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A CONVERSE TO THE MEAN VALUE THEOREM 
FOR HARMONIC FUNCTIONS. 

By WILLIAM A. VEECH* 

1. Introduction. In the present paper we shall confirm, in a special case, 
a conjecture concerning the "converse" to the mean value theorem for 
harmonic functions. We hope the ideas employed here will eventually be of use 
in settling the full conjecture. 

Some notations are necessary in order to state our conjecture. Let Q be a 
region in RN,N > 1, and for each x e( 2 let d (x) be the distance from x to a Q 
(the boundary of Q. d (x) <Koo unless Q = RN). Fixed for each x E& 2 is a ball, 
B (x), with center x and radius 8 (x) < oo, such that B (x) C U. Define a kernel, 

P=P8, on QxQ by 

PD(,Y)|IBX)XBWX(Y) (Y EB(X)) 
O8 (X, (yxB(:)) 

Here, as in later formulas, 1 I stands for the Lebesgue measure (volume) of 
a set, and X stands for characteristic function. While P, (-,-) may not be 
measurable (d is not required to be measurable), it is still meaningful to speak of 
measurable functions f such that P8f=f. Accordingly, we define SW6 to be the 
set of all finite, nonnegative, Lebesgue measurable functions f > 0 such that 

f(x)= Po (x,y)f(y)dy (1.1) 

for all x e(. 
We denote by 'S the cone of nonnegative harmonic functions on U. By 

the mean value theorem for harmonic functions XC8 2 SC for any 8, and by a 
converse to the mean value theorem we mean a statement that X8 = 'C. Since 
there are well-known elementary examples to show X8 = 'K is false in general 
for any region, any such converse must involve additional assumptions on 8 ( ), 
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at least. Now it is our conjecture that if XC8 = SC whenever Q is bounded and 
8 () satisfies a mild growth restriction: 

CONJECTURE 1.2. With notations as above, if i2 is bounded, and if 8 (') is 
locally bounded bounded away from 0 on Q, then X8 = '3C. 

Many results in the recent literature lend support to our conjecture ([10], 
[1], [3], [11], [17], [12], [2]), however in each case in order to be able to 
conclude that a given f E X8 belongs to SC, it is necessary to assume f satisfies 
an additional growth restriction (which, with the exception of [17], is that f be 
bounded). The main result of the present paper makes rather strong assump- 
tions on Q and 8 (.), but it is apparently the first instance in which X8 = 'S has 
been verified. 

THEOREM 1.3. Assume of 8 (.) that there exist a constant a >0 and a 
function 0 < r( ) < d ( ) on Q such that for all x, x' E(Q Ir(x)-r(x')I I IIx-x'II 
and ar(x) < 8 (x) < (1- a)r(x). If Q is a bounded Lipschitz domain, then '1W8 

Remark. Heath has pointed out to us that some condition on Q is 
necessary for 5C8 = 'S to obtain in general. (Our conjecture was originally 
stated for arbitrary U.) He shows there are "admissible" 8's on Q = RN such that 

'K8 contains nonconstant bounded functions. (The examples will appear in 
[12].) 

The last step in the proof of our Theorem 1.3 is to quote Theorem 1 of 
[17], and it is here that the "Lipschitz domain" assumption is used. The analysis 
in [17] required a careful study of individual points on the Martin boundary of 
Q, a study which we have thus far been unable to carry out or replace with no 
smoothness assumption on a U. It would be interesting to determine whether 
Heath's techniques could be combined with those of the present paper to 
obtain a closer approximation to our conjecture because Heath makes no 
assumption on a U. 

In outline, the proof of Theorem 1.3 is as follows: In Section 2 we use 
elementary Choquet theory to obtain an integral representation for the ele- 
ments of XC8 over the extremals of (the cone) 8Cc. In this way we are reduced 
to proving an element of 'K. is harmonic if it is extremal. After obtaining a 
probabilistic interpretation of the extremals in Section 3, we make in Section 4 
the minor modifications in the Doob boundary theory ([5], [6], [14], [9]) which 
enable us to use this theory in our setting to obtain an analytic expression (more 
or less) for the extremals of JC6. This analytic expression is used in Section 5 to 
prove each extremal of XC8 is dominated by a positive harmonic function on Q 
(i.e., an element of SC). The proof is completed by referring to our earlier 
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THEOREM. ([17], Theorem 1). Let Q be a bounded Lipschitz domain in 
RN, N > 1, and assume 8 (.) is locally bounded away from 0 on U. Then SC is 
an extremal subcone of C6 . That is, if f E X3C and g E '3C satisfy f < g, then 
also f E SC. 

