarities and dif-
ferences of both nanodevices have been discussed in de
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good quantitative agreement with the experiment.
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