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Quantum size effects on exciton states in indirect-gap quantum dots
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We investigate exciton ground states in Si and 3C-SiC quantum dots by using the effective mass theory,
taking account of the conduction- and valence-band mass anisotropy as well as the small spin-orbit splitting
energy. The degenerate hole and exciton states are partly split by the mass anisotropy. The anisotropy splitting
energies in quantum dots are different dramatically from their bulk value due to quantum size effects. The
assumed changeable spin-orbit splitting energy may change the ordering of the anisotropy-split energy levels.
Taking account of the exchange interaction, the degeneracy of the exciton states is further lifted. Due to the
anisotropy and exchange splitting, the 48-fold exciton ground state will be split into two 18-fold triplets and
two 6-fold singlets. The lowest three states are optically forbidden for Si quantum dots, which leads to a Stokes
shift of luminescence. The theroretical shift agrees well with the experimental data. Furthermore, the exciton
band gap and binding energy as a function of dot radius are presented both for Si and for 3C-SiC quantum dots.
The band gap of Si quantum dots agrees well with the recent photoluminescence results of size-separated
quantum dots by Ledoust al. and absorption data of Furukavea al.
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[. INTRODUCTION spin-orbit splitting energy and effects of the strong band an-
isotropy were not taken into accoynt@nd the calculated
Recently zero-dimensional quantum dé@D’s) have at-  result cannot be expected to be quantitatively correct.
tracted much attention not only for a variety of new interest- EMT can naturally take account of the mass anisotropy
ing physical and chemical properties but also for their potenboth in the conduction and in the valence band. The mass
tial applications®> Many experimental and theoretical anisotropy has a significant effect on the fine structure of
investigations have focused on quantum size effects. Wheexciton states. In direct-gap cubic semiconductor quantum
their size approaches the exciton Bohr radius, QD’s exhibitlots, the exciton ground state is eightfold in a spherical
new properties that differ dramatically from those of the bulkmodel. Differing from direct-gap semiconductors, the
material. One case of quantum size effects is the tunableonduction-band minimum in Si is along thle=(0,0k) di-
band gap as a function of quantum size. In addition, manyection, which has six equivalent points. The electron in Si
indistinctive properties in bulk materials may be enhancedas a strong mass anisotropy which leads to a splitting of the
considerably in QD’s. For example, the exchange splittingdegenerate 48-fold exciton ground state partly. On the other
energy can be increased by 3 orders of magnitude as the siband, the valence-band anisotropy is also strong because the
of semicondutors is reduced from bulk to nanoscale. Luttinger parameters are largely differenty;&4.10, v,
The strong visible luminescence in porous silitstired ~ =0.44, y;=1.40). The spherical modehg= y;, which is
up an intensive investigation of its origin. Although the emis-usually used for direct-gap QD’ss not proper anymore. The
sion mechanism is still under debate, the quantum confinezonsiderable difference in valence bands will partly lift the
ment in Si QD’s is mostly accepted as the main explanationdegeneracy of hole and exciton states. Although the mass
While many experimental phenomena can be explained ianisotropy splitting in bulk Si has been intensively
terms of quantum confinement, arriving at a quantitativeinvestigated~**to our knowledge, no work concerns this
agreement between theory and experiment is still extremelgplitting in Si QD’s which is expected to differ from that in
challenging® Recently photoluminescence experiments ofbulk material due to guantum size effects.
size-separated QD’s have been performed by Ledziad® The fine structure resulting from electron-hole exchange
The exciton band gap of size-separated QD’s is larger thaimteractions has been intensively investigatéti The ex-
photoluminescencéPL) results of porous Si.Many calcu-  change splitting may result in “dark” and “bright” excitons,
lated exciton gaps, including the recent tight-binding theoretwhich leads to a Stokes shift in the luminescence. However,
ical data of Leeet al® and pseudopotential calculation re- the effects of the mass anisotropy on exciton dark-bright
sults of Reboredet al.? are lower than the gap of size- properties are lacking an investigation and are unknown.
separated QD’s. Takagahara and TakBdzalculated the We use EMT to investigate these problems, taking ac-
exciton energy and binding energy of Si QD’s using four-count of the mass anisotropy and small spin-orbit split-
band effective mass theoffEMT). They clarified a mecha- ting energy. Due to taking the mass anisotropy into account,
nism which induces an indirect-to-direct conversion of thenot only the exciton energy but also effects of mass ani-
character of the optical transition. However, the Hamiltoniansotropy on the fine structure and optical properties can be
model in their calculation was not sufficiently accurégey., investigated.
a 4x4 Hamiltonian is not proper for QD’s with a small As another important semicondutor, SiC is a promising
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wide-band-gap material because of its superior characteris- 1 1/ 2 1
tics such as high breakdown field strength, high thermal con- m.-3m. + m
ductivity, and high saturation drift velocity. Low- a +
dimensional SiC has been intensively investigated 1 1/1 1 )
experimentally. Many photoluminescence experiments show —= —(—— —)
m, 3\m_ m

