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Quantum size effects on exciton states in indirect-gap quantum dots

D. H. Feng,1 Z. Z. Xu,1 T. Q. Jia,1,2 X. X. Li, 1 and S. Q. Gong1
1Laboratory for High Intensity Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences,

P. O. Box 800-211, Shanghai, 201800, China
2State Key Laboratory for Optical and Electric Materials and Technology, Zhongshan University, Guangzhou, 510275, Chin

~Received 7 April 2003; published 30 July 2003!

We investigate exciton ground states in Si and 3C-SiC quantum dots by using the effective mass theory,
taking account of the conduction- and valence-band mass anisotropy as well as the small spin-orbit splitting
energy. The degenerate hole and exciton states are partly split by the mass anisotropy. The anisotropy splitting
energies in quantum dots are different dramatically from their bulk value due to quantum size effects. The
assumed changeable spin-orbit splitting energy may change the ordering of the anisotropy-split energy levels.
Taking account of the exchange interaction, the degeneracy of the exciton states is further lifted. Due to the
anisotropy and exchange splitting, the 48-fold exciton ground state will be split into two 18-fold triplets and
two 6-fold singlets. The lowest three states are optically forbidden for Si quantum dots, which leads to a Stokes
shift of luminescence. The theroretical shift agrees well with the experimental data. Furthermore, the exciton
band gap and binding energy as a function of dot radius are presented both for Si and for 3C-SiC quantum dots.
The band gap of Si quantum dots agrees well with the recent photoluminescence results of size-separated
quantum dots by Ledouxet al. and absorption data of Furukawaet al.

DOI: 10.1103/PhysRevB.68.035334 PACS number~s!: 73.20.Mf, 71.35.Cc, 73.21.La
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I. INTRODUCTION

Recently zero-dimensional quantum dots~QD’s! have at-
tracted much attention not only for a variety of new intere
ing physical and chemical properties but also for their pot
tial applications.1,2 Many experimental and theoretica
investigations have focused on quantum size effects. W
their size approaches the exciton Bohr radius, QD’s exh
new properties that differ dramatically from those of the bu
material. One case of quantum size effects is the tuna
band gap as a function of quantum size. In addition, m
indistinctive properties in bulk materials may be enhanc
considerably in QD’s. For example, the exchange splitt
energy can be increased by 3 orders of magnitude as the
of semicondutors is reduced from bulk to nanoscale.3

The strong visible luminescence in porous silicon4 stirred
up an intensive investigation of its origin. Although the em
sion mechanism is still under debate, the quantum confi
ment in Si QD’s is mostly accepted as the main explanat
While many experimental phenomena can be explained
terms of quantum confinement, arriving at a quantitat
agreement between theory and experiment is still extrem
challenging.5 Recently photoluminescence experiments
size-separated QD’s have been performed by Ledouxet al.6

The exciton band gap of size-separated QD’s is larger t
photoluminescence~PL! results of porous Si.7 Many calcu-
lated exciton gaps, including the recent tight-binding theo
ical data of Leeet al.8 and pseudopotential calculation r
sults of Reboredoet al.,9 are lower than the gap of size
separated QD’s. Takagahara and Takeda10 calculated the
exciton energy and binding energy of Si QD’s using fou
band effective mass theory~EMT!. They clarified a mecha
nism which induces an indirect-to-direct conversion of t
character of the optical transition. However, the Hamilton
model in their calculation was not sufficiently accurate~e.g.,
a 434 Hamiltonian is not proper for QD’s with a sma
0163-1829/2003/68~3!/035334~7!/$20.00 68 0353
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spin-orbit splitting energy and effects of the strong band
isotropy were not taken into account!, and the calculated
result cannot be expected to be quantitatively correct.

EMT can naturally take account of the mass anisotro
both in the conduction and in the valence band. The m
anisotropy has a significant effect on the fine structure
exciton states. In direct-gap cubic semiconductor quan
dots, the exciton ground state is eightfold in a spheri
model. Differing from direct-gap semiconductors, th
conduction-band minimum in Si is along theD5(0,0,k) di-
rection, which has six equivalent points. The electron in
has a strong mass anisotropy which leads to a splitting of
degenerate 48-fold exciton ground state partly. On the o
hand, the valence-band anisotropy is also strong becaus
Luttinger parameters are largely different (g154.10,g2
50.44,g351.40). The spherical model (g25g3, which is
usually used for direct-gap QD’s! is not proper anymore. The
considerable difference in valence bands will partly lift t
degeneracy of hole and exciton states. Although the m
anisotropy splitting in bulk Si has been intensive
investigated,11–13 to our knowledge, no work concerns th
splitting in Si QD’s which is expected to differ from that i
bulk material due to quantum size effects.

