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RECURSIVE UNSOLVABILITY OF GROUP
THEORETIC PROBLEMS*

By MICHAEL O. RABIN
(Received March 25, 1957)

Finitely presented groups, i.e. groups defined by a finite system of
generators and relations between these generators, arise in a natural way
in several mathematical contexts especially in algebraic topology. Very
often decision problems spring into the foreground. In the theory of
knots, for example, there corresponds to every knot a certain finitely
presented group; given the knot it is possible to actually compute a
presentation of its group. The knot is trivial if and only if its group is
infinite cyclic. Thus the problem of classifying knots into trivial and non-
trivial ones reduces to a decision problem concerning presentations.

P. S. Novikov proved [13] that the word problem for groups is not ef-
fectively solvable. In fact he exhibited a specific finite presentation II,
and proved that there does not exist a general and effective method of
deciding for every given word on the generators of I, whether it equals
one as a consequence of the defining relations.

The word problem is a decision problem concerning elements of an
algebraic system. Algebraists are usually more interested in questions
related to whole algebraic systems. Thus we are naturally led to consider
decision problems of a higher category, namely problems concerning pre-
sentations and properties of the algebraic systems defined by them. Mar-
kov led the way in this direction. In [9, 10] he showed that for many
algebraic properties of semigroups there does not exist an effective pro-
cedure of deciding, for every given presentation, whether the semigroup
defined by it possesses the property in question. Addison [1] and Feeney
[3] obtained similar results for cancellation semigroups. The main theorem
of the following paper, and the general method of its proof, were in-
spired by the ideas of Markov.

In Chapter I we combine Novikov’s result with a certain algebraic con-
struction to show that for a very extensive class of group theoretic prop-
erties there does not exist a general and effective method of deciding,

* This work constitutes part of a doctoral dissertation written under the supervision of
Prof. A. Church at Princeton University and submitted in October, 1956. The author
wishes to thank Prof. Church for his kind encouragement during the preparation of the
thesis. The results (except those in Chapter III) were presented before the New York
meeting of the American Mathematical Society in April, 1956.
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RECURSIVE UNSOLVABILITY" 173

for every given presentation, whether the group defined by it has the
property in question (Theorem 1.1). Since every group presentation can
also be written as a presentation of a semigroup, or cancellation semi-
group, the results of Markov, Addison, and Feeney follow as special
cases. Also follow the results on groups announced, without proofs, by
Adjan [2]; see review in Zentralblatt, September 1956, our source.

The usual method of proving that a problem is not solvable by means
of an effective decision procedure is to “ translate ” a problem known not
to be effectively solvable into the problem in question. When dealing with
algebraic systems this translation process involves proofs that certain
mappings are isomorphisms, or at least map distinct elements into distinct
elements. These proofs were usually obtained by combinatorial analysis.
One checked what products, cancellations, and equations can occur and
showed, by inspection and inductive arguments, that certain equations
between products are impossible. In the following work we were how-
ever successful in avoiding combinatorial arguments and used methods
of a more algebraic nature instead. In particular the free product with
amalgamated subgroups turned out to be a useful tool. The comparative
simplicity of proofs of this kind does in fact raise hope that one can re-
place the combinatorial arguments in previous papers on similar subjects
by group theoretic procedures and thereby obtain much simpler proofs
for the same results.

Chapter II is devoted to the direct and indirect consequences of the
main theorem. It turns out that for such basic algebraic properties as cy-
clicity, finiteness, simplicity, solvability, being decomposable into a direct
product, and many others, there does not exist a general and effective
method of ascertaining from presentations whether the groups defined
by them have that property. Novikov’s result is supplemented (in Section
2.6.) by showing that it is impossible, in general, to decide whether the
word problem of a presentation is recursively solvable.

In Section 3.1. we prove that the isomorphism problem for groups is
not recursively solvable, a result which can be rephrased by saying that
there does not exist a finite complete system of computable isomorphism
invariants. Now for certain equivalence problems in algebraic topology
one constructs infinite sequences of equivalence invariants which are
usually also computable. Though the construction of a complete countable
sequence of computable equivalence invariants does not furnish an effec-
tive decision procedure for that equivalence problem, it is probably the
next best thing after it. In Section 3.2. we demonstrate the impossibility
of even a countably infinite complete system of computable isomorphism
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invariants. Thus a program for the classification of presentations, similar
to the program of algebraic topology, is not feasible.

0.1. Effective decision procedures

A decision problem arises when we are given a set S of mathematical
objects together with a subset P of S, and we want a general method of
deciding, for every given element x € S, whether x € P.

In most cases it is possible to replace the original problem, given by the
pair (S, P), by a new problem concerning a set S’ and a subset P’ & S’,
where S’ is a subset of the set of non-negative integers. This is done by
the so-called device of Gédel numbering. Let S be, for example, the set
of all polynoms in one variable with non-negative integral coefficients and
let P be a subset of S. The set S can be Gédel numbered by associating
with each polynom f € S, f(x) = ay + ax + -+ + a,z", the integer i(f)

i(f) = II5-o0s% p; = 7™ prime.

The function ¢ clearly maps S one to one onto the positive integers I and
maps P onto a subset P’ = i(P) of I; given a polynom f € S one can com-
pute in a finite number of steps the integer i(f); given any integer % one
can find in a finite number of steps the polynom ¢-'(k). Any solution of
the decision problem (I, P’) therefore leads to a solution of the original
decision problem.

By using Gédel numbering most decision problems are thus reducible
to the form: Given a subset P of the integers I, to find a test for mem-
bership in P. With P we can now associate its characteristic function f

1 ifneP,
0 ifng P.

Having an effective test for membership in P is thus equivalent to f be-
ing an effectively computable function.