that a blueshift emission peak existing in porous 3C-SiC
(Ref. 16 and in encapsulated nanoparticté&hose transi-
tions above tpe bulk ba?fd galg havﬁ been elxplalneq by thgf the electronic states is no longer a good quantum number.
ﬂ:\a/lgutj)renerg:%r:):]nee?gc\}eSe?an tﬁgetxg?éﬁtgzte'g\/iﬁsg?gtggﬁecause of the axial symmetry, taeomponent of the total
which play an im,portant ro,Ie in interpreting the origin of the ngular momebntur_r_hoflthe electr(?sn!li stat';e remains a good
blueshift. Due to the similar band anisotropy to Si and thequantum number. The lowest stat&lcan be given as
small spin-orbit splitting energy, we can easily treat the ex- = + + 4.
citon states in 3C-SiC QD's following the route of Si QD’s. Ye gl(re)|00> 92(re)|20> 93(r9)|49> @

In this paper, we investigate the quantum size effects ovhere|lm) is the spherical harmonic function, ; the par-
the exciton states in Si and 3C-SiC QD’s by using EMT. Weity of_each state is a good quantum number. The_ radial wave
lay emphasis on the anisotropy splitting, electron-hole exfunctions gi(re) can be expanded using spherical Bessel
change interaction, exciton band gap, and binding energgunctions
For Si QD’s, it is found that EMT can present a theroretical "
exciton band gap agreeing well with recent photolumines- \/E Jilan rela)
cence results of size-separated QD’s. Taking account of both 9i(re)= 28 nzl Cni fie1(an) ®
the mass anisotropy and exchange interaction, a larger
bright-dark exciton splitting can be obtained than by onlywhere ay, is the nth root of the spherical Bessel function
taking exchange splitting into account and agree well withj (re=a)=0.
experimental results. This article comprises the following. In the calculation of the matrix element we will use a key
First we will present the calculation method. Then, our nu-equation
merical results will be discussed and compared with the ex-

Due to the anisotropy terrﬁgz), the angular momentum

perimental data. Finally, a brief conclusion is drawn in our @) 1 9
: C I m' |[P@Imy=( I,m:2g |I",m") ———(1"||PP)||I
investigation. ( [Py ltm)y=(1.m;2,q |I", >\/m( IP][1),
(6)
Il. CALCULATION METHOD where{ I,m;2,g |[I’,m") is the Clebsch-Gordan coefficient
A. Confinement for electron states and ('|P@||l) is the reduced matrix elements of the second-

order momentum tensor, which are not zero onlylfer| or
|”=1+2. The detailed expressions df [P?)|l) are given
oiP Ref. 18.

In order to simplify the analysis, we only consider QD’s
as spheres with radiua surrounded by an infinitely high
potential barrier. This model can be used in the treatment
porous Si(and SiQ and single nanopatrticles.

The conduction-band minimum is located at
2/a(0,0,0.85) and z/a(0,0,1) for Si and 3C-SiC, respec-  Taking account of the anisotropy in the valence-band and
tively. The effective mass at the conduction-band bottom ispin-orbital coupling, the effective mass Hamiltonian in the
anisotropic and has an axial symmetry in tedirection,  hole states with an axial model can be writte'a$
which will be referred as the directon. The effective mass
Hamiltonian can be written as Y1 [ p2 \70

