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Abstract
An introduction is given to the dynamical properties of crystalline systems
having lattice-translational symmetry in less than three dimensions. These
include surfaces of and interfaces between crystals, layered structures (2D
lattice periodicity), bars and wires (1D lattice periodicity), as well as crystallites
and clusters that have no lattice translational symmetry at all. In addition,
superlattices are covered as artificial materials, giving rise to interesting
dynamical effects. Crystal surfaces and crystalline bars are considered in
some detail. For these systems, changes of the atomic equilibrium positions
in comparison to the corresponding bulk crystals are also discussed since they
frequently affect the dynamical properties.

1. Introduction

The dynamical properties of structures with reduced lattice-translational symmetry are a
fascinating topic to study since they give rise to various interesting phenomena. They are
relevant for a number of electronic processes in semiconductor heterostructures, for
thermal properties, in particular thermal transport properties of such systems, for stability
considerations of nanostructures, etc, and hence they are partly of technological importance,
too. In the following discussions, we shall mainly focus on phenomena, but we shall also
introduce a few theoretical methods that will enable us to determine quantitatively vibrational
properties of these structures and partly lead to a qualitative understanding. Experimental
techniques for the investigation of atomic vibrations in the systems considered will not
be discussed. They would require a review on their own. In the following theoretical
considerations, we shall not go beyond the harmonic approximation and we shall always
assume the existence of a lattice potential or force constants. Modern methods of computing
these force constants have partly been the subject of an earlier lecture at this school and are
reviewed in [1].

On the basis of continuum theory derived for the long-wavelength acoustic and long-
wavelength optical regime, a number of phonon modes in systems with planar geometries will
be discussed. Subsequently effects will be treated that are beyond the realm of continuum
theory, in particular relaxation and reconstruction of bare and adsorbate-covered surfaces.
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As an example system with 1D lattice translational invariance the relaxation and dynamical
properties of diatomic bars with square cross sections will be studied in some detail. Finally, a
method will be presented that allows for an efficient computation of partial densities of states
without requiring lattice periodicity.

2. General considerations

In the following, we shall label the atoms that our systems consist of by the index l and denote
their equilibrium positions by X(l). The actual position of atom l is R(l) = X(l) + u(l) with
the displacement vector u(l).

Within the harmonic approximation, the lattice potential energy �({R(l)}) is expanded to
second order in the displacements

�({R(l)}) = �0 + 1
2

∑
l,l′

∑
α,β

�αβ(ll ′)uα(l)uβ(l ′), (2.1)

which leads to the following equations of motion for the Cartesian components of the
displacement vectors:

mlüα(l) = −
∑
l′ ,β

�αβ(ll ′)uβ(l ′). (2.2)

In 3D crystals, the index l is decomposed into �, labelling the unit cell, and κ , numbering
the sublattices. One may decompose X(l) = X(�) + X(κ), where X(�) is the position of the
�th unit cell and X(κ) the position of the atom belonging to sublattice κ with the origin placed
in the position of this unit cell.

� may be regarded as a composite index, � = (�1, �2, �3) with integers �1, �2, �3 being the
prefactors of the basic translation vectors in their linear combination that is equal to X(�).

The displacements u(�κ) may be decomposed into normal modes

uα(�κ) =
∑
q j

eα(κ |q j)√
mκ

eiq·X(�) Q(q j). (2.3)

Here, q is a wavevector in the three-dimensional Brillouin zone, j labels the 3n phonon
branches, where n is the number of sublattices, and (eα(κ |q j)) is an eigenvector of the
dynamical matrix D:

ω2
q j eα(κ |q j) =

∑
β,κ ′

Dαβ(q|κκ ′)eβ(κ ′|q j), (2.4)

Dαβ(q|κκ ′) = 1√
mκmκ ′

∑
�′

�

(
0 �′
κ κ ′

)
eiq·X(�′). (2.5)

The phonon frequencies ωq j are usually presented for wavevectors along the main symmetry
directions of the Brillouin zone (figure 1).

In a semi-infinite crystal, the lattice translational symmetry is lost along the direction
normal to the surface, but is preserved in the directions parallel to the surface. As a conse-
quence, the unit cell of this structure is infinitely extended into the depth (figure 2). The index l
may again be decomposed into a cell index � and an index κ labelling the (infinitely many) sub-
lattices, i.e. the layers and the atoms per layer belonging to a unit cell. The displacements may
again be decomposed into normal modes according to (2.3), where q is now a two-dimensional
wavevector in the 2D surface Brillouin zone, and j = 1, 2, . . . ,∞ labels the branches.

The various vibrational modes of a semi-infinite crystal may be classified as:

• bulk modes: the eigenvector (eα(κ |q j)) is non-zero at arbitrarily large distance from the
surface,
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Figure 1. Phonon dispersion curves of RbCl. Model calculations, full: [2], broken: [3].
Experimental data (crosses) taken from [4].

-th unit cell

Figure 2. Semi-infinite crystal and unit cell, shown schematically.

• surface modes: the eigenvector is localized at or near the surface,
• surface resonances: the eigenvector is mostly localized at the surface, but does not vanish

in the limit of infinite depth.

In practical calculations, the problem of broken lattice-translational symmetry at the
surface is dealt with in two ways:

(1) The Green function method, which treats the surface as a defect [5, 6]. This method
is rarely used nowadays, but can be useful when dealing with surface modes of large
penetration depth.

(2) The slab method [7], in nowadays’ ab initio calculations especially the method of ‘repeated
slabs’ [8]. The 3D lattice periodicity is restored when—instead of a semi-infinite crystal—
a slab of finite thickness is considered and this slab is repeated periodically an infinite
number of times (figure 3). Care has to be taken that the thickness of the slab is sufficiently
large that surface modes on both sides of the slab do not interact. This would give rise to
spurious frequency splittings. Also, the distance between adjacent slabs has to be large
enough for the modes in neighbouring slabs not to interact. The infinite periodic stack of
slabs may be treated as a 3D crystal, and only those 3D wavevectors have to be considered
that are parallel to the layers.

When plotting the phonon dispersion relation of the slab system for wavevectors along
symmetry directions in the surface Brillouin zone, a number of branches are obtained that
increase with increasing slab thickness. These branches—often called ‘spaghetti’—fill up
bands that become continuous in the limit of infinite slab thickness. These bands correspond
to bulk phonon modes whose 3D dispersion relation is projected on the surface Brillouin
zone in a manner illustrated in figure 4. The frequencies of all bulk phonon modes with 3D
wavevectors q3D = (q1, q2, q3)

T and any value of q3 such that q3D is in the 3D Brillouin zone



S398 A P Mayer et al

Figure 3. Repeated slab geometry, shown schematically (from [9]).

Figure 4. Bulk projected dispersion relation of a (100) surface of LiF (a) (from [7]). Top view of
the surface with unit cell (b) and surface Brillouin zone (c) (from [2]).

of the crystal are plotted at the 2D wavevector q2D = (q1, q2)
T. This presentation of the bulk

phonon frequencies is called ‘surface adapted’.
In addition to the bulk bands, isolated branches may appear in gaps between the bulk

bands and below the acoustic band. They correspond to surface phonon modes.
The same general considerations apply to semi-infinite crystals with a number of adsorbate

layers on their surfaces.
Crystal bars and wires of infinite length, but finite cross section, exhibit lattice translational

symmetry along their axis (the z axis). The index l is again decomposed in � and κ , where �

labels the unit cells along the z axis and κ the atoms in a unit cell. The number n of atoms
per unit cell increases with increasing cross-sectional area. An example for a unit cell of a
bar made of an alkali halide with (100) surfaces is shown in figure 5. In the decomposition of
the displacements in normal modes, the wavevector is now one-dimensional in a 1D Brillouin
zone.

