

A Mean Value Theorem-An Extension Author(s): T. V. Lakshminarasimhan

Source: The American Mathematical Monthly, Vol. 73, No. 8 (Oct., 1966), pp. 862-863

Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2314185

Accessed: 30/03/2010 05:08

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

DEFINITION. A set T is a tail if and only if there exists a positive integer t, such that T contains exactly those integers $\geq t$.

THEOREM. If S is a set of positive integers containing no tail and if S is closed under finite sums, then g.c.d. (S) > 1.

Proof. It is a well-known theorem (see [1]) that if x and y are positive integers with (x, y) = 1 and if A is the set of all integers of the form ax + by, where a and b range over the set of positive integers, then A contains every integer greater than xy. Thus, since S does not contain a tail, (a, b) > 1 for all $a, b \in S$. This implies that g.c.d.(S) > 1.

For completeness, we include a proof of the above quoted result.

Proof. We can clearly find nonzero integers c and d such that cx+dy=n, for any given positive integer n. If d<0, let rx be the least positive multiple of x such that d+rx>0. Then, (c-(r-1)y)x+(d+rx)y=n+xy and $(c-(r-1)y)x+xy\ge n+xy$. Thus, $c-(r-1)y\ge n/x>0$, and c-(r-1)>0. Since A is closed under finite sums, $n+xy\in A$, for every positive integer n. Thus, A contains every integer >xy. If c<0, a similar argument holds. Finally, if c, d>0, it follows easily that $n+xy\in A$.

The author wishes to thank the referee for his helpful comments.

Reference

1. I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, Wiley, New York and London, 1960, p. 97, problem 5.

A MEAN VALUE THEOREM—AN EXTENSION

T. V. LAKSHMINARASIMHAN, Madras Christian College, Tambaram, Madras, India

Let f(x) be defined in the interval [a, b] and differentiable in the interval. Further let f'(a) = f'(b). Then there is a point ξ in (a, b) such that

$$\frac{f(\xi) - f(a)}{\xi - a} = f'(\xi).$$

The above result is a mean value theorem due to Flett ([1], p. 121; [2], p. 39).

In this note we obtain an extension of the above result.

THEOREM. Let f(x), defined in the interval [a, b], be continuous in [a, b] and differentiable at x = a and x = b. Further let the four Dini derivates ([1]) $f^+(x)$, $f_+(x)$, $f^-(x)$, $f_-(x)$ exist and be finite in (a, b). Then if f'(a) = f'(b) there exists a ξ_1 , $a < \xi_1 < b$, such that

(1)
$$f^{+}(\xi_{1}) \leq \frac{f(\xi_{1}) - f(a)}{\xi_{1} - a} \leq f_{-}(\xi_{1})$$

or $a \xi_2$, $a < \xi_2 < b$, such that

(2)
$$f^{-}(\xi_2) \leq \frac{f(\xi_2) - f(a)}{\xi_2 - a} \leq f_{+}(\xi_2).$$

Proof. We shall assume that f'(a) = f'(b) = 0. For otherwise we have to consider only f(x) - xf'(a). Consider the function g(x) defined by

$$g(x) = \frac{f(x) - f(a)}{x - a}, \quad a < x \le b, \ g(a) = f'(a) = 0.$$

The function g(x) so defined is continuous in [a, b]. Further,

$$g'(b) = -g(b)/(b-a).$$

If g(b) > 0 then g'(b) < 0. Hence g is a decreasing function at b, while g(a) = 0. Now g(x) being continuous in [a, b] attains its maximum at a point ξ_1 between a and b. Hence ([1], p. 117, Ex. 21.6),

$$g^{+}(\xi_1) \leq 0$$
 and $g_{-}(\xi_1) \geq 0$.

But

$$g^{+}(\xi_{1}) = \frac{f^{+}(\xi_{1})}{\xi_{1} - a} - \frac{f(\xi_{1}) - f(a)}{(\xi_{1} - a)^{2}}$$

and

$$g_{-}(\xi_{1}) = \frac{f_{-}(\xi_{1})}{\xi_{1} - a} - \frac{f(\xi_{1}) - f(a)}{(\xi_{1} - a)^{2}}.$$

Inequalities (1) now follow from these.

If, on the other hand, g(b) < 0, then g'(b) > 0, so that g is increasing at b while g(a) = 0. Hence, g(x) attains a minimum at a point ξ_2 between a and b; so that

$$g_{+}(\xi_{2}) \ge 0$$
 and $g^{-}(\xi_{2}) \le 0$,

and we get inequalities (2).

Finally, if g(b) = 0 then, since g(x) is continuous in the closed interval [a, b] and g(a) = 0, g(x) attains either a maximum at a point ξ_1 or a minimum at a point ξ_2 between a and b. Hence, as before, either $g^+(\xi_1) \leq 0$ and $g_-(\xi_1) \geq 0$ or $g_+(\xi_2) \geq 0$ and $g^-(\xi_2) \leq 0$. These inequalities are equivalent to (1) and (2) in the respective cases. Our theorem is thus completely established.

References

- 1. R. P. Boas, A primer of real functions, Carus Monograph No. 13, 1963.
- 2. T. M. Flett, A mean value theorem, Math. Gaz., 42 (1958) 38-39.