The fine structure resulting from electron-hole exchan
interactions has been intensively investigated.3,14 The ex-
change splitting may result in ‘‘dark’’ and ‘‘bright’’ excitons
which leads to a Stokes shift in the luminescence. Howe
the effects of the mass anisotropy on exciton dark-bri
properties are lacking an investigation and are unknown.

We use EMT to investigate these problems, taking
count of the mass anisotropy and small spin-orbit sp
ting energy. Due to taking the mass anisotropy into acco
not only the exciton energy but also effects of mass a
sotropy on the fine structure and optical properties can
investigated.

As another important semicondutor, SiC is a promisi
©2003 The American Physical Society34-1
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wide-band-gap material because of its superior charact
tics such as high breakdown field strength, high thermal c
ductivity, and high saturation drift velocity.15 Low-
dimensional SiC has been intensively investiga
experimentally. Many photoluminescence experiments sh
that a blueshift emission peak existing in porous 3C-S
~Ref. 16! and in encapsulated nanoparticles.17 Those transi-
tions above the bulk band gap have been explained by
quantum confinement effect. Few theoretical investigati
have been done, however, on the exciton states in SiC Q
which play an important role in interpreting the origin of th
blueshift. Due to the similar band anisotropy to Si and
small spin-orbit splitting energy, we can easily treat the
citon states in 3C-SiC QD’s following the route of Si QD’

In this paper, we investigate the quantum size effects
the exciton states in Si and 3C-SiC QD’s by using EMT. W
lay emphasis on the anisotropy splitting, electron-hole
change interaction, exciton band gap, and binding ene
For Si QD’s, it is found that EMT can present a theroretic
exciton band gap agreeing well with recent photolumin
cence results of size-separated QD’s. Taking account of b
the mass anisotropy and exchange interaction, a la
bright-dark exciton splitting can be obtained than by on
taking exchange splitting into account and agree well w
experimental results. This article comprises the followin
First we will present the calculation method. Then, our n
merical results will be discussed and compared with the
perimental data. Finally, a brief conclusion is drawn in o
investigation.

II. CALCULATION METHOD

A. Confinement for electron states

In order to simplify the analysis, we only consider QD
as spheres with radiusa surrounded by an infinitely high
potential barrier. This model can be used in the treatmen
porous Si~and SiC! and single nanoparticles.

The conduction-band minimum is located
2p/a(0,0,0.85) and 2p/a(0,0,1) for Si and 3C-SiC, respec
tively. The effective mass at the conduction-band bottom
anisotropic and has an axial symmetry in thek0 direction,
which will be referred as thez directon. The effective mas
Hamiltonian can be written as

He5
1

2m'

~p1
21p2

2!1
1

2mi
~p3

2!, ~1!

where m' , mi are the effective mass in the conductio
bands perpendicular to and parallel to thez axis, respectively,
1, 2, 3 label the principal directions of a conduction-ba
ellipsoid. Equation~1! can be rewritten as

He5
pe

2

2ma
2

1

2mb
A2

3
P0

(2) , ~2!

whereP0
(2) is the second-order tensor of the momentum

erator, which represents the anisotropy of the conduct
band minima.ma ,mb are defined as
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ma
5

1

3 S 2

m'

1
1

mi
D ,

~3!
1

mb
5

1

3 S 1

m'

2
1

mi
D .

Due to the anisotropy termP0
(2) , the angular momentum

of the electronic states is no longer a good quantum num
Because of the axial symmetry, thez component of the tota
angular momentum of the electronic state remains a g
quantum number. The lowest state 1Se can be given as

Ce5g1~r e!u00&1g2~r e!u20&1g3~r e!u40&1•••, ~4!

whereu lm& is the spherical harmonic functionYlm ; the par-
ity of each state is a good quantum number. The radial w
functions gi(r e) can be expanded using spherical Bes
functions

gi~r e!5A 2

a3 (
n51

`

cnl

j l~anl r e /a!

j l 11~anl!
, ~5!

where anl is the nth root of the spherical Bessel functio
j l(r e5a)50.