The dispersion relation of the phonon modes of such a bar consists of 3n branches. With
n → ∞, these branches form bands. In the example of a diatomic bar shown in figure 6,
there is a gap between the bands of acoustic and optical bulk mode frequencies. In this gap, a
band of surface modes is situated. In addition to these bands, isolated branches are found that
correspond to modes localized at the edges of the bar.
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-th unit cell

y

x z

(a) (b)

Figure 5. Infinite crystal bar and unit cell, shown schematically (upper panel). Unit cell of an
alkali halide bar with quadratic cross section and (001) surfaces (from [10]) (lower panel).

Figure 6. Phonon dispersion relation of a crystalline bar with 9×9 atoms per cross-sectional layer.
The broken line corresponds to edge-localized modes (from [11]).

In finite isolated structures like crystal cubes, for example, no wavevector of the normal
modes can reasonably be defined. If the cube consists of N atoms, there will be 3N normal
modes. For large numbers of N , their frequencies cluster in bands corresponding to bulk modes,
surface modes and edge modes. In addition, there may be isolated frequencies corresponding
to modes with vibrational amplitudes localized at the corners of the cube (see, e.g., [12]).

In most practical cases (e.g. in various types of semiconductor nanostructures), wires,
cubes, pyramids, etc, are embedded in substrates or grown on a substrate, or they form more
complicated heterostructure geometries. In such hybrid systems, interface modes and edge
modes involving more than one material have to be expected.

3. Continuum theory

For wavelengths long compared to the nearest-neighbour spacing of the underlying lattice,
certain phonon modes in 3D bulk crystals as well as in dimensionally reduced structures can
be determined within a continuum approach. Application of continuum theory to lattice-
dynamical systems is useful for various reasons. It is helpful in interpreting and testing
lattice-dynamical calculations and gaining a basic understanding of certain vibrational modes.
In addition, resonant interaction of free carriers in semiconductor crystals and heterostructures
are normally with longitudinal long-wavelength optical phonons and long-wavelength acoustic
phonons. For a quantitative determination of the frequencies and displacement patterns of these
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phonon modes within continuum theory, only a few material constants are required that are
tabulated (see, for example, [13]). For quantitatively reliable lattice-dynamical calculations,
much greater efforts would be needed.

Before proceeding with applications, we first give a short derivation of the field equations
of continuum theory from lattice dynamics. For this purpose, we start with the Lagrangian L for
a crystal including a macroscopic electric field E that is treated in the quasi-static approximation
which is justified in the frequency regime of phonon modes:

L =
∑
�,κ,α

1
2 mκ u̇α(�κ)u̇α(�κ) − �({Rα(�κ)}) +

∑
�,κ,α,β

Zα|β(κ)uβ(�κ)Eα(X(�κ))

+
∫

d3 X
∑
α,β

1
2ε

(∞)
αβ Eα(X)Eα(X). (3.1)

The coupling between the atomic displacements and the macroscopic electric field is treated
within the dipole approximation. In (3.1), Zα|β(κ) are the components of the tensor of Born
effective charges (or the first-order dipole coefficients), and ε

(∞)
αβ are the components of the

high-frequency dielectric tensor of the crystal. The part of the electric field fluctuating on short
scales is contained in the potential energy �.

We now perform a linear transformation of the atomic displacement variables uα(�κ) to
new variables that contain the displacements of the centres of mass of the unit cells, Uα(�),
and relative displacements Yα(�λ) ([14]). In order to simplify the following derivations, we
shall consider diatomic crystals only, where Yα(�) = uα(�1) − uα(�2). A generalization to
crystals with more than two atoms per unit cell is largely straightforward. We now assume
that the values of Yα(�) and Uα(�) vary little when moving from unit cell � to a unit cell �′
in the neighbourhood. One may then introduce continuous fields Y(X) and U(X). U is the
displacement field, while ZY is the dynamic part of the crystal’s polarization. For simplicity,
we assume here further symmetries of the crystal that are present in GaAs, for example, and
which imply that the tensor of Born effective charges reduces to one charge Z and the dielectric
tensor to one dielectric constant ε∞.

The macroscopic electric field is expressed as a negative gradient of a scalar potential φ.
Up to second order in all variables, the Lagrangian then takes the form

L =
∫

d3 X

{
1
2 ρU̇α(X)U̇α(X) + 1

2 mRẎα(X)Ẏα(X) − �̃({Uα,β(X), Yα(X)})

− ZYα(X)φ,α(X) +
ε∞
2

φ,α(X)φ,α(X)

}
(3.2)

with density of potential energy

�̃ = 1
2 C̄αβµνUα,βUµ,ν + Gαβ|γ Uα,βYγ + 1

2 mRω2
0YαYα. (3.3)

In (3.2), (3.3) and the following equations, we use the short-hand index notation . . .,α for the
partial derivative ∂ . . . /∂ Xα , and we invoke the summation convention for Cartesian indices
(summation over repeated Cartesian indices is implied). For reasons of convenience, we shall
frequently use the lower-case letters x, y, z for the three components of the vector X instead
of X1, X2, X3. (Since we are restricting our considerations to linear theory, a distinction
between material and spatial coordinates need not be made here.) For the last term of (3.3)
we have again assumed the appropriate symmetry of the crystal. mR is the reduced mass and
ω0 the TO frequency at the Brillouin zone centre. The Lagrangian (3.2) with (3.3) contains
material constants specific to a certain homogeneous crystal. In heterostructures, these material
constants are functions of the spatial coordinate X.
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Applying Hamilton’s principle, the following field equations follow from (3.2):

ρÜα = ∂

∂ Xβ

{C̄αβµνUµ,ν + Gαβ|γ Yγ }, (3.4)

mR{Ÿα + ω2
0Yα} = −Gµν|αUµ,ν − Zφ,α, (3.5)

∂

∂ Xα

{−ε∞φ,α + ZYα} = 0. (3.6)

Equation (3.6) is Poisson’s equation. At surfaces and interfaces, the material constants have
jumps, and boundary conditions have to be imposed on the fields. These boundary conditions
follow partly from the Lagrangian (3.2), too. Due to the discontinuities of material constants,
variation of the Lagrangian with respect to the field variables produces Dirac delta functions.
The requirement that the prefactors of these delta functions have to vanish plays the role of
boundary conditions.

Since we have confined ourselves to linear theory, the time dependence of the field variables
may be chosen to be ∝ exp(−iωt). We now discuss separately the frequency regimes of long-
wavelength acoustic and optical phonons.

3.1. Regime of long-wavelength acoustic phonons

Since ω � ω0 in this regime,we may neglect the second time derivative in (3.5) and eliminate Y
from (3.4) and (3.6), Yα ≈ (−1/mRω2

0){Gµν|αUµ,ν + Zφ,α}, to arrive at two coupled equations
for the displacement field and the electrostatic potential:

ρÜα = ∂

∂ Xβ

σαβ (3.7)

with stress tensor components

σαβ = CαβµνUµ,ν + eαβνφ,ν , (3.8)

and

Dα,α = 0 (3.9)

with the following expression for the components of the dielectric displacement D:

Dα = −ε0φ,α + eµναUµ,ν. (3.10)

Here, Cαβµν are the elastic moduli of the crystal that may differ from C̄αβµν by contributions
resulting from internal strains (sublattice displacements in response to homogeneous strains).
eαβγ are the piezoelectric constants and ε0 is the static dielectric constant.