The question how to define the concept of an effectively computable
function is treated in the theory of recursive functions [5, pp. 217-386].
There one defines a certain set C of so-called recursive functions and then
agrees to call a function f (from integers to integers) effectively comput-
able if and only if fe C. For the motivation for identifying effective
computability with recursiveness see [5, pp. 317-323].

We can now give a precise meaning to the notion of the effective solv-
ability of a decision problem. We say that the decision problem (S, P)
is effectively (recursively) solvable if, when mapping S by a Goédel num-
bering onto the integers I, P is mapped on a set of integers having an

OB
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effectively computable characteristic function. In this case we shall call
P a recursive subset of S. The statement that a decision problem is not
effectively solvable of course means that the aforementioned characteris-
tic function is not effectively computable. These remarks clearly show
that the non-existence of an effective solution for a decision problem
(S, P) has nothing to do with the existence of an element x € S * for
which we cannot decide whether x € P’ (whatever that means).

I. A THEOREM CONCERNING THE SET OF ALL PRESENTATIONS
1.1. The main theorem

Since we intend to ask questions concerning the recursiveness of sub-
sets of the set of all (finite) presentations, we must first of all define the
latter set. Unless we define precisely the set of all presentations it is
meaningless to talk of its subsets and even more so to talk about recur-
siveness or non-recursiveness of subsets. What we have to do is, essen-
tially, to fix upon a definite notation for presentations.

DEFINITION 1.1. The set @ of presentations is the set of all presen-
tations

L= (2 «o, @y:1m(@) =1, -+, rp(x) = 1)

where: (1) the generators «,, - - -, @, are the first n (n is arbitrary) sym-
bols of the infinite sequence x,, ., +-+; (2) the words ry(x), «« -, 7.(x) are
all in reduced form; (3) the words r,(z), - - -, 7.(x) are pairwise different
and are arranged according to the lexicographic ordering induced by ar-
ranging the generators and their inverses in the order: x,, a7, @,, 5, - - .*

The set Q will also be referred to as the set of all presentations. Every
statement containing this more intuitive phrase can however be made en-
tirely precise by referring back to the definition of Q.

Viewing Q as the set of all presentations is justified because, given any
presentation IT’, it differs from some IT € Q by at most an alphabetic
change of the generators, a reduction of the defining relations to words
in reduced forms, a deletion of repetitious relations, and a rearrange-
ment of the defining relations.

It is now possible to introduce a Godel numbering of @ and thereby
give precise meaning to notions such as recursive set of presentations(i.e.
recursive subset of Q), recursive function from Q into @, etc. We shall
not carry out the actual Gédel numbering, the reader can carry out the
formal details of the process if he wishes to do so.

1 Clause (1), in one form or another, is indispensable; as to (2) and (3) their purpose is to
avoid occurrence of a multiplicity of presentations which are essentially the same.
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THEOREM 1.1. Let P be an algebraic property (i.e. a property preserved
under isomorphisms) of finitely presentable (f.p.) groups such that (1) there
exists at least one £.p. group G, which has the property P; (2) there exists
at least one £.p. group G, which does not have the property P and is not
isomorphic to any subgroup of a £.p. group having P. The set S(P)

S(P) = {I | 1T € Q, Gy has P} *

of all presentations (in Q) of groups having the property P is not a recur-
stve set.

In more intuitive language: there does not exist a general and effective
procedure of deciding, for every presentation II, whether G, (the group
defined by IT) possesses the property P.

Let us consider a concrete example. The property of being a cyclic
group clearly satisfies conditions (1) and (2), thus there does not exist a
general and effective procedure of deciding, for every presentation II,
whether G, is a cyclic group. In special cases such as IT = (a;,: 2} = 1)
the answer is of course clear, but what we have in mind is a general de-
cision method which is applicable to all presentations and which is ef-
fective; such a method does not exist.

1.2. Test groups

Before proceeding to prove Theorem 1.1 we will introduce the notion
of test groups and state Theorem 1.2 concerning this concept. We shall
then prove Theorem 1.1, using Theorem 1.2. After doing this we shall
take up the proof of Theorem 1.2; this is actually the most difficult and
substantial task in Chapter I. '

DEFINITION 1.2. Let r be a function assigning to each pair (II,w) where
IIe® and w is a word on the generators of II, a presentation
7((I1, w)) € Q; denote =((I1, w)) by II,, thus:

r:(II, w) » 11, , 1I,e Q.

The function t is a test group construction if (1) r is a recursive func-
tion (i,e., given IT and w, one can obtain II, effectively), (2) if |—rw =1
then G, = 1° ) if Frw =1 does not hold, then G, is isomorphic to a
subgroup of Gﬂw .

Gﬂw will be called the test group corresponding to 1I and w.*

2 (Gr denotes the group defined by the presentation II.

3 The notation —r w =1 means that w equals to one as a consequence of the defining
relations of 11.

4 The reason for this name is that G can be used for testing whether |, w =1, since
- w=1 holds if and only if G,,wz 1.
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THEOREM 1.2. There exists a function v which is a test group construc-
tion, i.e. which satisfies (1), (2), and (3), of Definition 1.2.

We shall prove Theorem 1.2 by exhibiting a particular function and

showing that (1), (2), and (3) are satisfied. When reading the following
proof the reader should assume that the II and 1I, used there are those
to be exhibited later on in the proof of Theorem 1.2.

1.3. Proof of Theorem 1.1

Let G, and G, be as in the assumptions of Theorem 1.1 and let IT, and
I1, be presentations of G, and G, respectively.

Let IT, be a presentation for which the word problem is not recursive-
ly solvable (this is the point where we use Novikov’s result [12, 13] to
the effect that such a presentation does exist).

Form the free product

(1.1) G = GGy

G is a finitely presentable group, in fact a presentation IT € @ can be ex-
plicitly obtained from II, and IT,. Thus we have G = G..

Since Gy, is isomorphic to a subgroup of G it follows that the word
problem of IT is not recursively solvable.