B. Confinement for hole states

s 0
== i p2_Trp@. @1y = (@)% (24
Hp 2mg | 3[P [4)]+ 15 o P X145

1 2
2_mu(p3)’ (1 N 2

Hom— (03 p3)
e Zml 1 2 3

1)
E_I'S Aso’ (7)

where m, , m; are the effective mass in the conduction,,q.q v,
bands perpendicular to and parallel to #axis, respectively, '
1, 2, 3 label the principal directions of a conduction-band
ellipsoid. Equation(1) can be rewritten as

v, vz are Luttinger parametersu=(6vy;
+49,)I5y1, 0=(y3— v2)!y1, Mgy is the free-electron mass,

| is the angular momentum operator corrsponding to spin 1,
and S is the spin 1/2 of the holeA, is the valence-band
spin-orbit splitting energy. The definitions for the tensor op-

B P2 1 EP(Z) 5 eratorsP(®), 112 and their products were given in Ref. 18.
e 2m, 2m, V3 0 2 The wave functions for the above Hamiltionian can be
written as
whereP{? is the second-order tensor of the momentum op-
erator, which represents the anisotropy of the conduction- x[rh:Z fi(rp)|Li i Fi Fa, ®

band minimam,,m, are defined as
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C. Confinement for exciton states

|L’J;F’FZ>:LZE,JZ (LL2: 3. J{F L L. (9) The exciton Hamiltonian in a quantum sphere is given by

Like gi(re) for electron states, the radial wave functions 2

fi(r,) can be expanded using spherical Bessel functions. The
function |L,J;F,F,) is an eigenfunction of the total angular
momentum in theL-J coupling schemel.,J,F,F, are the Wheree is the dielectric constant and=|r.—ry|. The ex-
quantum numbers of the enve|ope angu|ar momentum, th@lton wave function can be expanded in terms of electron
Bloch angular momentum of the valence-band top, the totand hole functions as

angular momentum, and the component of the total angular

momentum along the direction, respectivelylL,L,) is the

spherical harmonic functiol,, , |J,3,) is the Bloch wave Voo ) =2 CijWei(re)Whi(ry), (14
funtion, andJ can be assumed the valuésand 3 which Y

corresponds to the maitheavy and light and split-off ~ whereW(r) andW¥(r,) are the wave functions of elec-
states, repectivelyL,L,; J,J,|F,F,) is the Clebsch-Gordan tronic and hole eigenstates, respectively. In the calculations
coefficient. If taking a spherical approximatiok,F, are  of the Coulomb interaction,

considered as a good quantum number. While in the axial
model taking anisotropy into accounk is not a good

Hex=Het+Hy— (13

Greh’

o k
guantum number, althoudh, remains its conservation. The 1 r<
. . . e —= Pk(Coa‘)eh), (15)
wave function expansion would include an infinite number len K=0 rk>+l
of L, which is truncated into a finite number &f in the
calculation.
The matrix element with respect to the basis set can be 4 « .
written as Pu(coSen) = 51 77 m;_k Yim(Oer®e) Yim( On, @n),

(16)

o ’ ’ 2 2
(L'J"F ’Fz|(P( 1)L FFy) where r-=max{ern), r<=min(rery,), P are the Legendre

E g / polynomials, and,, is the angle between the position vec-
=(—1)L“'+F[ ](J’|I(2)||J) tors of electron () and hole ().
2 L J In the calculation of the matrix element of the Coulomb
X(L'[PPL)Ser ¢8er ¢, (10) interaction, the following equations will be used:
4 :m:(_l)mYk—ma (17)
(L"3'F" F[P@x 172 |L,J,F,F)
' 4 F (214+1)(2k+1)
=3(-1DF "FJEF +D(2F+D)| ) 1L m Y mlle,Mey = \/ ————————(1,0:k,01",0
_Fz m F, < e e| k m| e e> 47(2|,+1) < | >
JJ o2 X(lg,me;k,—m[lIL,mly,  (18)
x| L' L 2@y p@L), @y
F'F 4 (L' 3" F" F2YmlL,J,F,F)
1
where . = Ty
=(F,F,;k,m|F" F)) ———=(L",J',F’'||Y\/|L,J,F),
< z | z> m( ” k” >
(S)I'1P](19)I)=(—1)'*5t3+2(23' +1)(2J+ 1) (19
| J' S where
X @n).
[J | 2}(Illl . a2
(L3 F'IYdL,3,F)
These matrix elements are expressed in termsj pf68, 9j =(—1)L" IR J(OF+1)(2F' + 1)
symbols and the reduced matrix elemerits||P)||L) and
(H'@)[1). The detailed information ofj symbols can be L’ kl
found in Ref. 19. The calculation expressions of the reduced e B 7 (LYIYHIL) 850 (20

matrix elements of the second-order momentum tensor are
given in Ref. 18. and
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TABLE I. Material parameters used in our calculatioBg.is the bulk band gapm, , m are the effective
mass in the conduction band perpendicular to and parallel ta #xés. y,,y,,y3; are Luttinger parameters.
A, is the spin-orbit splitting energy.