In Section 6 we combine Theorem 1.3 with the results in R. Hunt- 
Wheeden [15] to obtain an "elementary" computation of the Poisson kernel for 
a bounded Lipschitz domain: 

THEOREM 1.4. Let Q and 8 (.) be as in the statement of Theorem 1.3, and 
assume in addition that 8 (>) is Borel. Form the kemel 

00 

G(x, y)= P(m) (x, y), (1.5) 
m= 1 

the summands being the iterates of P8 as an integral kemel. Then G (,) is 
finite on Q and moreover if xo E Q is a fixed point, and if x E Q, y E a Q, then 

G (x,z) 
liny G(x0,z) =Kx(x,y) (1.6) 

exists and is the "Poisson kemel" for U. That is, KXO is continuous on 
Q x a 2, Kxo(., y) is harmonic for each y, and Kxo( , y) vanishes continuously at 
each y'#7y in aQ. 

2. The Cone X7W. We begin by recalling Proposition 2.1 of [17]: Given 
f E X3C there exist Borel functions fo and 80 with fo E XC70, f= fo a.e., and 80 > 8. 
If fo is proven to be harmonic, then fo -f because f P- P 0fP =fo. (It is an 
easy matter to modify the proof of this proposition so that if 8 (.) satisfies an 
inequality as in the statement of Theorem 1.3, then 80(') will satisfy the same 
inequality.) Therefore, it will be enough for us to prove Theorem 1.3 under the 
additional assumption that 8 ( ) be Borel. This is assumed in all that follows. 

Since 8 (.) is now a Borel function, we can form the iterates of the integral 
kernel PF, setting p,(') = P,F, and 

P(n+') (x y) =fP() (x,z)P8 (z,y)dz (n > 1). 

LEMMA 2.1. Assume 8 (.) is locally bounded away from 0 on U. If A and 
C are compact sets in Q, there exist an integer m and a number X > 0 such that 

P8(m)(x y) > X, (x, y) E A X C. 

Proof. By the compactness of A x C it is enough to prove for every pair 
x, y E Q the existence of fixed neighborhoods U, V(x E U, y E V) such that for all 
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sufficiently large n infx, uy, vP ()(xy)>0 If E and F are Borel sets in 2, 
define 

ml(E,F)= inf P6 (x,F) 
xeE 

m2(E, F) = inf P8 (x, y) 
xeE 
yeF 

If E0 .... E. are Borel sets in Q, then it is easily checked that if x' E EO,y' E En 

n-2 

pin) (x',y') >(fii2 ml(Ei,Ei+i) m2(En 1iEn) (2.2) 
f=o 

Using the fact 8 (') is locally bounded away from 0 on Q it is possible to choose 
an integer t and balls Eo,...,Et such that xEEo, yEEt, and ml(E,,E+ 1)>0, 
O< j<t, m2(Et -1, Et) > 0 and m, (Et, Et) > 0, i = 1, 2. Taking U = Eo and V= Et, 
(2.2) implies p6(n) is bounded away from 0 on U x V for n> t. 

LEMMA 2.3. Assume both 8 (') and d (') - 8 (') are locally bounded away 
from 0 on S2. There exists a locally bounded function M (xO, x) on Q2 > such 
that for all f E 'X8O and (xO, x) E -2 x Q 

f (x) < M (xO, x) f (xO). (2.4) 

Proof. Let A and B be compact sets in 02, and let C be the closure of the 
union U ZEBB (z). C is compact by our assumption on d ( )-8 (.). There exists 
an m and a number X = Xn > 0 such that P6(_)(x,y)>An, (x, y) EAxC, by 
Lemma 2.1. Define M=supZEB BPu6(Z,w). We have P()(x, Z)>(X5/M)P6(z,') 
for x A,zEB. It follows that f(x)>(An/M)f(z) forf EC6 and the lemma is 
proved with M (xO, x) = M/Xn for xo E A, x E B. 

Let C' be the space of equivalence classes of compactly supported 
Lebesgue integrable functions on U. If C??% the space of equivalence classes of 
locally bounded measurable function on Q, is given the Cl topology, then by 
Aloaglu's theorem any set IF c Qf whose elements are jointly locally uniformly 
bounded is relatively compact. Moreover because Cc1 is separable, such a set as 
F is metrizable. Let xoE 2 be fixed, and define 6TXO = { f E 'W I f (xo) = 1}. By 
Lemma 2.3 the elements of Dlxo possess a local uniform bound (M (xO x)), and 
therefore GTXOhL is relatively compact in Q??. We claim (i) the canonical mapping 

lXoR-3- Q0 is an injection, and (ii) the range is closed. To see (i) simply note for 
each x e( 2 that P, (x, .) E EC and therefore if fi,f2 (=- GMXO correspond to the 
same element in Ca, then fi -f2. Secondly, suppose fn is a sequence in ?TxO 
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convergent to fE Cf". We define fo(x)=(f,P6(x, .)), xE U. If (pE P", then 
pP, 5EP1, where TpP5(y)=Ofp(x)P8(x,y)dx. Thus, (p,f0)=((p,P8f)=((pPP,f) 

= lim. ((PP8o,f) = lim ((p, P86f) = limo ((p,f) = (p,f), and so f = fo a.e. It follows 
P40fo=fo, and therefore the class of f is the image of fo under the map from 

xo to c. For one final remark we note that a sequence fn in DlxO is 
convergent in the El topology if and only if lim. f,, (x) exists for every x eQ U. 
We have proved 

PROPOSITION 2.5. Assume both 8 (.) and d ( )-8 (') are locally bounded 
away from 0 on Q. For any xo E Q the space %Txo = { f EJ XIo I f (xo) = 1} is a 
compact metrizable space in the topology of pointwise everywhere convergence 
on Q. 