Let w be an arbitrary word on the generators of II. Let II, be the
presentation of the test group G- corresponding to IT and w.

Form the free product

1.2) G(w) = Gl*Gﬂw.

If - w = 1 then, by clause (2) of Definition 1.2, G, ~ 1 and hence
G(w) = G,; G(w) therefore has property P. If |- w = 1 does not hold
then, by clause (3) of Definition 1.2, G (i.e. G) is isomorphic to a sub-
group of G, ; combining this fact with (1.1) and (1.2) we get that G, is
isomorphic to a subgroup of G(w). But G, cannot be isomorphic to a sub-
group of a finitely presentable group having property P; thus G(w)
does not have the property P.

Assume now that we have a general effective method of deciding, for
every presentation II' € @, whether G, has property P. If w is any word
on the generators of 1I, we can effectively obtain the presentation II,, of
the test group Gﬂw. From II, and II,, we can effectively obtain a presen-
tation IT(w) € Q of G(w). According to our assumption we can effectively
recognize from II(w) whether G(w) has the property P; by the previous
paragraph we thus have a general effective method of deciding whether
- w = 1. But the word problem of 1I is not recursively solvable, thus
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Theorem 1.1 is proven by reductio ad absurdum.

1.4. Algebraic lemmas

The method of constructing the test group II, corresponding to a pair
(IT, w) is to add to II new generators and new defining relations connect-
ing these generators with w in such a fashion that if |—. w = 1 then the
new generators become equal to one; and also add relations connecting
the new generators with the original generators in such a way that set-
ting the new generators equal to one will imply equality to one of the
original generators and thus reduce 11, to triviality. At the same time
we must guarantee that when |-, w = 1 does not hold, no new relations
arise between the original generators. To achieve the construction along
these lines we need the following Lemmas 1-7.

If IT is a presentation then G, will be called the group defined by 1. In
the following we shall often have occasion to modify a presentation

IT = (.’171, cccy xn”ﬂl(x)y ctcy Tm(w)) ’
by adding to it generators and defining relations, into a presentation
I = (xu cety Ly oty Ty 37‘1(97), °t Y /rm(x)v ) Irm'(x)) .
When we say that G is embedded in G, we mean that mapping the gener-
ators of ITidentically onto the same generators of I, o, > ,, i =1, -+, n,
induces an isomorphic mapping of G, into G... If G, is embedded inG,
we shall refer to the subgroup of G, generated by z,, -- -, x, as the sub-
group G of Gr.
LEMMA 1. In the group F defined by
1.3) (u, t:ut = t*u) ,
u and t have infinite order and an equation u' =t can hold only if
1 =1r=0.
For a proof see [4].
LEMMA 2. Let H, be the group defined by
Ho = (xly crey Tt :Tl(x)y ) ’I'm(x)) == (x:T(w)) ’
and let w(x) have infinite order in H,. The group H, is embedded in the
group H, defined by
I, = (x, t:r(), w(x)t = tu(r)),
and an equation p(x) = t” cay hold in H, only if r = 0; in particular t has

infinite order in H,.
PROOF. u(x) generates an infinite cyclic subgroup of H, and u
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generates, by Lemma 1, an infinite eyclic subgroup of . We can there-
fore form the free product of H, and F' with the amalgamation u(x) = u;
denote this product by H;

H; = (HO*F)u(x)=u .
H, is presented by
I = (x, t, wir(x), ut = t2u, u(x) =u).

By the theorem about free products with amalgamated subgroups, H,
and F'are embedded in H;. Furthermore, since p(x) € H, and ¢" € F, an
equation p(x) = ¢" can hold in H; only if ¢" is in the amalgamated sub-
group, i.e. only if " = u’ holds in F' for some integer 7; Lemma 1 now
implies = 0.

To complete the proof observe that the relation ut = ¢t*u of II, can be
replaced by the relation w(z)t = #*u(x) (since u(zx) = u), thus we get a pre-
sentation

=(x, t, u :r(ob), u(x)t = t'u(x), w(xr) = )
of the same group H;.

IT;" differs from II, by having the extra generator » and this « appears
only in the relation #(x) = ». The mapping

o, t=1-,n+1, t>t, u—>ux),
therefore induces an isomorphism of H; onto H,; this completes the proof.

In the following Lemmas 3-7 the notations H, and u(x) retain the same
meaning as in Lemma 2.
LEMMA 3. H, is embedded in the group H, qde fined by

I, = (z, ¢, a:r(x), u(@x)t = tu(x), ta = a’t).

Furthermore the subgroup of H, generated by ,, -+, Z,.1, @, call it H,, is
the free product of the subgroup generated by a with the subgroup gene-
rated by x,, « -+, Tpee.

PROOF. Since ¢ has infinite order in H,, it is a corollary of Lemma 2
that H, is embedded in H,. But H, is embedded in H,, hence H, is embed-
ded in H,.

To prove the second assertion we must show that there is no non-trivial
relation between products of x,, « - -, ,., and powers of a. Let F’ be de-
fined by

1.4) (o, a:ua = a’u) .

Form the free product with amalgamation
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(1~5) H;, = (Hl*Fl)t=u;
from (1.4) and (1.5) we see that H; is presented by
I, = (z, t, a, w:r(@), w@)t==tu(x), we=au, t =u).

Any non-trivial relation in H; between products of x,, -, #,., and
powers of a can be reduced to the form

(1.6) aip,(x) -+ - arp,(x) =1
where
(1'7) 7:}:'&0’ pj(x)#:lr jzly"'yr-

Now (1.7) implies that a¥ is not in the subgroup of F” generated by u,
and, by Lemma 2, that p,(x) is not in the subgroup of H, generated by ¢.
Therefore an equation (1.6) cannot hold in the free product with amalga-
mation (1.5). Hence there does not exist in H; any non-trivial relation
between products of the generators « and powers of a.