In the calculation of the matrix element we will use a k
equation

^ l 8 m8uPq
(2)u lm&5^ l ,m;2,q u l 8,m8&

1

A2l 811
~ l 8iP(2)i l !,

~6!

where ^ l ,m;2,q u l 8,m8& is the Clebsch-Gordan coefficien
and (l 8iP(2)i l ) is the reduced matrix elements of the secon
order momentum tensor, which are not zero only forl 85 l or
l 85 l 62. The detailed expressions of (l 8iP(2)i l ) are given
in Ref. 18.

B. Confinement for hole states

Taking account of the anisotropy in the valence-band a
spin-orbital coupling, the effective mass Hamiltonian in t
hole states with an axial model can be written as11,12

Hh5
g1

2m0
H Ph

22
m

3
@P(2)

•I (2)#1
A70

15
s@P(2)3I (2)#0

4

1
2

3 S 1

2
2I •SDDsoJ , ~7!

where g1 , g2 , g3 are Luttinger parameters,m5(6g3
14g2)/5g1 , s5(g32g2)/g1 , m0 is the free-electron mass
I is the angular momentum operator corrsponding to spin
and S is the spin 1/2 of the hole.Dso is the valence-band
spin-orbit splitting energy. The definitions for the tensor o
eratorsP(2), I (2) and their products were given in Ref. 18

The wave functions for the above Hamiltionian can
written as

Ch5(
i

f i~r h!uLi ,Ji ,Fi ,Fzi&, ~8!
4-2
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QUANTUM SIZE EFFECTS ON EXCITON STATES IN . . . PHYSICAL REVIEW B68, 035334 ~2003!
uL,J;F,Fz&5 (
Lz ,Jz

^L,Lz ;J,JzuF,Fz&uL,Lz&uJ,Jz&. ~9!

Like gi(r e) for electron states, the radial wave functio
f i(r h) can be expanded using spherical Bessel functions.
function uL,J;F,Fz& is an eigenfunction of the total angula
momentum in theL-J coupling scheme;L,J,F,Fz are the
quantum numbers of the envelope angular momentum,
Bloch angular momentum of the valence-band top, the t
angular momentum, and the component of the total ang
momentum along thez direction, respectively.uL,Lz& is the
spherical harmonic functionYLLz

, uJ,Jz& is the Bloch wave
funtion, andJ can be assumed the values3

2 and 1
2 which

corresponds to the main~heavy and light! and split-off
states, repectively.̂L,Lz ; J,JzuF,Fz& is the Clebsch-Gordan
coefficient. If taking a spherical approximation,F,Fz are
considered as a good quantum number. While in the a
model taking anisotropy into account,F is not a good
quantum number, althoughFz remains its conservation. Th
wave function expansion would include an infinite numb
of L, which is truncated into a finite number ofL in the
calculation.

The matrix element with respect to the basis set can
written as

^L8,J8,F8,Fz8u~P(2)
•I (2)!uL,J,F,Fz&

5~21!L1J81FH F J8 L8

2 L J J ~J8i I (2)iJ!

3~L8iP(2)iL !dF8,FdF
z8 ,Fz

, ~10!

^L8,J8,F8,Fz8u@P(2)3I (2)#m
4 uL,J,F,Fz&

53~21!F82Fz8A~2F811!~2F11!S F8 4 F

2Fz8 m Fz
D

3S J8 J 2

L8 L 2

F8 F 4
D ~J8i I (2)iJ!~L8iP(2)iL !, ~11!

where

„~ IS!J8i I (2)i~ IS!J…5~21! I 1S1J12A~2J811!~2J11!

3H I J8 S

J I 2J ~ I i I (2)i I !. ~12!

These matrix elements are expressed in terms of 3j , 6j , 9j
symbols and the reduced matrix elements (L8iP(2)iL) and
(I i I (2)i I ). The detailed information ofn j symbols can be
found in Ref. 19. The calculation expressions of the redu
matrix elements of the second-order momentum tensor
given in Ref. 18.
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C. Confinement for exciton states

The exciton Hamiltonian in a quantum sphere is given

Hex5He1Hh2
e2

er eh
, ~13!

wheree is the dielectric constant andr eh5ur e2r hu. The ex-
citon wave function can be expanded in terms of elect
and hole functions as

Cex~r e ,r h!5(
i , j

ci j Cei~r e!Ch j~r h!, ~14!

whereCei(r e) andCh j(r h) are the wave functions of elec
tronic and hole eigenstates, respectively. In the calculati
of the Coulomb interaction,

1

r eh
5 (

k50

` r ,
k

r .
k11

Pk~cosueh!, ~15!