In addition to the field equations, boundary conditions apply at free surfaces and at
interfaces between two different media. These are the continuity of the components of the
displacement field, Uα , the electrostatic potential φ, the normal component of the dielectric
displacement, N̂α Dα , and of the quantities N̂βσαβ at interfaces. At free surfaces, N̂βσαβ has
to vanish. (Here N̂ is a unit vector normal to the interface/surface.)

3.2. Regime of long-wavelength optical phonons

Now ω ≈ ω0. We again solve (3.5) for Y:

Yα = Z

mR(ω2 − ω2
0)

φ,α +
Gµν|α

mR(ω2 − ω2
0)

Uµ,ν. (3.11)

The last term on the right-hand side of (3.11) accounts for coupling of relative displacements in
optical modes to strains. When inserting (3.11) into (3.4) and (3.6), then solving (3.4) for U by
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ω

q

continuum
of bulk 
modes

Rayleigh branch

Figure 7. Long-wavelength acoustic part of the phonon dispersion relation of a semi-infinite crystal
with elastic isotropy, shown schematically.

iteration and inserting into (3.6), an equation is obtained that contains the electrostatic potential
φ and its spatial derivatives only. It then becomes clear that the coupling to strains leads to
higher derivatives that should be irrelevant for sufficiently slow variations of φ. Although these
dispersion terms are needed to describe certain modes, we shall neglect them here and obtain
an equation for the electrostatic potential with a frequency-dependentdielectric constant (i.e. a
dielectric function)

∂

∂ Xα

ε(ω)φ,α = 0 (3.12)

with the dielectric function

ε(ω) = ε∞ − Z 2

mR(ω2 − ω2
0)

= ε∞
ω2

LO − ω2

ω2
TO − ω2

. (3.13)

At surfaces and interfaces we have to require continuity of the potential and of the normal
component of the dielectric displacement field D, i.e. of φ and of ε(ω)N̂αφ,α .

4. Long-wavelength acoustic modes

On the basis of the set of equations (3.7)–(3.10)and the corresponding boundary conditions we
may now investigate various acoustic phonon modes in systems having planar geometries like
semi-infinite media, plates and layered structures. If these systems are isotropic in the plane
parallel to the surfaces and interfaces (the x–y plane), long-wavelength acoustic modes in
these systems may be characterized according to their polarization. They are either polarized
in the sagittal plane (the plane spanned by the 2D wavevector and the surface (or interface)
normal) or they have shear-horizontal polarization, i.e. the displacements are in the x–y plane
orthogonal to the 2D wavevector.

4.1. Modes in a homogeneous semi-infinite crystal

The surface phonon modes with lowest frequency for a given (small) 2D wavevector are
normally the Rayleigh modes (figure 7). Their associated displacement field is a linear
combination of 3D generalized plane waves, which may be viewed as having a 3D wavevector
with real x and y components, but a complex z component. In isotropic media Rayleigh waves
consist of two such generalized plane waves. They are polarized in the sagittal plane. The
atoms move on ellipses. Their motion is retrograde near the surface and prograde at larger
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Figure 8. Components of the displacement field parallel (û1) and normal (û3) to the surface,
associated with Rayleigh waves. Isotropic medium (a), Ni(100)〈001〉 (b) (from [15]).

depth. The depth profile of the vibrational amplitudes parallel (U1) and normal (U3) to the
surface is shown in figure 8(a). The penetration depth is of the order of a wavelength.

In anisotropic media, the existence of (generalized) Rayleigh modes is a nontrivial
mathematical problem. It has been shown that they exist in almost all geometries (crystal
cuts and propagation directions). In non-piezoelectric crystals, their associated displacement
field is made up of maximally three generalized plane waves. In piezoelectric media, the
number of generalized plane waves is up to four. The decay of the displacement field into
depth can have an oscillatory character (figure 8(b)). In the dispersion relation of semi-infinite
crystals which are isotropic with respect to their elastic constants, the Rayleigh branch is
situated below the continuum of bulk modes. This is the case in many other geometries, too,
but not always, as is demonstrated for the (001) surface of nickel in figure 9. When rotating the
wavevector from the (100) direction to the (110) direction, the Rayleigh branch comes closer to
the band of bulk modes. At the same time, the penetration depth of the Rayleigh mode for fixed
wavelength increases. Right at the (110) direction, the Rayleigh mode has become delocalized
(i.e. a bulk mode). At the same time, a pure surface mode has appeared with frequencies in
the acoustic bulk band. For wavevectors in directions close to the (110) directions, surface
resonances appear with frequencies close to those of the new in-band surface mode for given
wavelength.

For certain practical applications, for example for the calculation of Brillouin spectra using
the matching method [16], long-wavelength normal modes of the semi-infinite crystal have
to be determined. In an infinite crystal, these are plane waves ortho-normalized in the usual
way. The normal modes of a semi-infinite crystal do not have this simple form because of the
broken lattice translational symmetry in the direction normal to the surface. Within continuum
theory, normal bulk modes of a semi-infinite crystal may be constructed by letting a plane wave
impinge on the surface and add to it the reflected waves. Their presence is required in order
to satisfy the boundary conditions for the displacement field at the surface. If, in an isotropic
halfspace, the incident wave is of shear-vertical polarization (transverse and polarized in the
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Figure 9. Relative velocities of surface and shear bulk waves at the (001) surface of Ni (from [15]).

a b

Figure 10. Reflection of an incident shear-vertical plane acoustic wave from a free surface. Two
propagating reflected waves (a), one propagating reflected wave and one evanescent wave (b).

sagittal plane), there are two reflected waves for a sufficiently small angle of incidence, one
shear-vertical, the other longitudinal (figure 10(a)):

U(X, t) = ei(qx−ωt){Ap1eiκTz + Ap2e−iκTz + Ap3e−iκLz}, (4.1)

where

κL,T =
[(

ω

vL,T

)2

− q2

]1/2

. (4.2)

If the angle of incidence is larger than a critical value, the longitudinal component becomes
evanescent and hence is localized exponentially at the surface (figure 10(b)):

U(X, t) = ei(qx−ωt){Ap1eiκTz + Ap2e−iκTz + AeeαLz}, (4.3)

where

αL =
[

q2−
(

ω

vL

)2]1/2

. (4.4)

The velocities of longitudinal and transverse bulk waves in the isotropic medium have been
denoted by vL and vT, respectively. The ratios of the amplitudes in (4.1) and (4.3) are
determined by the boundary conditions at the surface. The ortho-normalization of the normal
modes fixes the absolute values of them. In anisotropic media, the amplitude of the evanescent
component of the normal modes, constructed by solving the reflection problem, can be very
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Figure 11. Interaction of Rayleigh modes propagating at the upper and lower surface of a slab (a).
Symmetric and anti-symmetric Lamb modes (b).

large in comparison to the amplitudes of the plane waves. Such normal modes correspond to
surface resonances.

In addition to these bulk modes, there is the Rayleigh mode which is fully localized at
the surface. (For the complete set of long-wavelength acoustic normal modes of an isotropic
halfspace see [17].)

In isotropic halfspaces elasticity theory does not allow for a surface mode of shear-
horizontal polarization. However, shear-horizontal surface modes exist within electro-
elasticity theory in piezoelectric media (Bleustein–Gulyaev modes) [19].

4.2. Modes in structures involving an interface between two media

If the semi-infinite crystal is in contact with another crystal, long-wavelength acoustic modes
can appear that are localized at the interface between the two media (Stoneley waves). If the
two media are isotropic, these waves are polarized in the sagittal plane. They exist only for
certain ranges of material constants of the two media.