'xo is a compact convex set of functions on Q, and we use &xo to 
denote the set of extreme points. Because ?lxo is metrizable, &xo is a Borel 
set (in fact a G8) [16]. By Choquet's theorem there exists for every f E C a 
measure X on 6x, such that 

f=f eof(de) 
xo 

in the sense that if (p E C', then 

(T f)=f (, e)f (de) 
xo 

Specializing to T() P. (x, ), we have in particular that 

f (x)=f e(x)Af(de) (x eQ) 

From this it is clear we have proved 

PROPOSITION 2.6. Assume both 8 (.) and d )-8 ( ) are locally bounded 
away from 0 on Q. If every extremal of 'K{5 is harmonic, then XC5 = 'K. 

Remark. Iff,ge =-, set ho=fAg. Then Ph0ho ho and P (n)ho decreases 
to a function h E 'KW8: If h, E XC6 and h, < ho, then obviously h, S h. Therefore, 

'Ka is a lattice. By the uniqueness portion of Choquet theory, the measure xf 
above is unique [16]. We shall have no need of this fact in what follows. 

3. Probabilistic Interpretation of the Extremals. We assume for this 
section only that 8 (.) is (Borel and) locally bounded away from 0 on Q. The 
consequence of this assumption which is used in what follows is that if f E X8, 
then either fO0 or else f(x)>0, all x. 
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Here and in later sections A will denote the infinite product space, 
A=i2xi2x ... We use xH('), j=0,1,..., for the coordinate functions and 
Ji = 63~ (x0,xj,...) for the a-field generated by these functions. The left shift, 
T, (x (Tw) = x+, (w)), which is 'OB measurable, is used to define the tail a-field, 
'1O n ??T -n =rq n ?kT- n (for any k>0). Finally, the invariant a- 
field, 6, is defined to be 6= {X E 5 IT'-X= X}. JI is a sub-a-field of 

f13oo. 

If f E JC6 is not 0, set up a kernel Qf on Q x Q as 

1 
Qf (x,y)= f P6 (x,y)f( y). f (x) 

Qf is well defined because f never vanishes. Notice that Qf(x,') is a probability 
density for every x, and also 

Qf)(X, y) = p(n) (x,y) f ( y) (n > 1). (3.1) 

If X0,X1,. ..., Xn are Borel sets in Q, define for xeQ 

tcoEAIx (co) E Xi, 0 jSn} 

Jxo Ax X ( 11 Qf (xi, x, + l)) 8x ( dxo) dxl 1 . dXn, 
x0 x1 Xn= 

where 8x is the point mass at x. A4 extends to be a probability measure on J3 . It 
is the realization of the random walk starting at x and governed by Qf. The 
easily verified formula ([17], (2.7)) 

/f(T-nX)fQn) (x, y)if(X)dy (3.2) 

XE ,n>1 may be used to prove j- >-j4 on JI for all x,x'EQ([17], 
Prop. 2.3). Of course y4 I 4i, x#7& x' on B. If X E 63 I ,and if a (x) = 14 (X), then 
by (3.2) Qfa = a. This implies P,8 (af) = af so that af E J( . Since 0 <o a < 1, if f 
is an extremal of X8, then af is a constant multiple of f. Now to compute the 
constant we use the fact that E (XIxo. . . ,xn) = jf (X) = a(xn) ([17], Sec. 7) 
converges A! a.e. to Xx Thus, a O or a 1 if f is an extremal. 

LEMMA 3.3. If 8 ( ) is locally bounded away from 0, and if f E XC7 is an 
extremal, then for every X E J I 4 (X)-O or j4 (X) _ 1. 

Remark. Of course the lemma implies JI is I4 trivial for every extremal 
f and x e(=-. On the other hand the mutual absolute continuity on g I (and a 
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martingale argument) imply that if 93J is ,4t trivial for some x, then f is an 
extremal. It was this fact which played an important role in the proof of 
Theorem 1 of [17]. 

4. The Doob Exit Boundary. In this section both 8 (Q) and d ()-8 () 
are assumed to be locally bounded away from 0. 

Let A COQ be a Borel set. The function NA(w)= XA(Xn (w)), w E A, is 
measurable and counts the number of terms in the sequence x1 (c), j > 1 which 
belong to A. If f E JCK and x E Q, then 

00 

JNA(w) It!(d )= J Q7 (x, y) dy (4.1) 
n=1 

because the nth summand on the right is just the integral of xA(xn (w)) with 
respect to I4. We will need a bound on the right hand side of (4.1), but for this 
bound it is most convenient to work with the left hand side. Because each 
f E SCQ is locally bounded away from both 0 and ox on Q (use Lemma 2.1 for 
lower bounds), it will suffice to work with P0 Q1 (i.e., f_ 1). Let yx= y 
below. 