Pk~cosueh!5
4p

2k11 (
m52k

k

Ykm* ~ue ,we!Ykm~uh ,wh!,

~16!

where r .5max(re,rh), r,5min(re,rh), Pk are the Legendre
polynomials, andueh is the angle between the position ve
tors of electron (r e) and hole (r h).

In the calculation of the matrix element of the Coulom
interaction, the following equations will be used:

Ykm* 5~21!mYk2m , ~17!

^ l e8 ,me8uYk2mu l e ,me&5A~2l 11!~2k11!

4p~2l 811!
^ l ,0;k,0u l 8,0&

3^ l e ,me ;k,2mu l e8 ,me8&, ~18!

^L8,J8,F8,Fz8uYkmuL,J,F,Fz&

5^F,Fz ;k,muF8,Fz8&
1

A2F811
^L8,J8,F8iYkiL,J,F&,

~19!

where

^L8,J8,F8iYkiL,J,F&

5~21!(L81J1F1k)A~2F11!~2F811!

3H L8 L k

F F8 J8
J ^L8iYkiL&dJJ8 , ~20!

and
4-3
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TABLE I. Material parameters used in our calculations.Eg is the bulk band gap.m' , mi are the effective
mass in the conduction band perpendicular to and parallel to thez axis.g1 ,g2 ,g3 are Luttinger parameters
Dso is the spin-orbit splitting energy.

Eg(eV) m' mi g1 g2 g3 Dso(meV)

Si 1.17a 0.30,b 0.19a 0.91,b 0.92a 4.10c 0.44c 1.40c 44.1a

SiC 2.39a 0.25a 0.67a 1.820d 0.155d 0.648d 14.5a

aReference 20.
bReference 8.
cReference 21.
dReference 22.
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^ L8iYkiL&5A~2L11!~2k11!

4p
^L,0;k,0uL8,0&.

~21!

III. RESULTS AND DISCUSSION

Table I lists the parameters used in our calculations. H
we adopt different electron effective masses for different s
regions, experimental datam'50.19,mi50.92 for dot ra-
dius a.2 nm, and recent calculational datam'50.30,mi
50.91 for dot radiusa,2 nm. Calculations for Si QD’s~see
below!show that, withm'50.19,mi50.92, theoretical re-
sults agree well with experiments for dot radiusa.2 nm,
but yield overestimated numerical results fora,2 nm. Tak-
ing account of the fact that the surface effects in very sm
dots may bring on a change of effective masses which dif
from bulk value,23,24 we take the effective mass of electro
m'50.30,mi50.91 for dot radiusa,2 nm, which are cal-
culated with optimized tight-binding parameters.8 The tran-
verse effective massm'50.30 is slightly larger than the bulk
data m'50.19, but this value approaches the calcula
result23 in 2 nm wire thickness using a first-principle
pseudopotential method.

The dielectric constant in Eq.~13! is the static dielectric
constant. Compared with the bulk value, this constant w
become small as the dot radius decreases due to the qua
confinement. For Si, the size-dependent dielectric cons
in the parameter form was presented in Ref. 25. We w
follow this procedure in the calculation below. For SiC, d
to the lack of a similar function, taking account of the fa
that the binding energy exceeds the optical phonon ene
we will adopt the high-frequency value of the dielectr
function26 e`56.52 for a dot radius smaller than 2.0 nm a
the static valuee059.72 for sizes larger than 2.0 nm as
approximation.