If a semi-infinite crystal is covered by a film of a different material, new surface
modes exist. In particular, there are now modes of shear-horizontal polarization that decay
exponentially into the substrate. In the film, the displacement field oscillates as a function of
the coordinate normal to the surface (the z coordinate). There is an infinite number of branches
of these Love waves.

In addition to Rayleigh waves, there are other modes of sagittal polarization (generalized
Lamb waves or Sezawa waves). Their displacement field in the substrate is evanescent. In the
film, it may be oscillatory as a function of Z , evanescent or of mixed character. In the limit
of wavelengths much shorter than the thickness of the film, their velocity may converge to the
Rayleigh wave velocity of the film material or the Stoneley wave velocity of the interface.

When computing surface modes of a semi-infinite crystal by the method of repeated slabs,
a problem occurs in the long-wavelength acoustic limit. With increasing wavelength, the
penetration depth of the Rayleigh modes increases, too, and the displacements of the Rayleigh
modes localized at the upper and lower surface of a slab overlap (figure 11(a)). This leads
to hybridization: the degeneracy of the two Rayleigh branches is lifted, and one obtains the
frequencies of plate modes. In the case of sagittal polarization they are called Lamb modes
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Figure 12. Geometry of an infinite periodic two-component superlattice (a). Decomposition of
the 3D wavevector (b).

and can be characterized as symmetric or anti-symmetric (flexural) according to the behaviour
of U3 as a function of z (figure 11(b)). In the limit q → 0 the frequencies of the lowest branch
of symmetric Lamb modes behave as ω ∝ q , while the frequencies of the lowest branch of
anti-symmetric Lamb modes are proportional to q2 in this limit.

In addition to sagittal plate modes, there are also those of shear-horizontal polarization
in isotropic plates (or anisotropic plates with the appropriate symmetry). Interestingly, the
lowest branch of the shear-horizontal plate modes is non-dispersive, i.e. the displacement field
associated with these modes ‘does not feel’ the finite extension of the plate along the z axis. For
more details on this ‘zoo’ of long-wavelength acoustic surface modes see, for example, [18, 19].

4.3. Superlattices

Layered structures consisting of a large number of films with different material properties are
termed superlattices. The simplest example of such artificial materials is a two-component
periodic superlattice, where layers of two different materials are arranged in periodic order
(figure 12). The thicknesses of the two types of layers are denoted by d and d ′ and the thickness
of the ‘unit cell’ of the periodic arrangement by D = d + d ′. Such structures can be grown by
molecular beam epitaxy, for example. If the wavelength of acoustic modes in a superlattice
is much larger than the layer thicknesses, the superlattice may be treated as an effectively
homogeneous medium with averaged density and elastic moduli. Continuum theory may also
be used for modes with wavelengths of the order of D if the layers are sufficiently thick.

For simplicity, we shall assume elastic isotropy of the layers in the plane parallel to the
interfaces, i.e. the x–y plane. In this case the acoustic modes may again be grouped into
sagittal and shear-horizontal. As a simple example we consider longitudinal or transverse
modes propagating normal to the interfaces. In general, the displacement field U (U = U3

for longitudinal and U being a linear combination of U1 and U2 for transverse modes) in a
medium with material properties varying periodically along the z axis satisfies the equation

ρ(z)Ü(z, t) = ∂

∂z
C(z)

∂

∂z
U(z, t), (4.5)

where ρ is the mass density and C is the elastic constant c11 for longitudinal and c44 for
transverse modes. Since ρ and C are periodic functions of z, ρ(z) = ρ(z + D) and
C(z) = C(z + D), the Bloch theorem may be invoked which implies that solutions of (4.5)
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Figure 13. Dispersion curve of acoustic phonons in a GaAs/AlAs superlattice. Wavevector normal
to the layers. Transverse (full) and longitudinal (dotted) polarization.

may be found in the form

U(z) = eiqzw(z), (4.6)

where w(z) = w(z + D) and the wavenumber q is restricted to the interval [−π/D, +π/D],
the ‘mini-Brillouin zone’. The frequencies of the longitudinal and transverse modes following
from (4.5) may be represented as functions of q in the ‘mini-Brillouin zone’. If the layers
making up the superlattice were identical, the relation between frequencyω and 1D wavevector
q in the ‘mini-Brillouin zone’ would be ω = vL,T(q +n(2π/D)), where n = 0,±1,±2, . . . and
vL,T is the phase velocity of longitudinal or transverse acoustic bulk waves. This corresponds to
a folding of the straight lines ω = vL,Tq into the ‘mini-Brillouin zone’. If density and/or elastic
properties of the medium vary periodically, gaps open up at the edges of the ‘mini-Brillouin
zone’ and at its centre (figure 13).

In general, the modes of an infinite periodic superlattice may be labelled by a 3D
wavevector k. Its projection on the x–y plane will be called K,while its z component is denoted
by q (figure 12(b)). Because of our assumption of elastic isotropy of the single layers, the mode
frequencies do not depend on the direction of K. For non-zero K, the longitudinal polarization
no longer decouples from the transverse, but in calculating the phonon spectrum, one may
still make use of the decoupling of shear-horizontal and sagittal modes. Such calculations are
conveniently done by using the transfer matrix technique [20].

The frequencies of the acoustic modes of the superlattice may be represented in the same
way as the surface-adapted bulk dispersion relation of a crystal. The frequencies ω(k j) are
plotted as functions of K ( j is a branch index). In figure 14 such a plot is shown for shear-
horizontal modes of a Nb/Cu superlattice [21]. The frequencies of bulk modes appear in bands
with gaps between them. On a straight line in the ω–K plane the gaps close. This straight line
corresponds to the Brewster angle of shear-horizontal modes in the two-component superlattice.

In a semi-infinite superlattice with a free surface parallel to the layers, modes exist that
have displacements localized at the surface. Their frequencies are found in the gaps between
the bulk bands.

Figure 15 shows phonon dispersions of sagittal modes for superlattices consisting of layers
with large acoustical mismatch (Al/W). Here large gaps are found and the position of the surface
branches can depend on which of the two constituent materials forms the top layer [20].
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Figure 14. Dispersion relation of acoustic phonon modes of shear-horizontal polarization in a
semi-infinite periodic Nb/Cu superlattice (from [21]). dNb = 2dCu = 100 nm. Dotted: surface
modes. (d1 = dNb and k3 corresponds to K in our notation.)

Of practical importance in semiconductor physics are GaAs/AlAs superlattices. The
acoustic mismatch between these two materials is comparatively small, and consequently the
gaps between the bulk bands are small. The phonon density of states of the superlattice
follows almost perfectly a ω2 law, like the density of states of a homogeneous crystal in the
long-wavelength acoustic regime (figure 16). However, numerical calculations reveal small
features that occur at frequencies that limit the bulk phonon bands at the centre of the ‘mini-
Brillouin zone’ [22, 23].