Considerations similar to those used at the end of the proof of Lemma
2 (i.e. application of Tietze transformations) show that H; is actually
isomorphic to H, under a mapping which acts identically on ,, -« -, 1,
and a. This completes the proof of the second assertion.

Since the subgroup of H, generated by x, -+-, #,., is H,, the second
assertion can be summarized by

(1.8) Ha = HO*(Q’) .

Notice that (@) is infinite cyclic.
LEMMA 4. H, is embedded in the group H, defined by

1.9) I, = (z, ¢, a, s, b:r(x), w@)t = tu(x), ta = a’t,
u(x)s = s'u(x), sb ="b%).

Furthermore the subgroup H,, of H, generated by x,, « -+, &,, a, b s is0-
morphic to the free product

H,*(a, b).°
PROOF. II, is obtained from IT, by adding two new generators s, b, and
adding the defining relations
u(x)s = s'u(x), sb ="b’s.

Now u(x) has infinite order in H,; thus Lemma 3, with H, instead of H,
and H, instead of H,, applies. This implies that H, is embedded in H,;
since H, is embedded in H, this yields the first assertion.

5 (a, b) is the free group on the generators a and b.
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Again by Lemma 3 (for H, and H,) the subgroup of H, generated by
Ly *ve, Tpery £, @, b, 1s the same as

(1.10) H, ().

But the subgroup of H; generated by x,, -+, z,.,, @, i.e. H,, is contained

in the first factor of (1.10), i.e. in H,, combining with the preceding state-
ment this yields

H,,= H,(b) .
By (1.8) we now get
H,, = (H*(a))* () = Hyx ((@) * (b)) = H,*(a, b),

the last step following from the fact that (a) and (b) are infinite cyelic.
LEMMA 5. In the free group (a, b) the elements

(1.11) a, bab-t, «+-, b**lab-""', and b"**aba~'b-""*,

are free gemerators of the subgroup they generate, i.e. they do not satisfy
any non-trival relation.

Proor. The following equations obviously hold for all positive and
negative integers k:

(biab—i)lc = bigh-? [’I, =0,---, n+F 1]’ (bn+2aba—1b—n—2)k — pr+ighkq-p-n2

Keeping these equations in mind it is readily seen that in any non-
trivial product of powers of the elements (1.11) the adjacent powers of
b never cancel out; the product therefore reduces to a non-trivial product
of powers of a and powers of b and consequently is not equal to 1.

LEMMA 6. In the group H,, defined by (1.9) in Lemma 4, the elements

(1.12) a, xbab ' [t =1, -+, n 4 1], b"**aba~'d"""*

are free generators of the subgroup U they generate. Thus U is a free group
on n + 3 generators.

Proor. All these elements lie in the subgroup of H, generated by x,,
<ee, Tps, @, b. By Lemma 4 this subgroup is isomorphic to H,* (a, b).

The mapping z;—1,4=1, -+, n + 1, induces the trivial homomorphism
¢ of H, into (@, b). The mapping a — a, b — b, induces a homomorphism
¢ of (a, b) into (a, b) (¢ being in fact an isomorphism onto). It follows
from the basic properties of the free product that ¢ and ¢ can be extend-
ed to a homomorphism »

y:Hyx(a, b) —> (a, b) .
Since 7 extends both ¢ and ¢:
(1.13) f@)=1[i=1,---, n+1], 7@ =a, 10)=b.
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Let p be a non-trivial product of the elements (1.12), thus p € Hyx(a, b).
Because of (1.13) these elements go under 7 into the elements (1.11). The
element 7(p) is therefore a non-trivial product of the words (1.11), hence
by Lemma 5 7(p) # 1; since 7 is a homomorphism this implies p # 1.

LEMMA 7. H, is embedded in the group H, defined by

I, = (g, *+ ¢, Tpary &, @, 8, b, ¢, dir(x), W)t = tu(x), ta = a’t,
u(x)s = su(x), sb =10, a =c¢, wbab* =died*[t=1,.--,n 4+ 1],
bn+2aba—1b—-n-2 — dn+2cdc—ld—n—2) .

PRrOOF. Let F’ be the free group defined by (¢, d). The elements

¢, ded™?, ---, d**'ed "1, d"*edec™'d" "%,
constitute, by Lemma 5, n + 3 free generators of the free subgroup V
they generate. Recalling Lemma 6 we see that the correspondence
a<e, il?,;bia:b—i RN dicd—i [’b — 1, oo, + 1]’ bn+2aba-1b—n-2 RN dn+zcdc—-1d—n—2,
induces an isomorphism between U (Lemma 6) and V. Using this iso-
morphism we can form the free product with amalgamated subgroups
(H;xF" )y oy

Comparing with the presentation (1.9) of H,, we see that II,is precise-

ly the presentation of this free product with amalgamation, thus
H = (H;*F")y-y .

H, is therefore embedded in H,; by Lemma 4, H, is embedded in H,,
hence H, is embedded in H,.

1.5. The case u(x) =1

Lemmas 2-7 were proved under the assumption that u(x) has infinite
order in H,. Note that if on the other hand wu(x) = 1 in H, then II, de-
fines the trivial unit-element group. Indeed, u(x) = 1 and w(x)t = t*u(x)
imply ¢ = 1, combining with ¢ta = a* we get a = 1; similarly s =1 and
b =1; a = ¢ now implies ¢ =1, and " *2aba~'b""* = d***cdc™'d"""*implies
(since @ = b = ¢ = 1) that d = 1; finally a,b'ab~! = dled~* implies ; = 1
fori =1, ---, m -+ 1. Thus, assuming that u(x) = 1, all the generators
of H, are equal to 1, hence H, =~ 1.