Figure 1 shows the anisotropy splittings of the hole a
exciton ground states versus dot radius. As the dot ra
decreases, an obvious change in the splitting energy t
place due to quantum size effects. As we can see, the ch
tendency in Si QD’s is largely different from the case f
3C-SiC QD’s. For Si QD’s, in the investigated range of d
radius, both hole and exciton splitting increase with rad
decreasing. As the dot radius is reduced to 1 nm, the exc
ground splitting can be enhanced to about 14 meV, whic
much larger than the corresponding bulk value 0.32 me12
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Compared with Si, the hole and exciton splitting energies
3C-SiC QD’s increase very slightly at first and then decrea
When the splitting value is lower than zero, it means 1S3/2

61/2

~here we use the main componentnLF
Fz for notation! be-

comes the lowest states. This case is different from bulk
not only in the splitting value but in the level ordering. Fu
ther calculations show that the smallDso in 3C-SiC mainly
accounts for this difference. Figure 2 presents a straight
ward illustration. Given a larger spin-orbit splitting energ
~e.g., 44 meV which equals that in Si!, the split hole level
ordering can change, differing from the case ofDso
514.5 meV. Oppositely, withDso50 meV, a magnitude
of 1S3/2

61/2 lower than 1S3/2
63/2 would become larger than tha

in the case ofDso514.5 meV. A smaller spin-orbit splitting

FIG. 1. The anisotropy splitting energy for hole (1S3/2
61/2-1S3/2

63/2)
and exciton (1Se1S3/2

61/2-1Se1S3/2
63/2) ground states as a function o

dot radius for Si and 3C-SiC quantum dots.
4-4
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QUANTUM SIZE EFFECTS ON EXCITON STATES IN . . . PHYSICAL REVIEW B68, 035334 ~2003!
energy means a stronger coupling between the main~heavy
and light! and split-off states. When the spin-orbit splittin
energy is large, the level ordering is affected mainly by
mass anisotropy. While the spin-orbit splitting energy
small, the level ordering is affected both by the mass ani
ropy and by the coupling between different states. Con
quently, the magnitude of spin-orbit splitting is important f
the fine structure in QD’s.

For Si QD’s, the lowest hole state is 1S3/2
63/2; a thermali-

zation of the holes initially excited into higher states can le
to the formation of long-lived u1S3/2

3/2,1Se(↓)& and
u1S3/2

23/2,1Se(↑)& electron-hole pair states.27 Taking account
of the electron-hole exchange interaction, the 24-fold exci
states 1Se1S3/2

63/2 and 1Se1S3/2
61/2 will be further split. Figure

3 shows a schematic representation of the anisotropy s
ting and further exchange splitting. The lowest exchan
split state is a pure triplet and spin forbidden~‘‘dark’’ !. Al-
though the singlet state split from 1Se1S3/2

63/2 is spin allowed,
it is spatially forbidden~‘‘dark’’ !, as its wave function is
a combination of the long-lived u1S3/2

3/2,1Se(↓)& and
u1S3/2

23/2,1Se(↑)& states. Only the singlet state in 1Se1S3/2
61/2 is

optically allowed~‘‘bright’’ !. The formation of the transition
forbidden lowest states can lead to a Stokes shift of lumin
cence. The shift equals an exchange energy of 1Se1S3/2

61/2

plus the anisotropy splitting energy between 1Se1S3/2
61/2

and 1Se1S3/2
63/2 states. Calculation of the exact exchan

energy is much more complicated, since the exchange e
gy includes two parts of the short-range and long-range

FIG. 2. The anisotropy splitting energy for hole ground states
3C-SiC quantum dots (1S3/2

61/2-1S3/2
63/2) as a function of dot radius

with an assumed changeable spin-orbit splitting ene
Dso . a, b, c, andd correspond toDso50, 14.5, 44, and 100 meV
respectively. The changedDso may give a changed level orderin
between 1S3/2

61/2 and 1S3/2
63/2.
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teractions. As an approximation, we consider only the sh
range part which can be expressed as14,29 Eexch(r )
5paex

3 J*druCex(r ,r )u2, where J is the exchange energ
of the 1s bulk exciton,J50.15 meV~Ref. 13! for Si, aex is
the Bohr radius of the 1s bulk exciton, and
aex50.43 nm.11 When both the mass anisotropy an
exchange interactions are taken into account, the brig

FIG. 4. Energy splitting between the lowest bright state and
lowest dark state as a function of the dark exciton energy. The s
line corresponds to the present calculations; the experimental
are taken from the optical onset measurements and thermal PL
cay measurements results of Calcottet al. ~Ref. 30!.

f

y

FIG. 3. A schematic representation of the anisotropy splitt
and further exchange splitting. The dashed lines are pure
lets ~line c and lined) which are spin forbidden~‘‘dark’’ exciton!.
The singlet~line b) in 1Se1S3/2