Instead of arranging the layers of a two-component superlattice in a periodic order, one
may also choose other sequences. This strongly changes the phonon modes. In a random
arrangement of layers, all modes are spatially localized apart from special exceptions. Quasi-
periodic sequences occupy an intermediate place between periodic and random arrangements
of layers. The standard example is the Fibonacci sequence which is generated iteratively.
The N th generation of the superlattice is obtained by appending the (N − 2)nd generation
at the (N − 1)st generation. If the first generation is a single layer of type B and the second
generation a single layer of type A, then the third generation is the double layer AB, the fourth
generation the layered system ABA, the fifth the system ABAAB, etc. The phonon spectra
of Fibonacci sequences exhibit gaps on all frequency scales. In these gaps, the frequencies
of surface localized modes can be found. The penetration depths of these modes are the
larger the smaller the gap size. In addition, certain physical quantities associated with the
superlattice may exhibit self-similar features. An example is the surface spectral function for
shear-horizontal modes:

S⊥(K , ω) = ω−1
∫ ∞

−∞
dx

∫ ∞

−∞
dy eiK x D22(x, y, 0; 0, 0, 0|ω) (4.7)

which is relevant for the interpretation of crossed-polarized Brillouin spectra.
Dαβ(x, y, z; x ′, y ′, z′|ω) is the elastic Green tensor of the structure and the surface of the
superlattice is at z = 0. This function and magnifications of certain frequency ranges are
shown in figure 17.
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Figure 15. Dispersion relations of acoustic phonon modes of sagittal polarization in a semi-
infinite periodic Al/W superlattice (from [20]). dAl = 5dW (a), dW = 5dAl (b). On the surface, an
additional layer of thickness hs has been assumed. (k‖ corresponds to K in our notation.)

We now return to periodic superlattices and examine their phonon modes on the lattice-
dynamical level. Figure 18 shows that the phonon dispersion relation of GaAs/AlAs
superlattices in the acoustic regime for wavevectors along the growth direction (the (001)
direction) can, to a large extent, be understood by folding the dispersion curves of the pure
materials GaAs and AlAs into the new Brillouin zone (‘mini-Brillouin zone’). The latter
differs from the fcc Brillouin zone of the pure crystals because of the different unit cell of the
superstructure that is enlarged in the z direction. The short-hand notation (GaAs)n(AlAs)m

stands for a periodic superlattice with n monolayers (on the atomic scale) of GaAs following
m monolayers of AlAs and vice versa. (To avoid confusion, we would like to stress that the n
monolayers of GaAs form one layer of GaAs with the meaning of the word ‘layer’ previously
implied.) The growth direction is (001). The broken curves in figure 18 are the dispersion
curves of the pure materials: the upper ones refer to AlAs, the lower ones to GaAs as the Al
atoms are lighter than the Ga atoms. (The force constants may be taken to be equal for the
two materials to a very good approximation.) At the edge of the ‘mini-Brillouin zone’, the
lowest branch of the superlattice dispersion curve ends approximately at the TA frequency of
GaAs at this wavevector. The following branch starts from the ‘mini-zone’ boundary at the TA
frequency of AlAs. The same happens for the next couple of branches and the LA frequencies
of GaAs and AlAs.

An interesting feature of GaAs/AlAs superlattices is apparent in figure 18 in the optic
regime: the frequency ranges of optical phonons of GaAs and AlAs do not overlap. (The
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Figure 16. Low-frequency part of the density of states of a periodic GaAs/AlAs superlattice (full
curve). For a comparison, the partial densities of states of shear-horizontal and sagittal modes and
the phonon densities of states of the homogeneous constituents GaAs and AlAs are shown as broken
curves. Lower panels: dispersion relations of sagittal and shear-horizontal modes (from [23]).

highest two broken curves in figures 18(a) and (b) are the LO and TO branches of AlAs, while
the following two branches are the LO and TO branches of GaAs.) As a consequence of this
fact, the displacements associated with optical modes of the superlattice are confined to one
type of layer only (‘confined modes’). This is illustrated in figure 19(a), where displacement
patterns for two different LO modes of the superlattice are shown with the wavevector at the
centre of the Brillouin zone and frequencies in the band of LO modes of GaAs. Corresponding
examples for LO modes of the superlattice with frequencies in the LO band of AlAs are shown
in figure 19(b).

A satisfactory description of this phenomenon in the framework of continuum theory
would require the introduction of dispersion of the optic modes. We shall not pursue this here
but discuss macroscopic optical modes for different planar geometries in the following section.

5. Macroscopic optical modes in planar geometries

Macroscopic optical modes localized at the surfaces of semi-infinite crystals or in crystalline
plates are called Fuchs–Kliewer modes. To calculate their frequencies for polar diatomic
crystals, we may use (3.12) with the form (3.13) of the dielectric function ε(ω) and the
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Figure 17. Surface spectral function S⊥(K , ω) for a Nb/Cu Fibonacci superlattice, K d =
0.5, K d ′ = 0.25 (a). Peaks (1)–(7): surface localized modes. The approximate positions of
the main gaps are marked by horizontal bars. (b) Magnifications of parts of (a) calculated with
higher resolution (from [24]).

corresponding boundary conditions at interfaces, namely the continuity of the electrostatic
potential and the normal component of the dielectric displacement field. We first consider the
simple case of a semi-infinite crystal filling the halfspace z < 0. The ansatz

φ(x, z, t) = ei(qx−ωt)±|q|z A± (5.1)

for the electrostatic potential in vacuum (lower sign) and in the crystal (upper sign) satisfies the
Poisson equation. The boundary conditions at the surface require A+ = A− (continuity of φ)
and −A+ = ε(ω)A− (continuity of the normal component of D). Consequently the frequency
ωFK of the macroscopic mode is determined by the equation ε(ωFK) = −1. Within the
approximation used, ωFK is independent of q , i.e. the mode is non-dispersive and its frequency
ωFK is situated between ωLO and ωTO.

This is no longer the case for a crystal plate. Choosing the x–y plane to be the symmetry
plane of the plate with thickness 2h, its surfaces are situated at z = ±h. Similar to the case
of acoustic plate modes we expect symmetric and anti-symmetric modes and account for this
with the ansatz

φ(x, z, t) = ei(qx−ωt)−|q|z A (5.2)

for z > h,

φ(x, z, t) = ei(qx−ωt)(e|q|z ± e−|q|z)B (5.3)

inside the plate, i.e. for −h < z < h, and

φ(x, z, t) = ei(qx−ωt)+|q|z(±A) (5.4)

for z < −h. Applying now the boundary conditions at the two surfaces, the following implicit
dispersion relations are obtained for symmetric ((5.5), upper sign in (5.2) and (5.4)), and
anti-symmetric ((5.6), lower sign in (5.2) and (5.4)) modes:

−1 = ε(ω) tanh(qh), (5.5)

−1 = ε(ω) coth(qh). (5.6)

From these relations and the form (3.13) of the dielectric function of the crystal we may deduce



S412 A P Mayer et al

Figure 18. Phonon dispersion curves of short-period GaAs/AlAs superlattices (full) and zone
folding of the dispersion curves of pure GaAs and AlAs (broken). (GaAs)1(AlAs)1 (a),
(GaAs)2(AlAs)2 (b) (from [25]).

that the dispersion curve of symmetric modes approaches ωTO for q → 0 and ωFK for q → ∞.
Likewise, the dispersion curve of the anti-symmetric modes tends to ωFK for q → ∞, but it
approachesωLO for q → 0. The above considerations may also be applied and extended to slabs
consisting of one material with the two surfaces (or one of them) covered with a film consisting
of a different material. As an example, we consider a NaBr slab with both surfaces covered
by a LiI monolayer. The continuum treatment now involves four interfaces and two different
dielectric functions (figure 20). In figure 21, the results of a lattice dynamical calculation for
this system are compared to dispersion curves of macroscopic optical modes obtained in the
way described above. The slab consists of 23 layers of NaBr and one monolayer of LiI on
both surfaces. The macroscopic modes are clearly distinguishable in the lattice dynamical
phonon dispersion relation. One of its branches merges into the band of bulk phonons and
hybridizes with the bulk modes. The broken curves in the continuum-theoretical dispersion
relation refer to a semi-infinite NaBr crystal covered with one monolayer of LiI. The splitting
very close to the centre of the surface Brillouin zone is hence due to the finite thickness of the
slab. Similar to the situation for long-wavelength acoustic modes, from a certain wavelength
onwards, the slab no longer mimics the dynamical behaviour of a semi-infinite crystal in the
frequency regime of optical phonons.