1.6. Proof of Theorem 1.2
Given a pair (I1, w), where

Qall= (xly M) xn:r(x))
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and w is a word on the generators of 11, define a presentation 1T, € Q as
follows
(a) add to IT the generators @,,,, Zy.s, **«, Tpari
(b) add the defining-relations resulting from
w@)t = tu(x), ta = a’t, u(x)s = su(x), sb="bs, a =c,
zb'ab™t = dled i [i =1, -++, n + 1],
bn+2aba—1b—n—2 — dn+2cdc—ld—n—2 ,

by substituting @,.,, Zp43, + -, 2,40 for ¢, a, s, b, ¢, d, respectively,
and substituting «,, wz;lw for u(x);

(c) rearrange the totality of relations now present (i.e. the relations
r(x) plus the new relations added) so as to conform with require-
ments (2) and (3) of Definition 1.1.

The function

o:(11, w) - 11, ,

assigning to each pair (II, w) the presentation 1I, € @ described above,
is a test group construction.

It is indeed clear that the instructions (a), (b), and (c), are effective
and r is therefore a recursive funection.

Denote by IT, the presentation obtained by taking IT together with the
generator x,., (compare Lemma 2). 11, has, apart from obvious changes
of letters, the form of IT, of Lemma 7.

If -nw =1, then |~ x,.,wx;}w = 1; the remark in Section 1.5 now
implies that an ~ 1.

If - w =1 does not hold, then x,.,wx;.,w has infinite order in Gr,.
Indeed, by our definition

(1.14) Gry = Ge*(@441);
therefore, since w € G, and w # 1, a product
-1 m o__ -1 -1
(T s WL W)™ = By (WX 2 WLy WL L0 = =

cannot be equal to 1 in the free product (1.14); u(x) = @,.wx;Lw thus
has infinite order in G . By Lemma 7, Gy, is therefore embedded in an;
hence, by (1.14), G, is embedded in Gr,, -

II. CONSEQUENCES OF THE MAIN THEOREM
2.1. Hereditary properties

Many of the consequences of the main theorem are immediate corol-
laries of the following result.



184 MICHAEL 0. RABIN

THEOREM 2.1. Let P be an algebraic property of finitely presentable
(f.p.) groups such that (1) there exist at least one £.p. group G, having prop-
erty P, and at least one f.p. group G, which does not have the property
P, (2) P is hereditary, i.e. if a f.p. group has the property P then all its
f.p. subgroups have P. There does not exist a general and effective method
of deciding, for every given presentation, whether the group defined by it
has the property P.

Proor. This is a special case of Theorem 1.1. Indeed, because of con-
dition 2, G, is not isomorphic to any subgroup of a f.p. group possessing
P. Thus P satisfies the two conditions of Theorem 1.1.

2.2. Immediate corollaries

Each of the algebraic properties enumerated in Theorems 2.2-2.8 is
hereditary. In each case it is also clear that there exist f.p. groups hav-
ing the property and also f.p. groups which do not have it. Therefore,
by Theorem 2.1, there does not exist a general and effective method of
deciding, for every given presentation IT, whether G, has the property
in question.

THEOREM 2.2. Triviality. (I.e. there does not exist a general and ef-
fective method of deciding, for every given presentation II, whether
G, =~ 1. The other theorems should be read in a similar fashion.)

THEOREM 2.3. Cyclicity.

THEOREM 2.4. Finiteness.

THEOREM 2.5. Being locally infinite. °

THEOREM 2.6. Being a free group. (That every subgroup of a free group
is a free group is the content of the Nielsen-Schreier theorem, see [11,
14; 7, pp. 33-36].)

THEOREM 2.7. Commutativity.

THEOREM 2.8. Solvability.

To each presentation there belongs a group which is uniquely and com-
pletely defined by it. For this reason presentations can be used for de-
fining various groups. The above given results indicate however that
though a group is completely defined by a presentation in general one
can obtain from this presentation very little information about the
group itself. This fact is most strikingly exemplified by Theorem 2.2;
in general we know so little about a group given by a presentation that
we cannot even say whether the group is trivial or not.” Compare with
Kuro$’s remarks in [6, pp. 181-132]; for all the group theoretic proper-

6 A group is locally infinite if, excepting the unit element, each of its elements has in-
finite order.
7 I am indebted to Professor W. Magnus for this remark.
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ties he discusses there we have proved the non-existence of an effective
decision procedure.

2.3. Free and direct products

THEOREM 2.9. There does not exist a general and effective method of de-
ciding, for every presentation I1, whether G is decomposable into a non-
trivial free product.

PRrROOF. Let F' be the group defined by (x,:2? = 1). F is a non-trivial
group which is not decomposable into a free product. Let II, = (xy, - -,
x,:7(x)) be any presentation whatsoever. Form the presentation II, II
= (@4, ***y Xpy Tpurir(@), 2%, = 1). Obviously G, = GNI*F. Thus G is
decomposable if and only if GTEI # 1. Theorem 2.2 now yields the desired
result.

THEOREM 2.10. There does not exist a general effective method of decid-
ing, for every presentation I1, whether G, is decomposable into a non-trivial
direct product.

The proof of this theorem parallels so closely the previous proof that
it need not be given here.

The following theorem was suggested to me by Mr. S. Kochen.

THEOREM 2.11. There does not exist a general and effective method of
deciding, for every given presentation 11, whether G, is a free product of
Jinite groups.

PROOF. The property of being a free product of finite groups is cer-
tainly an algebraic property. Furthermore every finite group has this
property (here we do not insist on non-triviality of the product).