63/2 is spatially forbidden~‘‘dark’’
exciton!. Only the singlet~line a) is optically allowed~‘‘bright’’
exciton!.
4-5
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FENG, XU, JIA, LI, AND GONG PHYSICAL REVIEW B68, 035334 ~2003!
dark exciton splitting energy is larger than that in the case
only taking account of exchange splitting. The calcula
bright-dark exciton splitting as a function of dot radius
plotted in Fig. 4 and agrees well with the optical onset m
surements and thermal PL decay measurements resul
Calcottet al.30

Figure 5 presents the calculated exciton band gap a
function of the dot radius for both Si and 3C-SiC. For 3
SiC, because of a lack of detailed experimental or theoret
data, only present calculation results are given. For Si,
recent experimental data by Ledouxet al.6 and by Furukawa
and Miyasato,28 as well as the theoretical value by usin
tight-binding method8 are also shown as a comparison. In t
experiment by Ledouxet al.,6 the silicon nanocrysta
samples were prepared by pulsed CO2 laser pyrolysis of si-
lane in a gas-flow reactor and expanded through a con
nozzle into a high vacuum. Using a fast-spinning molecu
beam chopper, they were size selectively deposited on d
cated quartz substrates. Due to a narrow size distribut
their PL emission lies slightly below the absorption expe
ment. Although Leeet al.8 gave a result agreeing well wit
photoluminescence experimental data by Wolkinet al.7 in

FIG. 5. Exciton band gap vs dot radius for Si and 3C-SiC qu
tum dots. The photoluminescence experimental data are taken
the recent results of size-separated quantum dots by Ledouxet al.
~Ref. 6!. The absorption experimental data are taken from Ref.
The other set of exciton gap are calculated by Leeet al. ~Ref. 8!
using tight-binding theory. We adopt the effective mass calcula
by Lee et al. ~Ref. 8! with optimized tight-binding parameters fo
dot radiusa,2 nm, and experimental effective mass data fora
.2 nm. The present calculations give better agreement with s
separated experiments than the calculation by Leeet al.
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their tight-binding calculations, their results have a consid
able discrepancy compared with the size-separated pho
minesence data. Note that, due to a board size distributio
porous Si, the experimental results for porous Si may be
reliable than the size-separated results. If we use the effec
mass calculated with the optimized tight-binding paramet
of Leeet al. for dot radiusa,2 nm, however, a better resu
can be obtained. For the overall size region in our investi
tion, with the parameters in Table I, the numerical resu
~shown in Fig. 5! are in a fairly good agreement with absor
tion and size-selective photoluminescence experiments.

The exciton binding energies both for Si and SiC QD
are shown in Fig. 6 as a function of dot radius. Comparing
their bulk value~14.3 meV for Si and 26.7 meV for 3C-SiC!,
the binding energies increase largely in QD’s. It is becaus
the quantum confinement and a lower dielectric constant
QD’s. Because of the strong binding in an electron-hole p
stable exciton states exist even at room temperature, w
bulk exciton states usually exist only at low temperture.

IV. CONCLUSION

In this paper, we investigated quantum size effects on
and 3C-SiC QD’s using a strict effective mass Hamiltonia
taking the band mass anisotropy and the small spin-o
splitting energy into account. First, we studied the anisotro
splitting both in Si and in 3C-SiC QDs. Due to th
conduction- and valence-band mass anisotropy, the dege
ate hole and exciton states are partly split. For Si QD’s,
exciton anisotropy splitting energies~with 1Se1S3/2

63/2 lower
than 1Se1S3/2

61/2) increase largely as the dot radius decrea
while in the case of 3C-SiC QD’s the ordering betwe
1Se1S3/2

61/2 and 1Se1S3/2
63/2 can change in different size re

gions. Taking account of the exchange interaction, the deg
erate exciton states are further lifted. For Si QD’s, the 4
fold exciton ground state will be split into two 18-fol
triplets and two 6-fold singlets with mass anisotropy a
electron-hole interactions. The lowest three exciton states

-
m

.

d

e-

FIG. 6. Exciton binding energy vs dot radius for Si and 3C-S
quantum dots.
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optically forbidden. They lead to a Stokes shift of the lum
nescence. The theoretical Stokes shift agrees well with
experimental data. Then, we presented the numerical exc
band gap and binding energies as a function of dot rad
both for Si and 3C-SiC quantum dots. The exciton band
in Si QD’s is in good agreement with the recent siz
separated photoluminescence and absorption experimen
di
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