Eq(eV) m, m, "1 Y2 Y3 Ago(meV)
Si 1.17 0.30° 0.1¢ 0.91° 0.92 410 0.4 1.4C¢ 44.72
Sic 2.3¢ 0.23 0.672 1.82¢ 0.155' 0.648' 14.58°

8Reference 20.
bReference 8.

‘Reference 21.
dReference 22.

(2L+1)(2k+1) Compared with Si, the hole and exciton splitting energies in

( LY Ly= T(L,O;k,OlL’,O}. 3C-SiC QD's increase very slightly at first and then decrease.
(21)  When the splitting value is lower than zero, it meargs, 3

(here we use the main componerrriIEZ for notation be-

comes the lowest states. This case is different from bulk SiC
. RESULTS AND DISCUSSION not only in the splitting value but in the level ordering. Fur-

Table | lists the parameters used in our calculations. Heréher calculations show that the smal, in 3C-SiC mainly

we adopt different electron effective masses for different size\?v (;Crguirlllfs?arti?rgs gif\f/(;rrr]ergz?éngru;e ii_g:gﬁegtﬁttzianstrg:qger;tfor-
regions, experimental data, =0.19,m;=0.92 for dot ra- ' ger sp pIting 9y

dius a>2 nm, and recent calculational data, —0.30,m, (e.g., 44 meV which equals that in)Sthe split hole level

. ) Rt ordering can change, differing from the case Af
=0.91 for dot radiu®@<2 nm. Calculations for Si QD'ssee  — . . B - S0
belowshow that, withm, =0.19,m;=0.92, theoretical re- =14.5 meV. Oppositely, withis,=0 meV, a magnitude

+1/2 +3/2
sults agree well with experiments for dot radias 2 nm, Of 155" lower than B;,;™ would become larger than that

but yield overestimated numerical results fo£2 nm. Tak- in the case of\s;=14.5 meV. A smaller spin-orbit splitting
ing account of the fact that the surface effects in very small

dots may bring on a change of effective masses which differs i 18 18"2.18 182
from bulk value?>?*we take the effective mass of electrons 1572 13/823’2 e 32
m, =0.30,m;=0.91 for dot radiusa<2 nm, which are cal- B a2 O3
culated with optimized tight-binding parametérghe tran- '

verse effective mags, =0.30 is slightly larger than the bulk 10 -

datam, =0.19, but this value approaches the calculated
resulf® in 2 nm wire thickness using a first-principles
pseudopotential method.

The dielectric constant in Eq13) is the static dielectric
constant. Compared with the bulk value, this constant will
become small as the dot radius decreases due to the quantum
confinement. For Si, the size-dependent dielectric constant
in the parameter form was presented in Ref. 25. We will
follow this procedure in the calculation below. For SiC, due
to the lack of a similar function, taking account of the fact
that the binding energy exceeds the optical phonon energy,
we will adopt the high-frequency value of the dielectric
functiorf® e,,.=6.52 for a dot radius smaller than 2.0 nm and
the static valuesy=9.72 for sizes larger than 2.0 nm as an
approximation.