Let G be the group defined by (x, «,: 2@, = x,2,). G is commutative,
infinite, but not cyclic. We claim that G is not isomorphic to any sub-
group of a free product of finite groups. Indeed, let H be a free product
of finite groups H = H,*---*H,, 1 < n, H, finite. By the Kuro$ Sub-
group Theorem (see [7, pp. 17-26]), every subgroup H' = H has the form

2.1) H = FxHx+++ H,

where F'is a free group and H; is conjugate, in H, to a subgroup of H,.
If H' is commutative, then the number of non-trivial factors in (2.1) can-
not exceed one. Thus A’ = F and F is infinite cyclic, or H' = H; for some
1. If we further assume that H’ is infinite then the second possibility is
ruled out because the H; are finite groups. Every commutative infinite
subgroup of a free product of finite groups is thus cyclic. G which is
commutative, infinite, but not cyeclic, is not isomorphic to such a subgroup.

We have shown that all the conditions of the Main Theorem 1.1 are
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fulfilled so the desired result now follows.

2.4. Simple groups

THEOREM 2.12. There does not exist a general effective method of decid-
ing, for every given presentation 11, whether G s a stmple group.

ProoF. Repeat word by word the construction given in the proof of
Theorem 2.9. Note that the group F'is simple and that, therefore, G is
simple if and only if GTtl =~ 1. Now apply Theorem 2.2.

2.5. Groups with one defining relation

These groups, which are in a sense quite similar to free groups, were
the subject of an extensive study by a number of algebraists. In particu-
lar positive results concerning decision problems were obtained. W.
Magnus showed [8] that the word problem of every group with one de-
fining relation is effectively solvable. J. H. C. Whitehead gave-in [16] an
algorithm for deciding, for every presentation IT having only one defin-
ing relation, whether G is a free group. On the other hand the isomor-
phism problem for groups with one defining relation is still open.

THEOREM 2.13. There does not exist a general effective method of decid-
ing, for every given presentation I1, whether Gy is definable by a single re-
lation, i.e. whether there exists a presentation I’ having only one defining
relation such that G, = Gp.

PROOF. The property of being definable by a single relation is certain-
ly algebraic. Furthermore there are groups possessing this property.

Let IT be a presentation for which the word problem is not recursively
solvable. By the Magnus Theorem, the word problem of a presentation
having one defining relation is recursively solvable. Theorem 2.15 now
implies that G, is not isomorphic to any subgroup of a group defined by
a presentation with a single relation.

Thus the two conditions of the Main Theorem 1.1 are satisfied and our
assertion follows.

An alternative proof of this last result can be obtained by combining
Whitehead’s theorem with Theorem 2.6.

2.6. Presentations with a solvable word problem

Following the terminology and definitions of Section 0.1 we say that
the word problem of a presentation 11 is effectively solvable if the charac-
teristic function of the set of words w for which }—, w = 1 is effectively
computable (recursive). The meta word problem is the problem of decid-
ing, for every given presentation II, whether the word problem of IT is



RECURSIVE UNSOLVABILITY 187

effectively solvable; we intend to show that the meta word problem itself
is not effectively solvable. This will follow from Theorem 2.1 but since
we are dealing with a property of presentations (whereas Theorem 2.1
deals with properties of groups) some care must be exercized in the
proof; we need in fact two preliminary theorems.

THEOREM 2.14. If IT and 11’ are presentations such that G, = G then
the word problems of 11 and 11" are either both effectively solvable or both
not effectively solvable.

This shows that the effective solvability of the word problem of a pre-
sentation IT has algebraic meaning inasmuch as it is determined by the
algebraic structure of Gi.

THEOREM 2.15. If II and I’ are presentations such that G, 1is isomor-
phic to a subgroup of G and if the word problem of I1 s effectively solv-
able, then the word problem of II is effectively solvable.

The analogues, for the case of finitely presented semigroups, of Theo-
rems 2.14 and 2.15, are implicitly contained in Markov’s paper [10].

Proofs for these two results will be given elsewhere.

THEOREM 2.16. There does not exist a general and effective method of
deciding, for every given presentation I1, whether the word problem of 11
s effectively solvable.

PROOF. The property of having at least one presentation with an ef-
fectively solvable word problem is an algebraic property of f.p. groups.
The trivial group possesses this property. Let II, be a presentation for
which the word problem is not effectively solvable then G, does not have,
by Theorem 2.14, any presentation with an effectively solvable word pro-
blem. Finally the property is, by Theorem 2.15, hereditary.

Hence, by Theorem 2.1, there does not exist a general and effective
procedure of deciding, for every II, whether G, has a presentation with
an effectively solvable word problem. But G, has some presentation with
an effectively solvable word problem if and only if the word problem of
1I itself is effectively solvable.

III. THE ISOMORPHISM PROBLEM AND ISOMORPHISM INVARIANTS

3.1. The isomorphism problem

An important problem in the theory of finitely presented groups is the
isomorphism problem. Two apparently different presentations may de-
fine groups which are isomorphic and we would like to have a decision
procedure for ascertaining when this is happening. It turns out that there
does not exist a general and effective procedure of deciding, for evey
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two presentations IT and II', whether G. = G,.. We shall prove even
more, namely that for every fized II the decision problem, which now
becomes a problem involving only the variable presentation II’, is not ef-
fectively solvable.

THEOREM 3.1. Let G, be a fized f.p. group. There does not exist a gen-
eral and effective procedure of deciding, for every given presentation I1;,
whether the group defined by it is isomorphic to G,.

PROOF. Let I, be a fixed (finite) presentation of G,. For every pre-
sentation IT construct the free product G, = G,*G,. A presentation IT,
of G, can be effectively obtained from IT, and II.

It is a consequence of Grusko’s theorem [7, p. 58] that the minimal
number of generators for G, equals the sum of the corresponding two
numbers of G, and G; hence G, = G, if and only if G, = 1. An effective
procedure of deciding for every given presentation II, whether the group
defined by it is isomorphic to G, would thus lead to an effective method
of deciding, for every II, whether G, =~ 1; this would contradict Theo-
rem 2.2,

3.2. Infinite systems of isomorphism invariants

When dealing with a mathematical system in which the object are di-
vided into equivalence classes (e.g. the system of all finite simplical com-
plexes, the equivalence relation being homeomorphism), one sometimes
tries to solve the equivalence problem by constructing a complete system
of equivalence invariants.