Phonons in low-dimensional systems S413

Ga Ga Ga Ga AlAs As As As As Al As Al As Al As Ga Ga Ga Ga AlAs As As As As Al As Al As Al As

e
(κ

0
,j)



(a) (b)

Figure 19. Eigenvectors of ‘confined’ LO phonon modes of a (GaAs)4(AlAs)4 superlattice
(from [25]). Confinement to GaAs films (a) and to AlAs films (b). The diamonds and open
circles represent two different LO modes.
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Figure 20. Continuum treatment of a NaBr slab with a LiI film on both surfaces. ε1(ε2): dielectric
function of LiI (NaBr).

In assessing the comparison between lattice and continuum theory, one has to bear in mind
that the limits of validity of continuum theory may be somewhat overstretched when applying
it to films consisting of one monolayer only.

6. Surface relaxation and reconstruction

We now address lattice effects that are beyond the realm of continuum theory. These are
the deviations of the static equilibrium positions of atoms near the surface from the positions
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Figure 21. Phonon dispersion relation of a NaBr slab with surfaces covered with one monolayer
of LiI. Frequencies in 1013 rad s−1. Lattice-dynamical model calculation (a), (b) and results of
continuum theory (c) (from [2]).

they would occupy in a bulk crystal. These deviations are caused by the absence of certain
bonds at the surface. If the deviations of the positions are minor such that the surface unit
cell is not changed from that of the corresponding semi-infinite crystal with all atoms at
their bulk equilibrium positions, the phenomenon is called ‘relaxation’. If the deviations are
extensive, changing the structure near the surface such that the unit cell differs from that of the
corresponding semi-infinite crystal with all atoms at their bulk equilibrium positions, we use
the term ‘surface reconstruction’.

The equilibrium distances of the atoms in a crystal with given structure follow from the
equilibrium condition

∂

∂λ
�({λX(�κ)}) = 0, (6.1)

where � is the lattice potential. As a simple example we consider a 2D diatomic square
lattice with nearest-neighbour and next-nearest-neighbour central potentials ϕ12(r), ϕ11(r),
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Figure 22. 2D diatomic lattice with nearest-neighbour and second-nearest-neighbour central
forces.

and ϕ22(r) (figure 22). The bulk equilibrium condition (6.1) then simplifies to

2ϕ′
12(r0) +

√
2ϕ′

11(
√

2r0) +
√

2ϕ′
22(

√
2r0) = 0, (6.2)

where r0 is the nearest-neighbour equilibrium distance. If the 2D crystal is cut along a straight
line, the forces on the surface atoms are normally not zero because of the absence of certain
neighbours. In the example of figure 22, these forces can only act normal to the surface because
of symmetry. The normal component of the force on surface atoms of type 1 is then

F (1)
⊥ = ϕ′

12 +
√

2ϕ′
11 (6.3)

and of type 2

F (2)
⊥ = ϕ′

12 +
√

2ϕ′
22. (6.4)

Because of (6.2), F (1)
⊥ = −F (2)

⊥ . Consequently the surface atoms of types 1 and 2 are shifted
from their bulk equilibrium positions in opposite directions, which leads to a rumpling of the
surface.

Even if the relaxation is small, it may have noticeable consequences for the frequencies
of certain surface modes. This is illustrated in figure 23, where the phonon dispersion relation
of the (001) surface of RbCl is shown in the relaxed and unrelaxed cases. Although the static
equilibrium positions of the surface atoms are shifted from their bulk equilibrium positions
by less than 0.5%, certain surface phonon branches with associated strong displacements of
surface atoms are clearly shifted in the frequency spectrum. This also demonstrates the general
fact that the dynamics of a certain lattice system can be used for probing some of its static
properties.

A more pronounced type of relaxation occurs on the (110) surfaces of III–V
semiconductors having a zincblende structure. The chemical bonds have a predominantly
covalent character. The surface relaxation here leads to a tilt angle of about 30◦, while the
bond lengths are largely unchanged [26] (figure 24).

The surface energy of certain covalently bonded systems can be efficiently reduced by
a change of the surface structure, i.e. by reconstruction of the surface. The prototype of an
extensive rearrangement of the atoms at the surface is the 7 × 7 reconstruction of the Si(111)
surface. Figure 25 shows the dimer–adatom-stacking fault model for this reconstruction. In
this way, the number of dangling bonds can be reduced by a factor of 19/49.

Another surface of silicon, Si(001), is reconstructed by forming dimers. Adsorbed atoms
of a different kind can take part in and modify the reconstruction as shown for the B:Si(001)-
c(4 × 4) reconstruction, which involves heterodimers (formed of B–Si pairs) (figure 26).
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Figure 23. Phonon dispersion relation for the (001) surface of RbCl without surface relaxation (a)
and with surface relaxation (b). Surface phonon branches with large displacements normal (parallel)
to the surface in the surface layer are marked by squares (diamonds).

Figure 24. Relaxation of the (110) surfaces of III–V semiconductors (from [26]).

While the pure Si(111) surface strongly reconstructs, this is not the case for the adsorbate
systems H:Si(111) and As:Si(111). Here the silicon atoms keep their ideal bulk positions to a
good approximation. The hydrogen atoms saturate the dangling bonds and form a triangular
lattice on the surface. The As atoms are built into the Si lattice on Si positions (figure 27).
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Figure 25. Dimer adatom stacking fault model for the 7 × 7 reconstruction of the Si(111) surface
(from [28] after [27]). For further discussion and references on this reconstruction see [28]. Top
view (a), side view (b).

e

Figure 26. c(4 × 4) reconstruction of the B:Si(001) surface (from [29]). Open circles: Si atoms in
the first (large), second (medium) and third (small) layer. Full circles: B atoms in the first (large)
and third (small) layer.

The frequency spectrum of the phonon modes of the adsorbate system H:Si(111) (figure 28)
is instructive for the three branches which are located above the highest frequency of the
silicon modes. They correspond to modes with associated displacements that involve mostly
the adsorbate atoms, namely two hydrogen bending modes which are degenerate at the centre
of the surface Brillouin zone, and one stretching mode. It is because of the small mass of
the hydrogen in comparison to the silicon atom that these branches are separated from the
spectrum of silicon modes.
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Figure 27. (a) Structure of the H:Si(111) (left) and As:Si(111) (right) adsorbate systems. (b) Top
view (left) and surface Brillouin zone (right) of H:Si(111)-(1 × 1) (from [9]).

7. Statics and dynamics of crystal bars

Having discussed systems with planar geometries in the previous sections, we shall now turn
to systems with lattice periodicity in only one direction (the z direction), namely crystal bars
with quadrangular cross section.

7.1. Relaxation

As examples, we consider bars made out of alkali halides with (100) surfaces. Before
analysing the dynamical properties of these systems, we examine their relaxation which is
more pronounced than that of infinite (001) surfaces of the same alkali halide, especially at the
edges of the bar, leading to a slightly rounded shape (figure 29).