LEMMA 4.2. Assume 8 (.) is locally bounded away from 0 on Q. For every 
z E Q there exists a ball A = A (z) about z and a number X < 1 such that if 
yEA, then uYf{EAINA(w) > 1} AA. 

Proof. Fix z E Q and choose A to be a ball of radius r/2 > 0 centered at z 
such that if y E A, then 8 ( y) > 4r. Define Qr z = {z' E 0 Iz'-zII > 2r}. Define 

X(z'),z'E 2, by X(z')=Z;,{cINA(w)> 1}. If yEA, then 

X( y) < P (y, or),+ P0 (y, z')X(z') dz' 
r,z 

Let C=sup{X(z')jz'EQirz}. If we obtain an upper bound on C which is less 
than 1, then we will be done because P0 ( y, Oc;i) is bounded away from 1 by a 
bound depending only upon N (the dimension). 

Fix z'EC r ,z5 and let R=IIz'-yJJ(>2r). Below M denotes sup{ IIxI jxEQ}. 
Let q be the linear functional on RN defined by q (w) = (w, R - 1(z' - y)), and H 
the half-space {z": (z") < p( y) + R1/2). Note A C H. The process ) (xn()) is a 
bounded iz, martingale and a simple martingale argument shows 

p(y)+R=q(z') <X(P( y)+ 2R)+(1-X)M (4.3) 

where X= iz,{cINH(w) > 1} > X(z'). Now M > IIz'lI > (z') = q( y) + R >q ( y) + 
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R1/2 + r, and therefore (4.3) tells us 

X(z') S X 

M-g )( y)- R 
M-cp(y)-R/2 

- R 

2M 
<1- r 

M 

The lemma is proved. 

Note we have proved there exists a number c >0, depending only upon 
dimension (a lower bound for P0 ( y', Qzr)' y' E A) such that 

jUy~~~ ~ ~~~ {)N(? 1}S1M (Y' E A). (4.4) 

By (4.4) and the strong Markov property we have that 

11y{twINA (w) > k} () < y(= Y'4.5 

and therefore 

JNA (w) jy(dw) S(M)1-M 
cr 

(4.6) 

for y'EA. 
Now if f E 'KC0, and if A is as in (4.6) define U (z) by 

U (z)= sup f () ) (4.7) 

Since A has compact closure in S2, U (z) < ox. Since by (3.1) Qfn)(xX, y) 

= 1 P (n))(x,y)f( y) < U(z)P (n)(x,y), x,yEA(z), we see that (4.6) and (4.1) 
f (x) 

xy 

imply 

lANA (w) tjtf (dw) S U (z) ( I ) ) (4.8) 

for y'EA(z). 
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LEMMA 4.9. If f E 5Cc, and if A CO is compact, there exists a constant 
F= F(A,f) < oo such that for all x E Q 

NA (c) It! (dw) < 
F(A,f). (4.10) 

Proof. Define XAf( y) = ,4f{WINA (w)> 1). By the strong Markov property 

JNA (c) It(d@) < )Af (x) + sup f NA (c) 4 (d@). (4.11) 

If A = A(z) as in (4.8) this is 

<+U( ) cr ( Mc) (4.12) 

The result for general compact A follows from (4.11)-(4.12), compactness, and 
the subadditivity of A->NA (c) for every c e A. 

LEMMA 4.13. Assume both 8(.) and d( )-6(.) are locally bounded 
away from 0 on Q. If f E3 C0, define 

00 

Gf(x,y)= 1, Qf ) (x,y) (4.14) 
n=1 

and 

00 

G (x, y)= 1, P6() (x, y) (=G1(x, y)) (4.15) 
n=1 

For every compact set A C Q and f E 3Qa there exists a constant, M= M (A,f) 
< x, such that 

sup Gf (x, y) M (A,f) (4.16) 
xc-o 
yEA 

Proof. From Section 2 we know that ifA1=closure{zEC IB(z)nA #0}, 
which is a compact subset of S2, then 

sup Qf (z, y) = M1 < oo. 
zEAl 
yEQ 
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Therefore, if x C Q 

E <;?fn)(X~ ~ ~~Q y)M EJ2n(x, z) Qf(z, y)dz 
n=1 n=1 

00 

< M 1 + E Q(n) (x, A 

< M1(l + P(Al,f)) 

by Lemma 4.9. 