In the case of the set of all finitely generated commutative groups, for
example, the Betti number and torsion coefficients of a group form a com-
plete system of isomorphism invariants; i.e., two commutative groups are
isomorphie if and only if their respective Betti numbers and torsion coef-
ficients agree. This system of invariants has the additional features that
(a) their number, for each particular group, is finite, (b) given a presen-
tation IT of a commutative group one can effectively compute from it the
Betti number and torsion coefficients of the corresponding group.

The previous result implies that a finite and complete system of com-
putable isomorphism invariants for the set of all presentations is not pos-
sible. At this point there naturally arises the question whether it is
possible to construct an infinite and complete system of computable iso-
morphism invariants. Let us first of all define the latter concept in a
precise manner.

Assume that the set @ of all presentations has been indexed in some
effective fashion (i.e. that we have a Goédel numbering of Q) and let 7 be
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the indexing function. 4(IT) is then the index of IT and IT, is the presen-
tation having the integer » as index.

DEFINITION 3.1. An infinite system of isomorphism invariants is a
function f(n, m) from integers to integers such that for every two pre-
sentations II, and I1,., if

Gr, = Gr ,
then
fln, m) = f(n', m), m=20,1,---.
The system is complete if
Gy, % Gr
implies that
fln, m) = f(n', m) for some integer m.

If f is a computable (recursive) function then we call it an infinite
system of computable invariants.

THEOREM 3.2. Ewvery infinite system of computable isomorphim invari-
ants s not complete.

The idea lying behind the proof is that a complete infinite system of
computable isomorphism invariants would furnish an effective enumer-
ation of all presentations II’ € @ which define a group not isomorphic to
the group defined by a fixed presentation II. For, if i¢(1I) = ¢,, one can
compute on the one hand the invariants f(i,, 0), f(%, 1), ---, of II and
on the other hand the totality of invariants f(n, m) arranged in some
fixed sequence; whenever f(n, m) + f(4, m)one knows that G, # G and
every IT' for which G # G, will be discovered in this way. In the next
section we shall prove that the presentations II” which define the same
group as II are also effectively enumerable. We would now have the fol-
lowing effective solution for the isomorphism problem. Given two pre-
sentations IT and II', enumerate effectively the sequence I', of presen-
tations defining a group not isomorphic to G,, and enumerate effectively
the sequence I, of presentations defining the same group as 1I; the pre-
sentation IT” must appear, after a finite number of steps, either in 1", or
in T',, when it appears we know whether G, # G, or not. But the iso-
morphism problem is not effectively solvable; this contradiction shows
that a complete infinite system of computable isomorhism invariants does
not exist.

The rigorous proof of Theorem 3.2 will be given in Section 3.4. The
next section is devoted to the necessary preliminaries concerning effective
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enumerability of sets of presentations.

3.3. Recursive enumerability

Let us retain the indexing of the set @ introduced in Section 3.2. A set
P of integers is called recursively enumerable if there exists an effective-
ly computable function f such that P = {f(n)|n = 0,1, ---}. In that
case we shall also say that f effectively enumerates P.

THEOREM 3.3. There exists an effectively computable (recursive) function
e(n, k) from integers to integers such that for every integer n the set

Pn: {He(n,k)lk = 09 1! "’}

consists precisely of all presentations 11 € Q for which G = G, .

Fizing n and letting k run through the integers, e(n, k) thus effectively
enumerates the indices of all presentations defining the same abstract group
as I1,.

PROOF. The proof is obtained by using the so-called Tietze transfor-
mations which allow us to modify a presentation without changing the
group defined by it [15], [7, pp. 70-75]. Let II = (x, (x)) and II' = (x:
r(x), w(x) = 1) where w(x) is a word on the generators such that
—w(z) = 1, then IT and II’ define the same group. Thus adding, or delet-
ing, a defining relation which is a consequence of the remaining rela-
tions (Tietze transformation of the first kind) does not change the group.
It

IT = (z:7(x)) and 117 = (x, b:r(x), bu(x) = 1)

where b is a generator not appearing among the generators  and u(x) is
a word on the generators «, then II and IT1” define the same abstract
group. Thus adding, or deleting, a generator which is defined by means
of the remaining generators and at the same time adding, or deleting,
the relation giving that generator as a product of the remaining gener-
ators (Tietze transformation of the second kind), yields a group isomor-
phic to the original group. Tietze’s theorem states that if two finite pre-
sentations I1® and II define isomorphic groups then they can be linked
by a finite number of presentations IT®, IT®, «.., II® = 1I such that
for all 4, [1¢*" is obtained from II® by a Tietze transformation. Thus
to enumerate all the presentations defining the same group as a given
presentation IT, one should apply to 1I, all possible sequences of Tietze
transformations. Note however that to recognize whether a transition
from II = (z:7(x)) to II = (x:r(x), w(z) = 1) is a Tietze transformation
involves deciding whether |—. w(x) = 1, which decision problem is not
effectively solvable. In order to obtain an effective enumeration we shall
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proceed as follows.

Call an equation p(x) = w(x), where p(x) and w(x) are words on z;, x,,
-, 2, a deduction of w(x) =1 from the relations r(x) =1, ---, r,.(x)
=1, if p(x) is a concatenation of words of the form (¢,(a)r(x)t;'(x))*!
where the #,(x) are words on the generators «, and if w(z) is the reduced
form of p(x). There is, obviously, a general and effective procedure of
deciding, for every given system of relations (x) and equation p(x) = w(x),
whether p(r) = w(x) is a deduction of w(x) = 1 from the relations r(z).