In the relaxation of the bars, two components may be distinguished that can be termed
microscopic and macroscopic, respectively. This has been found in model calculations by one
of us (DB) [10, 31], who also provided the following explanations for the latter component.
He showed that it can be traced back to surface tension and can be understood on the basis of a
simple model for a one-atomic simple cubic lattice with nearest-neighbourand second-nearest-
neighbour central potentials, denoted by ϕ1 and ϕ2, respectively (figure 30). (The difference
between the two types of atoms in the alkali halide bars is not relevant for the macroscopic
part of the relaxation.) The bulk equilibrium condition for this model is

ϕ′
1(r0) + 2

√
2ϕ′

2(
√

2r0) = 0, (7.1)

where r0 is the bulk equilibrium nearest-neighbour distance. This implies that, if the atoms
in the bar are situated on bulk equilibrium positions, no force acts on surface atoms that are
not at the edges of the bar. (There would be no relaxation of an infinite surface within this
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Figure 28. Phonon dispersion relation of H:Si(111)-(1×1). Curves: results of ab initio calculations
(see [9]), circles: high-resolution electron energy loss spectroscopy data of [30].

Figure 29. Relaxation of a 11 × 11 bar of NaCl (model calculation). The static displacements
are enlarged by a factor of 5 (from [10]). To each position of the unrelaxed lattice, two arrows are
attached. One refers to the first and the other to the second layer of the bar’s unit cell.

model.) When introducing a cut into the bar along the broken line in figure 30 and breaking
the bonds passing through this cut, there will be a force on surface atoms next to this cut, with
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Figure 30. Simple model of a crystal bar with nearest-neighbour and second-nearest-neighbour
central forces.

a component parallel to the surface

F‖ = φ′
1 +

3√
2
φ′

2 = − 1√
2
φ′

2 
= 0. (7.2)

This means that the surface is under stress and this surface tension has the tendency to contract
the bar. To capture this effect in a simple macroscopic description, we replace the surface
tension following from (7.2) approximately by a homogeneous pressure p, dividing the force
F‖ by the surface area of a unit cell of the bar:

p = 2√
2
φ′

2/(Nr2
0 ), (7.3)

where N × N is the number of atoms in a cross-sectional layer of the bar. Since N appears in
the denominator of the right-hand side of (7.3), the effect of the surface tension plays a lesser
role with increasing number of atoms per cross section. The factor of two on the right-hand
side of (7.3) is due to the fact that the surface tension of two surfaces of the bar leads to a
contraction along the x direction.

The homogeneous pressure p leads to an average homogeneous strain ε = �r/r0, where
r is the nearest-neighbour distance along the x direction or the y direction, and likewise an
average strain η = �r/r0, where r is now the nearest-neighbour distance along the z direction.
Assuming the pressure p(ε) to be a linear function of ε, the equilibrium values of the averaged
homogeneous deformations have been determined from the equations of elasticity theory:

(c11 + c12)ε + c12η = p(ε), (7.4)

2c12ε + c11η = 2 p(ε). (7.5)

The factor of two on the right-hand side of (7.5) results from the fact that the surface tension
of four surfaces instead of two is involved in the contraction along the z direction. Figure 31
shows the behaviour of the average strains ε and η as functions of the number N . The symbols
are results of microscopic calculations on the basis of simple interatomic potentials, while
the curves follow from elasticity theory (equations (7.4) and (7.5)). The full curve and the
triangles are obtained when the nearest-neighbour distance along the axis of the bar is fixed
to the nearest-neighbour distance of the infinite 3D crystal. The results displayed in figure 31
indicate that the convergence of the average nearest-neighbour distances to their bulk values
with increasing number of atoms per cross section is fairly slow.
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Figure 31. Relaxation of bars with quadrangular cross section, macroscopic component. Symbols:
lattice dynamical model calculation, curves: elasticity theory. ε (broken and crosses), ε with η

fixed to 0 (full and triangles), η (chain and diamonds). Inset: strain distribution along the bisectors
of the sides (triangles) and the angles (diamonds) of the quandrangular cross section (from [31]).

Figure 32. Lower left edge of a 19 × 19 diatomic bar (NaCl). Diamonds: Na ions, squares: Cl
ions. (Model calculation, from [10].)

The inset in figure 31 shows the strain distribution in the bar’s cross section along the
bisector of the sides (triangles) and the bisectors of the angles (diamonds). The quantities ε

and η can clearly be regarded only as averaged strains. Especially near the edges, the strain
distribution is highly inhomogeneous.

In addition to the macroscopic component of the relaxation of diatomic bars, there is a
microscopic one that is revealed in figure 32, which shows the lower left corner of the unit
cell of a 19 × 19 bar. The rumpling effect discussed already for infinite surfaces (different
positions of anions and cations) is particularly pronounced at the edges of the diatomic bar.

7.2. Dynamical properties

A new type of phonon modes in bars as compared to slabs are edge modes. Their associated
displacement patterns may be localized to a few atoms in the cross section of the bar, and
their frequencies in the dispersion relation appear outside the bands of acoustic bulk modes,
optical bulk modes and surface modes of the same irreducible representation of the bar’s
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Figure 33. Frequency dispersion of the phonon modes with A1 symmetry of a 15 × 15 diatomic
bar (a). The eigenvectors of two edge-localized modes, indicated by ‘a’ and ‘b’ in the phonon
spectrum, are shown in (b) and (c). (From [31]: for more details see the text.)

symmetry group (C4v). Figure 33(a) shows the dispersion relation of the phonon modes with
A1 symmetry in a 15 × 15 diatomic bar. For the displacement patterns of these modes, the
two bisectors of the sides and the two bisectors of the edges of the cross section are all mirror
planes. In figures 33(b) and (c), the eigenvectors of two highly localized edge modes are
shown. The first one has wavevector zero. Its position in the phonon dispersion relation is
indicated by ‘a’ in figure 33(a). It is polarized along the axis of the bar (longitudinal). The z
components of the eigenvectors are plotted along a diagonal of the cross section.

The second example is an edge mode with wavevector at the boundary of the 1D
Brillouin zone, indicated by ‘b’ in figure 33(a). In the first layer of the unit cell, it has
polarization along the axis of the bar, while the displacements of the second layer are purely
transverse (figure 33(c)). Since it is a zone-boundary mode, there is a phase shift between the
displacements of the first and second layers.

In the long-wavelength acoustic regime, one may compare lattice-dynamical calculations
of phonon modes with the macroscopic modes of a beam following from elasticity theory.
There are four modes that have the property ω → 0 as q → 0. These are:

• one longitudinal mode,
• two bending modes,
• one torsional mode.

While ω ∝ q for the longitudinal and torsional modes, ω ∝ q2 for the bending (flexural)
modes. The simple Euler–Bernoulli beam bending theory yields a parabolic dispersion curve
which agrees with lattice dynamics for very long wavelengths only. The more sophisticated
Timoshenko approach involving two branches yields results in agreement with lattice theory
for smaller wavelengths, too.

Relaxation has a dramatic influence on the frequencies of torsional modes [10]. If the
bar is not fully relaxed, the frequency of the torsional mode does not tend to zero in the limit
q → 0.

The equations of elasticity theory also admit solutions corresponding to waves that
propagate along the tip of an infinite wedge [32–34]. For these wedge modes, which are
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Figure 34. Comparison of macroscopic acoustic modes of a bar (full curves) with lattice-dynamical
model calculations for a 15× 15 bar (broken curves) (from [31]). Longitudinal mode (a), torsional
mode (b), flexural mode according to Euler–Bernoulli theory (c), flexural modes according to
Timoshenko theory (d), modes localized at the tip of an infinite wedge (e).

of flexural character for the rectangular wedges of the bar investigated here, a quantitative
comparison between lattice and continuum theory is difficult. The bar would have to be
sufficiently thick that, on the one hand, continuum theory is applicable and, on the other hand,
the wedge modes localized at the four edges of the bar do not influence each other. Results of
continuum theory are confronted with lattice-dynamical dispersion curves of long-wavelength
acoustic modes in figure 34.