Remark. In the opposite direction to (4.16) we have from Lemma 2.1 that 
if A, B are any compact sets in Q, then 

inf Gf(X,Y)>0. (4.17) 
xEA 
yEB 

LEMMA 4.18 Assume both 8 (-) and d ()8 (- ) are locally bounded away 
from 0 on Q. There exists on Q x Q a function &r(, ) which is locally bounded 
away from both 0 and x, such that for all f E 'KC0 (X O0) and x, x', y C 

1 Gf(x, y) 

X(x, X') Gf (x' y) 

Proof. Since 

Gf (x,5y) f (x') G (x, y) 

Gf (x', y) f (x) G (x', y) 

it will be enough to prove the lemma assuming f -1. (Local bounds for f ( 

depend on 8, notf.) 
By the monotone convergence theorem 

n 

fP(n) (x,z)G (z, y) dz= G (x,y) - P ( y) (4.19) 
k=1 

for all n > 1. If A, B cSI2 are compact, there exists by Lemma 2.1 an integer n 
and X > 0 such that 
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Therefore, by (4.19) G (x, - ) > X(G (x', ' )-Pa (x', ' )) for x C A, x' C B. Outside the 

closure of U XEB (x') = C, which is compact, we have Px(xB, )x = 0, x' E B, and 

then G (x, *) > XG (x', *). Define m to be the minimum of X and the number 

X = inf G(x'y) 
xEA G (x', y) 
x' E- B 
yEC 

which is positive by (4.17). If xEA,x'EB can be m. This gives the 
X (x, x') 

desired local uniform bound, and the lemma is proved. 

LEMMA 4.20. Assume both 8(.) and d (.)-6 Q) are locally bounded 
away from 0 on Q. Assume it is known for every f E S3Q and x CQ i that 

li Gf (x,x. A(S)) (4.21) 

exists for (any fixed xo and) ,uf almost all w E A. Assume also that the integral 
of the terns in (4.21) converge to 1. Then if f is an extremal of SY70, it is true 
for all xECQ that for It! almost all coA 

1 G (zx xnx(w)) f (z) (4.22) 

holds for every z Ec . 

Proof. Let A' C A be the set of all w such that (4.21) exists. Then A' C &J 

(Section 3), and by assumption ,4l(A')= 1. Since It! < >- /4 on 9J, for all 
z, ,(A) = 1, z c Q. If f is an extremal of 'Y70, then by Lemma 3.3 the limit 
(4.21) is essentially constant (4 fzE& O), and the mutual absolute continuity on 

9J, tells us the constant is independent of z. By Lemma 4.18 the convergence in 
(4.21) is dominated, and by our assumption on the integrals, the limit has 
integral 1, meaning the constant above is 1. 

Thus far, we have proved for every x, z CQ i that 

Gio 
G (z x,x (h))) f (xz) (4.23) 

holds for ji4 almost all Q. By the Fubini theorem it follows that for It! almost all 
X (4.23) holds for almost all z CQ i. If zo0 E& c is fixed, then the dominated 
convergence theorem together with the fact, proved below, that d(xn(o))-*0 
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a.e. 4f, imply 

G (zo,x x (w)) G (z, Xn (w)) 

n--oo G(x0,Xn(co)) n--oo G(z? G(xO,xn(o)) 

Cf (z) 
= P8 (z0, z) dz 

f (zo) 

Therefore, for /f almost all w E A, (4.22) holds for all z E U. 

LEMMA 4.24. With notations as above if f E 3C0 and x e, then 

limn* 0d(xn(w))=0for I4 almost all &EA. 

Proof. The lemma follows from (4.10) which tells us for any compact set 
A that NA(c)< oof a.e. 

The following lemma is a straightforward adaptation of a well known 
technique due to Doob [5], [6]. We follow closely the exposition in Dynkin [9]. 

LEMMA 4.25. Assume both 8 (.) and d (.) - 8 (.) are locally bounded 
away from 0 on U. If f E 'JCK and xE -Q, then (4.21) exists for u4 almost all 
c E A. Moreover, 

li A Gf (x0, X, (o)) ) 

Proof. Fix x, xo E Q, and let K be a compact subset of Q which contains 
B (x) U B (xo). (Later on K will be allowed to increase to U.) Since B (x) c K and 
d (xn)->O a.e. /4, the function T(c) = sup{ n > 1I xn (X) E K ) is well-defined and 
finite a.e. 4. 

Next, define A E 93 by AO={wJxn (o)iK, n=1,2,...). We define L(z) 
= ,4(AO). A simple monotone class argument shows L(.) is a Borel function, 
and using L(.) we compute for n> 1 

,u{(wIT())=n})= fQn)(x,z)L(z)dz. (4.26) 

Summing (4.26) over n and using the fact 1 T< ox a.e. ,A, we have 

fKGf (x, z)L (z) dz= 1. (4.27) 
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Note that B (xo) C K implies (4.27) with xo in place of x. 
Define x, (w) _ x, -1, -2 .... Then on A1= {wo 1 < T (c) < oo, xo() = x} 

define 

Yn ()XT() - -(CO) (n = O, 1, . .. ) 

Thus { y1(.)} has been defined a.e. ,4i. Given Borel sets Ao,... ,Ak C - {x} 

,u{wcl y,(c)EAi, 0? < <k} 

00 

- E ,4u{wIT(w)=k+i and xk+j-j(co)EA,0< j<?k 

oor k-1 

f Q,) (X Zk) Qf (Q,Zk- jzk _ l }) L(zo)dzk ...dzo 
i-1 Ak AO0= 

fGf (XI Zk){lQ( z i-1)}L(zo)dzk... dzo. 
Ak AO0= 

Notice we have used the fact xEA,, 0? < k, in the conclusion that 
T () > k on the set whose measure we are computing. Define a kernel Hf(u, v) 
by 