Figure 1 shows the anisotropy splittings of the hole and : 18218
exciton ground states versus dot radius. As the dot radius 3 e o
decreases, an obvious change in the splitting energy takes SR Tttt 136183,2‘13.31 33,2
place due to qgantlj,m_size effects. As we can see, the change 170 175 2?0 275 3f0 375 0
tendency in Si QD’s is largely different from the case for
3C-SiC QDrs. For Si QD's, in the investigated range of dot Dot Radius (nm)
radius, both hole and exciton splitting increase with radius
decreasing. As the dot radius is reduced to 1 nm, the exciton FIG. 1. The anisotropy splitting energy for holeii/* 1553
ground splitting can be enhanced to about 14 meV, which isind exciton (5,1S53>1S,1S;5?) ground states as a function of
much larger than the corresponding bulk value 0.32 ffeV. dot radius for Si and 3C-SiC quantum dots.
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——~ 0r
> > b
O o
£ 3 c

b c
- w
D | d
C 3/2
= 1S3/2
= Anisotropy  With exchange
)] a SiC splitting interaction
E -10 |
_g FIG. 3. A schematic representation of the anisotropy splitting
8 and further exchange splitting. The dashed lines are pure trip-
c 15 lets (line ¢ and lined) which are spin forbidderi‘dark” exciton).
< 5F

The singlet(line b) in 1S,1S532 is spatially forbidden(“dark”
exciton). Only the singlet(line a) is optically allowed(“bright”
exciton.

1.0 1.5 2.0 25 3.0 3.5 4.0

. teractions. As an approximation, we consider only the short-
Dot Radius (nm) range part which can be expressed*4% Eq,.(r)
_ o =7al Jfdr|W(r,r)|? wherel is the exchange energy
FIG. 2. The anisotropy splitting energy for hole ground states ofyf the 1s bulk exciton,J=0.15 meV(Ref. 13 for Si, ayy is

3C-SiC quantum dots @;'*1S;3") as a function of dot radius, he  Bohr radius of the 4 bulk exciton, and

with an assumed changeable spin-orbit splitting energy —0.43 11 ;
=0.43 nm:* When both the mass anisotro and
Ago. @, b, ¢, andd correspond ta\,=0, 14.5, 44, and 100 meV, Yex Py

respectively. The changeli,, may give a changed level ordering exchange interactions are taken into account, the bright-

between B33 and 1S53,
energy means a stronger coupling between the ri@avy 35 L Calc.
and lighy and split-off states. When the spin-orbit splitting O Calcott et al. (Opt.)
energy is large, the level ordering is affected mainly by the
gy Is arg g v oy oL 4 Calcott et al. (Therm.)

mass anisotropy. While the spin-orbit splitting energy is
small, the level ordering is affected both by the mass anisot-
ropy and by the coupling between different states. Conse-
quently, the magnitude of spin-orbit splitting is important for
the fine structure in QD’s.

For Si QD’s, the lowest hole state iS}3?; a thermali-
zation of the holes initially excited into higher states can lead
to the formation of long-lived |1S331S.(])) and
|1S;32,1S4(1)) electron-hole pair staté$.Taking account
of the electron-hole exchange interaction, the 24-fold exciton
states B,1S53” and 15,1S;3,5"2 will be further split. Figure
3 shows a schematic representation of the anisotropy split-
ting and further exchange splitting. The lowest exchange-
split state is a pure triplet and spin forbiddédark” ). Al-
though the singlet state split fron541S;,3' is spin allowed,

25

]
o
T

10 -

[4)]
T

Bright-Dark Exciton Splitting (meV)

it is spatially forbidden(“dark” ), as its wave function is 0}

a combination of the long-lived|1S351S.(])) and R T S S
|1S;321S4(1)) states. Only the singlet state it5J1S;3/% is 12 14 16 18 20 22 24 26
optically allowed(“bright” ). The formation of the transition- Exciton Band Ga (eV)
forbidden lowest states can lead to a Stokes shift of I+ulr/rz1ines— P

cence. The ,Sh'ﬁ equals .a|.’1 exchange energy Sl J%,z FIG. 4. Energy splitting between the lowest bright state and the

plus the anisotropy splitting energy betweer$.1S;); lowest dark state as a function of the dark exciton energy. The solid