A sequence ( 4,, 4., ---, A. >, where each 4, is either a presentation
or an equation, will be called a proof of tsomorphy if A, and A, are pre-
sentations and if for all 0 < 7 for which A4, is a presentation, either A4,
is obtained from A,_, by a Tietze transformation of the first kind and
A;_, is an equation which is a deduction, from the remaining relations of
A,_,, of the relation added or deleted during the transformation; or 4,_,
is a presentation and A, is obtained from A,_, by a Tietze transformation
of the second kind. It is again clear that there is a general and effective
procedure of deciding, for every given sequence, whether it is a proof
of isomorphy.

Let1’=S,, S, ---, be a fixed and effective enumeration of all finite
sequences S = { 4,, --+, A,, > (m is arbitrary), where each A4, is either a
finite presentation or an equation on the generators z,, x,, --- (compare
Definition 1.1). Define a function e(n, k) from integers to integers as
follows: If S, = ( A4,, ---, 4,, > is the k" element of I' such that S, is a
proof of isomorphy and A4, = II, and 4, € Q, then e(n, k) is the index
of A, (under the indexing of @ introduced in Section 3.2).

The enumeration of I', the procedure of recognizing whether an ele-
ment of I'is a proof of isomorphy, and the computation of the index of
a presentation in @, are all effective processes; the function e(n, k) is
therefore effectively computable. Since S, is a proof of isomorphy and
A, =11,, A, = L, it follows that II, and II,,,, define isomorphic
groups. Finally, Tietze’s theorem implies that if II' € @ is any presen-
tation such that G, =~ G, then there exists a proof of isomorphy S
= (A4, ---, A4, > such that 4, =11, and 4, = II', hence i()II = e(n, k)
for some k. The function e(n, k) thus fulfills the conditions of the theorem.

While we are at it let us get further results along these lines.
THEOREM 3.4. If P S Q is a recursively enumerable subset of Q then
P, the closure of P under isomorphisms,
P= {II|1l € Q, exists 1I' € P such that G, = G} ,

18 also recursively enumerable.
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PROOF. Let f(n) be the computable function enumerating the indices
of the presentations in P. Let a(n) and b(n) be a pair of computable func-
tions such that < a(n), b(n) > enumerates all ordered pairs of integers. It
is readily seen that the function e( f(a(n)), b(n)) enumerates the set P and
is effectively computable.

It follows immediately from this theorem that the sets of all presen-
tations of finite groups, or free groups, or commutative groups, are all
recursively enumerable. Compare these statements with the results of
Section 2.2 where we prove that all the aforementioned sets are not
recursive.

3.4. Proof of Theorem 3.2

The reader should consult the end of Section 3.2 about the motivation
for the following proof.

Assume to the contrary that f(n, m) is a complete infinite system of
computable invariants.

Let e(n, k) be the enumerating function introduced in Theorem 3.3.
Consider the function d(n, p, m) from integers to integers defined by

d(n, p, m) = sg(| f(n, m) — f(p, m))(e(n, m) — p) .”

Since f is a computable function by assumption, and since e is comput-
able by Theorem 3.3, it follows that d is a computable function.
Let n and p be any two integers. If

o~
Gﬂn ~ Gﬂp ’

then p must appear as a value of the enumerating function e(n, m) and
hence for some m, we have d(n, p, m,) = 0.
If

Gr # Gg
n »

then, since f is a complete system of invariants, there exists an integer
m, for which f(n, m,) # f(p, m,) and hence d(n, p, m,) = 0.
The function s(n, p) defined by

s(n, p) = (pm)(d(n, p, m) = 0)

is therefore a well defined and computable function (z is the minimali-
zation operator, i.e. (1)(g(z, y) = 0) is the least integer y such that
g(z, y) = 0; the reader can verify that if there exists for every x at
least one y such that g(z, y) = 0, and if g(w, y) is computable funetion of

s Sg(n) is the function which assumes the value 1 for » = 0, and the value 0 for = > 0.
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x and y, then (zy)(g(x, y) = 0) is a computable function of @, see [5, pp.
279-282]).

We now have the following effective decision procedure. Given any
two presentations IT € Q, I’ € Q, we can find effectively their indices
t(IT) = n, #(Il') = p. Then we can effectively compute s(n, p) and also
e(n, s(n, p)). Now e(n, s(n, p)) = p if and only if G11 ~ G11 , 1.e. if and
only if G, ~ G,. We thus have a general and eﬁ‘ectlve method of decid-
ing, for any two given presentations, whether they define isomorphic
groups and this contradicts Theorem 3.1. The assumption that f is a
complete infinite system of invariants is therefore false.

3.5. Remarks concerning topological problems

An interesting and important prolongation of the study of effective
solvability of decision problems would be to carry it over to the classifi-
cation problems of algebraic topology.

The fact that the isomorphism problem for finite presentations is not
effectively solvable, taken in conjunction with the properties of K(II, 1)
space, implies that the homotopy type classification problem for the at
most countable simplicial complexes is not effectively solvable (even when
restricted to those complexes which, like K(IT, 1) spaces, are given
explicitly).

But it seems that the really strong and satisfying results are those
which one hopes to get for the strictly finite structures such as finite
simplicial complexes. Thus we conjecture that the homeomorphism pro-
blem for finite simplicial complexes is not effectively solvable. It even
seems plausible that, in analogy to Theorem 3.2 for finite presentations,
this classification problem can not be solved by means of a countably in-
finite system of numerical equivalence invariants. If this last conjecture
turns out to be true, it would entail that any system of computable to-
pological invariants similar say tothe homology sequence, could not
possibly be complete.

At the present moment it is difficult to predict how a proof for these
results will be achieved. In view of the connections between finitely pre-
sented groups and topological structures it is possible that the results
obtained in this paper may be applied. On the other hand, it may be that
an entirely new and different approach is necessary.
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