Gf (x, v) 
Hf (uv)= Gf(x,u) Qf (v,u) 

Since 

5k j1H() I Gf (x, zi+ 
II Hf (zi, z, + ) GG( x) Qf(z+ izi) 

Gf (XIZk) k-1 

Gf (x, z0) j = k ) 

we see that 

,4r{wly,(w)eAi,0< j<k)=f f{ llHf(zp,z +l)) 

X Gf(XIzo)L(zo)dzo ...dzk. 
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Define R (.) on Q by 

F0 y=x 

R ( y) Gf (xo,y) 
Gf(x, y) y$ 

We claim R1(y1), 0< j K oo, is a (nonnegative) supermartingale. That is, we 
claim for all n that E(R(y+1)Iyo,..., y.)<R(y,). On the set {cIy.(c)=x} 
E(R(y+1)Iyoy,..., Y.) is 0 for It! almost all w. On the set { ly Px}, the 
conditional expectation is computed as 

E (R (yn+l)l y ... Yn)=0+ Hf(yn5yn+l)R(yn+l)dyn+l 

-R (Yn)- G (s yQ ) <(R(Yn) 
Gf (x5 YJ 

For later reference we also compute 

'R ( yo(c')) 14 (dw) - Gf (x0 ) Gf (X yo) L ( yo) dyo 
J Gf (x5yO)Gfxy)(ydy 

=Gf (XOx yO)L( yo)dyo 

= 1. (4.28) 

Let a and b be real numbers, a < b, and let u = u0, ul,. .. be any numerical 
sequence. Define Da b (u) to be the supremum of those integers 1, if any, such 
that there exist subscripts n, < ml < n2 <... < n1 < ml with us > b and u 
<a, 1 < j < 1. Dab(tU) is called the number of downcrossings by {u;} of the 
interval (a, b). Given a nonnegative supermartingale R ( yn), the "downcrossing 
inequality" is ([14], (1.17)) 

fDa b ((1R ( yn(w)) }) 14(dw) < b-a RA ( Yo(w)) u14(dw) 

b-a 

Now if K increases to Q through a sequence of compact sets, then for all c 

Da b ({ R ( yn (w))}) increases to Ua b ({R (xn (w))}) the number of "upcrossings" of 
(a, b) by R (xn (o)), n = 0, 1, .... It follows that the number of upcrossings is finite 
a.e. 4,u and letting a, b vary through all possible rational numbers, it follows 
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that limn- R ( yn) exists a.e. Since 

(xT) f (dw)-1 

by (4.28), and since T Z ox as K f Q the bounded convergence theorem implies 
the integrals in the statement of the lemma converge to 1 and the lemma is 
proved. 

5. Domination of the Extremals. In this section we prove that if 6 a) 
satisfies the hypotheses of Theorem 1.3, then each extremal of X'J is dominated 
by a positive harmonic function on 52. As we have already remarked in Sec. 1 
this, in conjunction with Theorem 1 of [17], implies Theorem 1.3. 

LEMMA 5.1. Let 52 be a bounded region, and suppose that r( ),6(a), and 
a > 0 satisfy the hypotheses of Theorem 1.3. There exist a constant B > 0 and 
an integer n such that (a) pa(2) > BP6, and (b) if z E Q and y E B (z), then 

p,(n) Y, y) > BP8 (Z, ),(5.2) 

and 

p(n) (zx * ) > BP8 ( y, ). (5.3) 

Proof. If u,vEQ2 and vEB(u), then uIu-vII<6(u)<(1-a)r(u), and 
therefore jr(u)-r(v)I S IIu-vII <(1-a)r(u). The inequalities ar(u)< r(v) 
S (2- a)r(u) and a2r(u) < 6 (v) < (1- a)(2 - a)r(u) then follow. If v1, v2 E B (u), 
we define a sequence yo, Yi.... in B (u), setting yo = v1 and letting yn+1 = v2 if 

11 Yn - V211 <a a2r(u) and otherwise letting yn + be the point closest to v2 on the 
sphere of radius 4 a2r(u) about yn. Since IIvl-v211 <26 (u)<2(1-a)r(u), it is 
the case that Yn=V2 whenever n > 8(1-a)/a2. Define E1={(yIjy-yYjI 
<4a2r(u)}, j , 1,.... Since B ( y) D Ej+ 1, y E E,, and 

4(1- a)(2- a) 
6(y)<(1-a)(2-a)r(u)< 

- 2 X radius Ej+ l, y E Ej, 

we have 

ml(Ei,Ei+1) > a 

j=0, 1,..., where a = a 2N {4(14-a)(2- a)} -N and ml(-, ) is as in the proof of 
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Lemma 2.1. If m2(.,.) is also as in the proof of Lemma 2.1, we have 

m2(Ej,Ej+) > aN{(1-a)(2-a)} P (uV2), for j=n-1 (n> (- ) 

By (2.2) we have for any pair y, z E S2 such that y E B (z) 

p(n) ( y, -)> bP (z, )(5.4) 

where 

b = an- la' a)(2_- ))-N n 8(1-a) 

Thus (5.2) is established. To establish (5.3) it is necessary to connect z (with 
y E B (z)) to points z' E B ( y) by similar sequences of balls. One way to proceed 
is to first connect z to y and then to connect y to z'. This increases n to 
> 16(1 - a)/ a2 but all other estimates are the same. We omit the details both of 
this argument and the argument that pa2) > BP6 (which is carried out in [19]). 