The determination of macroscopic optical modes of a bar is not accomplished as easily
as for planar geometries and has to be carried out numerically. We briefly describe here an
efficient technique for this purpose, which is called the ‘source function method’ in surface
physics and optics or the ‘boundary element method’ (BEM) in engineering applications (see
also [35, 36]). Unlike acoustic wedge modes, there are no macroscopic optic modes localized
at the sharp tip of a rectangular wedge and having finite energy content. For this reason and
for numerical convenience bars with rounded edges are considered. The cross section of a
rounded bar is conveniently described by the inequality

0 > ξn(x, y) (7.6)

with the function ξn(x, y) = xn + yn − Rn . For n = 2, we have a circular rod, while in the
limit n → ∞ the cross section converges to a square.

The electrostatic potential φ in this system may be factorized as

φ(X, t) = f (r|qω)ei(qz−ωt), (7.7)

where r = (x, y)T is the position vector in the x–y plane. From the Poisson equation and the
boundary conditions satisfied by φ on the surfaces of the bar, the following integral equation
may be derived for f with r on the boundary of the cross section (ξn(r) = 0):

1

1 − ε(ω)
f (r|qω) =

∫
ξn(r′)=0

ds′ H (r, r′|q) f (r′|qω), (7.8)

where

H (r, r′|q) = 1

2π

∂

∂ N ′ K0(q|r − r′|). (7.9)

K0 is a modified Bessel function and ∂/∂ N denotes the derivative in the direction normal to
the boundary of the cross section. Discretizing the contour ξn(r) = 0, which is non-trivial
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Figure 35. Dispersion relation for optical phonon modes near the Brillouin zone centre for a
15×15 bar (lattice-dynamical model calculation, left panel) in comparison with results of continuum
theory for different roundings of the edges (from [31]).

because of the singularity of H (r, r′|q), at r = r′, the integral equation (7.8) is converted into
an eigenvalue problem that has to be solved numerically:

1 + ε(ω)

1 − ε(ω)
f (rm|qω) =

M∑
m′=1

Hmm′ (q) f (rm′ |qω), (7.10)

where rm , m = 1, . . . , M are discrete points on the boundary of the cross section. The solution
of this eigenvalue problem yields the dispersion relation.

In this way frequencies of macroscopic optical modes have been obtained for different
roundings of the bar (i.e. different values of n) and compared to lattice-dynamical calculations
for a 15 × 15 diatomic bar (figure 35). While the upper part of the spectrum of macroscopic
modes strongly depends on the rounding of the bar, the lowest macroscopic optic mode, which
is strongly dispersive, is virtually unaffected by the rounding. In the continuum of lattice mode
frequencies, traces of this macroscopic mode are visible, hybridizing with the lattice phonon
modes.

8. The Jacobi matrix method

Having discussed in some detail phonon modes in systems with lattice translational invariance
in two and one dimensions, we shall now briefly introduce a method to calculate lattice
dynamical properties without employing a wavevector. In doing this, we follow the
presentation given in [38]. This method has recently been applied to clusters adsorbed on
a surface and to pyramidal structures on surfaces that form a very simple model for self-
organized quantum dots in semiconductor heterostructures [40]. It goes under the names
‘Jacobi matrix method’, ‘continued fraction method’ or ‘Lanczos method’ (see [37, 39] for
applications in electronics theory).

For experiments that have local sensitivity to vibrational properties, partial densities of
states are a relevant quantity. These are defined as

ραα(ll|ω) =
∑

λ

|eα(l|λ)|2δ(ω − ωλ). (8.1)

Here, l labels the atoms and λ the modes of the system. The contribution of each mode λ

in (8.1) is weighted with the modulus square of the eigenvector component eα(l|λ), i.e. with
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the square of the modal displacement in the αth Cartesian direction apart from a factor ml , the
mass of atom l. This function can be expressed in terms of the Green function Gαβ(ll ′|ω) of
the system, which is the inverse of ω2δαβ − Dαβ(ll ′):

ραα(ll|ω) = ω

iπ
{Gαα(ll|ω − iε) − Gαα(ll|ω + iε)}. (8.2)

Dαβ(ll ′) = �αβ(ll ′)/
√

mlml′ is the dynamical matrix.
In order to calculate Gα0α0(l0l0|ω) for an atom l0 and direction α0, one first defines the 3N-

component vector (V (0)
α (l)) as V (0)

α (l) = 1 if l = l0 and α = α0, and V (0)
α (l) = 0 otherwise. (N

is the total number of atoms.) Subsequently, a sequence of vectors {(V (n)
α (l)), n = 0, 1, . . .} is

generated recursively by applying the dynamical matrix D to V(n−1) and orthogonalizing the
result to all previous vectors. One finds

V(1) = DV(0) − a0V(0), (8.3)

V(n+1) = DV(n) − anV(n) − bn−1V(n−1) (8.4)

with coefficients an and bn , n = 0, 1, . . .. The vectors V(n) span a subspace of the configuration
space of the system. Within this basis, the dynamical matrix reduced to this subspace is
tridiagonal. In order to calculate G00 = Gα0α0(l0l0|ω), one has to determine one element of
the inverse of a tridiagonal matrix. This can be done by applying the expansion theorem for
determinants. One finds G00 = D0/D, where D = (ω2 − a0)D0 − b0 D1, and the recursion
relation Dn = (ω2 −an+1)Dn+1 −bn+1 Dn+2 can be derived. This leads to the continued fraction
representation of the desired quantity

G00(ω) = 1

ω2 − a0 − b0

ω2−a1− b1

ω2−a2− b2
...

. (8.5)

The coefficients an and bn converge to limiting values a∞ and b∞, which allows for a truncation
of the continued fraction by defining

rN (ω) = 1

ω2 − aN+1 − bN+1

ω2−aN+2− bN+2
...

. (8.6)

and determining rN via

rN (ω) = 1

ω2 − a∞ − b∞rN (ω)
. (8.7)

In this way, partial densities of states can be calculated efficiently for random systems, and
the method has recently been applied to various isolated surface protuberances and adsorbed
clusters by the group of AM Kosevich (figure 36). Clearly, reliable force constants have to be
known in order to apply this method to real systems.

9. Concluding remarks

It has been our aim to demonstrate that the dynamical behaviour of solid state systems with
reduced lattice-translational invariance, as compared to three-dimensional crystals, shows a
number of interesting phenomena. Partly, these phenomena can be understood on the basis of
continuum theory or with the help of simple lattice-dynamical model considerations. However,
in order to achieve a closer insight into such effects and to be able to make quantitative
predictions for experiments, much more computational effort has to be invested. Although
considerable progress has been made in developing theoretical methods that can cope with
systems comprising a large number of atoms in various coordinations, reliable calculations
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Figure 36. Vibrational partial densities of states for atoms on different sites of a pyramidal cluster
(from [40]) (a). Geometry (b).

of frequencies and displacement patterns of vibrational modes in systems with reduced
dimensionality are still posing a major challenge. It is worth doing such calculations because,
on the one hand, their results yield information about interatomic forces that are not obtainable
in bulk materials. On the other hand, they are needed for a detailed quantitative understanding
of a number of effects like, for example, heat capacities and thermal conductivities of
nanostructures and phonon-assisted electronic processes in composites and nanostructured
materials. These are expected to gain increasing technological importance in view of the
enormous progress in the fabrication of nanostructured materials seen in recent years.
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