and 1S,1S;3” states. Calculation of the exact exchangeline corresponds to the present calculations; the experimental data
energy is much more complicated, since the exchange enedre taken from the optical onset measurements and thermal PL de-
gy includes two parts of the short-range and long-range ineay measurements results of Calogttal. (Ref. 30.
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4.0 500 |-
: S
35 | SIC GEJ 400 b
>
2
~—~ o 300
30k (0
> >
~ £
a 2 oo}
o 25 o
O 5
S 100
-g 2.0 1 1 1 1 1 1 1 |.|>j
g 30 1I0 1I5 2?0 2!5 370 3!5 470
----- - Exptl.(absor.) Dot Radi
S SI ..... O~ Exptl.(PL) ot Radius (nm)
= o5t
O Present calc. FIG. 6. Exciton binding energy vs dot radius for Si and 3C-SiC
Ijj """"" CaIC by Lee et al. quantum dotsl
20
O their tight-binding calculations, their results have a consider-
15 WO S able discrepancy compared with the size-separated photolu-
minesence data. Note that, due to a board size distribution on
. . . . . . . porous Si, the experimental results for porous Si may be less
e o 7s 20 25 30 35 40 reliable than the size-separated results. If we use the effective
. mass calculated with the optimized tight-binding parameters
Dot Radius (nm) of Leeet al.for dot radiusa<<2 nm, however, a better result

can be obtained. For the overall size region in our investiga-

FIG. 5. Exciton band gap vs dot radius for Si and 3C-SIC quans; . *\ un the parameters in Table I, the numerical results
tum dots. The photoluminescence experimental data are taken fror%w ’ P ’

the recent results of size-separated quantum dots by Leebak §hown In _F'g' 3 arelln a fairly gOQd agreement W't.h absorp-
(Ref. 6. The absorption experimental data are taken from Ref. 2g!ion and size-selective photoluminescence experiments.

The other set of exciton gap are calculated by keal. (Ref. 8 The exciton binding energies both for Si and SiC QD’s
using tight-binding theory. We adopt the effective mass calculatedire shown in Fig. 6 as a function of dot radius. Comparing to
by Leeet al (Ref. § with optimized tight-binding parameters for their bulk value(14.3 meV for Si and 26.7 meV for 3C-SiC

dot radiusa<2 nm, and experimental effective mass data dor the binding energies increase largely in QD's. It is because of
>2 nm. The present calculations give better agreement with sizethe quantum confinement and a lower dielectric constants in
separated experiments than the calculation by étegl. QD’s. Because of the strong binding in an electron-hole pair,

) o ) ) stable exciton states exist even at room temperature, while
dark exciton splitting energy is larger than that in the case of, | exciton states usually exist only at low temperture.
only taking account of exchange splitting. The calculated

bright-dark exciton splitting as a function of dot radius is
plotted in Fig. 4 and agrees well with the optical onset mea-
surements and thermal PL decay measurements results of

Calcottet al® _ In this paper, we investigated quantum size effects on Si
Figure 5 presents the calculated exciton band gap as g9 3C-SiC QD’s using a strict effective mass Hamiltonian,
function of the dot radius for both Si and 3C-SiC. For 3C-44ing the band mass anisotropy and the small spin-orbit
SiC, because of a lack of detailed experimental or theoreticalyitting energy into account. First, we studied the anisotropy
data, only pr_esent calculation results 6are given. For Si, th@plitting both in Si and in 3C-SIC QDs. Due to the
recent experimental data by Ledoekal.’ and by Furukawa conduction- and valence-band mass anisotropy, the degener-

a_md M|yqsatc?, as well as the theoretical valug by using ate hole and exciton states are partly split. For Si QD’s, the
tight-binding methoflare also shown as a comparison. In the®" . . o oo +3/2
exciton anisotropy splitting energiéwith 1S,1S5,5" lower

experiment by Ledouxetal,® the silicon nanocrystal TN .
samples were prepared by pulsed Q@ser pyrolysis of si- thap 1_86183—,22) increase Iargely as the dot radl.us decreases
lane in a gas-flow reactor and expanded through a conica¥hile in the case of 3C-SiC QD’s the ordering between
nozzle into a high vacuum. Using a fast-spinning molecular1S:1S53”> and 1S,1S53 can change in different size re-
beam chopper, they were size selectively deposited on ded@ions. Taking account of the exchange interaction, the degen-
cated quartz substrates. Due to a narrow size distributiorerate exciton states are further lifted. For Si QD’s, the 48-
their PL emission lies slightly below the absorption experi-fold exciton ground state will be split into two 18-fold
ment. Although Leeet al® gave a result agreeing well with triplets and two 6-fold singlets with mass anisotropy and

photoluminescence experimental data by Wolkinal.” in electron-hole interactions. The lowest three exciton states are

IV. CONCLUSION
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