In order to apply our lemma fix y E2 and let A( y) = {z y EB (z)}. (A( y) 
is a Borel set.) If n and B are as in Lemma 5.1, then for all zEA(y) 

G(y , )pAn)G (y,* 

> BP6G (z,.) 
00 

=BEp(n+l) (Z, =B E 
n=1 

60 

n=1 

=B 2G (z, 

Similarly, G (z, *>B2G(y, -), z EA (y), and we have proved 

LEMMA 5.5. Let 0 be a bounded region, and let r( ), 85() and a > 0 

satisfy the hypotheses of Theorem 1.3. There exists a number B =B (a, N) > 0 
such that if y E=-0and z EA (y), then 

~~~~n1 

1 
G (z, > G (y5 -)> B 2G (z, (5.6) 

B2 

LEMMA 5.7. Let S be a bounded region and suppose u E a 52 is such that 
there exists a positive harmonic function h on 52 which vanishes continuously 
at u. Then for all y EE limx. G (x, y) = 0. 
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Proof. By (4.16) we have for any y E 52 that 

G (x, y) 
sup ( f f(y)S<M ({ y)f) < 0. 
x - f (x) 

Let u, h be as in the statement of the lemma and set f = h in the above. Then 
limx --h (x) = 0 implies limx, yG (x, y) = 0. 

A point u E a Q has the property of Lemma 5.7 if and only if u is regular 
for the Dirichlet problem for Q ([13], Chapter 8). If Z Da 2 is the set of 
non-regular points, there exists a ball S D2 and a positive superharmonic 
function h on S (h < xo a.e.) such that h = ox on Z ([13], Theorems 7.3-7.4). Let 
Zo = {z E S I h (z) = oo}. If x E Q is such that h (x) < oo, then h (xn (o), n = 0,1,... 
is a 'tx supermartingale. Therefore H (o)= limnh (xn (o)) exists a.e. yx, and 

h (x) >' AfH (w) lix (do). (5.8) 

Now Zk = {z E S Ih(z) > k} is an open set because h is l.s.c. It follows from this 
and (5.8) that limn, .xn(o) = x. (o) (which exists a.e. yx) is in Z with probability 
0. Therefore if y E2 

lim G (x(o), y) = 0 (5.9) 

for lix almost all cEo A. Since (5.9) is a ??I event, it is true for all ,ix once it is 
true for one. 

LEMMA 5.10. Assume r( ),S(.), and a >O satisfy the hypotheses of 
Theorem 1.3. If x, y E Q, define v (x, y) = ux f{ oIxn (o) E A ( y), some n > 0}. Then 
there exists B > 0 (the same as in Lemma 5.5) such that for all x, y E 2 

1 G ( y, y)v(x, y) > G (x, y) > B2G ( y, y)v(x, y) (5.11) 
B 2 

Proof. Define T on A by T(o)=min{n>0xn (o)EA(y)} if any such n 
exist and T= 00 otherwise. Set Tk(w))=min(k,T (w)). Then G(yk,y), yk=xTk, is a 
uniformly bounded martingale. Since for almost all X either yk= yk+iEA(y) 
for large k or else yk = xk--x. the martingale theorem and (5.9) tell us there is a 
measure, vx, on A ( y), vx (A I y) = v (x, y), such that 

G(x,y)= f G(z,y)vx(dz). 
A ( y) 

This and (5.6) combine to yield (5.11). The lemma is proved. 
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In preparation of our final estimate fix r( ), 6 ('), and a >0 satisfying the 
hypotheses of Theorem 1.3. To each y EQ we associate balls Uy, Vy, and Wy 
centered at y of radii a2r( y), a2ar( y), and a2r( y), respectively. There exists 
an harmonic function, hy, on 52-Uy 0 < hy < 1, which assumes boundary values 
1 on aUY and 0 at all regular points of a 52 (this is just the harmonic measure of 

aUy in i - Uy. See [13]). 

Define A0(y)={zIB(z)n Uy&#0}. AO is a Borel set and so T(c)=min{n 
> 0 xn (X) E AO( y) } if any such n exist, otherwise T (X) = x, is '3J -measurable. 
Setting Tk = min(k, T) the process hy( Yk), Yk = XTk is a bounded yx martingale for 
every x. As in the argument for Lemma 5.10, there exists a measure vX0, 

supported on AO( y), such that if xi UY 

hy (x) = f hy (z) vx?(dz). (5.12) 
Ao(y) 

LEMMA 5.13. With notations and assumptions as above there exists a 
constant c = c(a,N) > 0 such that if xi Uy 5 

cP?(x, y) < hy (x) < v?(x, y) (5.14) 

where iA(x, y) = vx(A0( y)). 

Proof. The upper bound is obvious from (5.12). Since hy dominates, on 
W - U , the harmonic measure of auy (in WY- UY), there is a constant 
c0 = c0(a , N) > 0 such that hy > co on Vy-Uy If zi Vy-Uy but B (z) n uy 
and if 60 denotes the distance from z to a Vy,, we claim 60/ (z) is bounded away 
from 1 by a constant depending only upon a. Once this has been established, 
then Harnack's inequality and the fact that hy > co on aVy will imply there 
exists a constant c1 = c1(a, N) >0 such that hy (z) > cl, and we may set c 
= min(c0, c1). To obtain the upper bound on 60/ 6 (z), notice that 60 
< 6 (z) - s2 a2r( y) or 60/ 6(z) < 1- 2 

a2(r(y)/S(z)). Now since 

Ilz-yll < 6 (z) + 1 a2r(y) < (1- a)r(z) + 1j a2r( y), we have r(z) < (1/a)(1 + a 2/ 

10)r( y), and therefore r( y)/6 (z)> a(1 + a2/10)-1. This gives the desired 

upper bound on 60/ 6 (z) and completes the proof of the lemma. 

With notations and assumptions as above we notice that if z E AO( y), then 

P6(Z,Vy)>C2=C2(a,N)>0. We claim VYC A(y). For if wE CVy, then r(w) 

> (1- la2)r( y) and 8 (w) > a (1- la2)r( y) > (a 2/2)r( y). Thus yE B (w). We 

conclude from these observations and the strong Markov property that v(x,y) 
> c2iA(x, y), x F Uy. Putting this together with (5.14) and (5.11) we have proved 
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LEMMA 5.15. There exists a constant a = a (a, N) >0 such that if x, y E 
and xe U , then 

1 G ( y, y)hy (x) > G (x, y) > aG ( y, y)hy (x) (5.16) 

where Uy = {zl liz- ylI < y a2r( y)} and hy is the harmonic measure of auy in 
a- Uy 

We apply (5.16) for x, xo i Uy to conclude 

G (x, y) 1 y h(x) 

G (x, Y) a2 hy (xo) (5.17) 

PROPOSITION 5.18. Let S1 be a bounded region in RN, and let r( ), (-), 
and a > 0 satisfy the hypotheses of Theorem 1.3. If f is an extremal element of 
5CI6, there exists an harmonic function, h, on 52 such that f 6 h. 

Proof. The hypotheses imply both 6 (.) and f (.) - (.) are locally 
bounded away from 0 on 52. Therefore by Lemmas 4.20 and 4.25 there exists for 
any extremal f E 5C,; a sequence { yn} in 52 such that limn . d ( yn) = 0 and for 
all x E5 

1 G (x, yn) _f (x) (5.19) 

Define hy as above and let g Y (x) = (hy (x)/ hy (xo)). By Harnack's principle and 

the fact d ( yn)--O, we may assume hn = g y, is locally uniformly convergent to 
some h E 3C. Then by (5.17) f (x) < (f (xo)/a2)h(x),xE&-5. The proposition is 
proved. 

With Proposition 5.18 we have come to the end of the proof of Theorem 
1.3, since all that is left is to quote Theorem 1 of [17]. (Sec. 1.) 

6. Remark on the Poisson Kernel. If 52 is a bounded Lipschitz domain, 
then the results of R. Hunt and Wheeden [15] allow us to glean more 
information from (5.17). For if yo E a Q2 is fixed, their results imply that 

him h(x) 
lim h =x =Kx(X (6.1) Y -o ayo hy (xo) Xo(xe (1) 

exists for all x, and moreover Kx. has these properties: (1) Kx0(-, .) is continuous 
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on 2 X a 52, (2) KXO( , Yo) E SC vanishes continuously at every y' # yo in 
a E2(Kxo( , Yo) is a "kernel function" at yo)5 and (3) Kxo( , yo) is the unique kernel 
function at yo which is 1 at xo. Now (5.17) and (6.1) tell us that if f E XC,; has 
the form 

n-- oo G (x0, Yn) f (xo) 

and if yo E a Q is a cluster point of { yn }, then f(x) 6 (f (xo)/a2)Kxo(x, yo). Since 
f is harmonic, f is therefore a kernel function at yo. By (3) above f(x) =f(xo) 
Kxo(x, yo). We have proved 

THEOREM 1.4. Let Q C RN be a bounded Lipschitz domain, and let 8 be 
any Borel function on S2 which satisfies the hypotheses of Theorem 1.3. If 
G (x, y) = ' 

=1P,(n)(x, y), then for every (x, yo) C 52 x a 5 

Yi Yo G(x, y) = Kxo0(xX Yo) (6.3) 

Theorem 6.2 enables one in principle to compute the Poisson kernel for a 
bounded Lipschitz domain using the elementary kernels 8p( If Conjecture 1.2 
is true, then (6.3) probably is also true provided we replace a Q by the Martin 
boundary of 52. 

RICE UNIVERSITY. 
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