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Two-electron Coulomb interaction and correlation effects in several spherically symmetric zero-dimensional
semiconductor heterostructures are investigated in the large dielectric mismatch regime. Specifically, a semi-
conductor quantum dot �QD� embedded in air or a vacuum, an air-filled nanocavity in a semiconductor matrix,
and a weakly confined D− center �two electrons bounded to a hydrogenic donor impurity in a QD embedded in
air�. A strong self-polarization-induced radial localization of the electronic density at the heterojunction inter-
face yields surface states. In these states, the polarization of the electron-electron interaction strongly affects
dynamics. For a low dielectric constant of the semiconductor building material, Wigner-like localization of the
electronic density occurs. As we increase the dielectric constant, it is gradually suppressed. We prove that this
gradual suppression is originated by the enhanced strength of the polarization potential accompanying the
increase in permittivity. Additionally, in the presence of a weakly confined D− center in a QD, a transition
phase from volume to surface states takes place. It is characterized, in a wide range of quantum dot radii, by
a strong ground state reconstruction and a zero D− binding energy.
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I. INTRODUCTION

The effects that dielectric confinement produces on the
optical and transport properties of semiconductor hetero-
structures have been the object of a large amount of theoret-
ical and experimental work.1–11 These effects are specially
relevant in semiconductor zero-dimensional heterostructures
�quantum dots, QDs�,12 particularly when the surrounding
medium is characterized by a low dielectric response, such as
organic polymers, air or a vacuum. Therefore, colloidal semi-
conductor nanocrystals synthesized by so-called wet chemis-
try are the proper candidates to undergo the largest dielectric
effects, as they usually have small sizes �from 1 to several
tens of nanometers� and can be easily isolated and redis-
persed in the desired medium.13–18

Among the theoretical approaches describing the elec-
tronic structure of QDs, methods based on the so-called en-
velope function approximation �or effective mass approach
�EMA�� are the most commonly employed.19,20 Within this
approximation the wave-function is factorized as a product
of cell-periodic and smooth envelope functions. Next, details
of the unit cell are integrated, yielding differential equations
for the envelope functions. They are mathematically identical
to the Schrödinger equation, but with all microscopic details
of the unit cell averaged in their parameters, such as the
electron effective mass for electrons and the Luttinger pa-
rameter for holes. Indeed, EMA has proved to yield reliable
results even in multishell QDs with layers as thin as a single
monolayer.21,22

The macroscopiclike description of EMA implicitly as-
sumes the screening of carriers by the macroscopic dielectric
constant of the medium where they are located. Therefore, if
carriers are confined in a QD embedded in a dielectrically
mismatched matrix, according to the electrodynamics of con-
tinuous media, surface polarization-induced image charges
of any excess carriers in the dot should appear.23 The influ-
ence of these image charges on the electronic structure of
homogeneous spherical quantum dots is described in the pio-

neering papers by Brus.2,24 Thus, two new contributions to
the energy of confined carriers arise as the consequence of
the dielectric mismatch. On the one hand, there is a single-
particle contribution coming from the interaction of carriers
with their own induced charges �self-polarization energy�,
and, on the other hand, there are two-particle contributions
coming from the interaction of a carrier with the charge in-
duced by the other one �polarization of the Coulomb inter-
action�.

By assuming infinitely high confinement barriers and
steplike dielectric functions, it was proved that dielectric
mismatch corrections on excitonic energies in spherical QDs
almost totally cancelled each other out,2,25,26 Coulombic ef-
fects being reduced to simple bare electron-hole attraction.
The problem of finite barriers and a steplike profile for the
dielectric function is quite a lot more involved. This is due to
the fact that the self-energy of the partially confined particle
diverges, yielding a non-integrable Schrödinger equation.
Several solutions have been proposed to overcome this pa-
thology, such as the regularization method,1,27 or the replace-
ment of the steplike dielectric function by a continuous
variation of the dielectric constant within a thin layer of the
order of a lattice constant, located at the interface.6,7 This
continuous model for the dielectric function can be justified
as follows. On the one hand, the interface between two semi-
conductors �or between semiconductor and vacuum� is never
perfectly sharp, as the steplike model of the dielectric inter-
face assumes. On the other hand, EMA integrates the micro-
scopic details of the unit cell. Therefore, the assumption of a
continuous variation of the dielectric constant within a lattice
constant-width shell at the interface is also reasonable. These
models yield an integrable self-polarization potential. Its pro-
file reveals a slight destabilization in the medium with a
higher dielectric constant, and a deep, narrow attractive well
in the other medium, close to the interface.6

Finite confinement barriers in the presence of dielectric
mismatch show qualitative differences with the infinite bar-
rier case. Thus, Bolcatto and Proetto6 showed that the dielec-
tric effects on exciton energies no longer cancel each other
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out. It was also shown that, under specific conditions, the
attractive self-polarization potential well is able to confine
carriers in surface states, these surface states could even been
located on the barrier side of the interface.27–29 On their
hand, Orlandi et al.28 pointed out that these surface states
may yield many-body ground state reconstructions that could
be monitored, in turn, by transport experiments.

The formation of surface states is more likely when one of
the media involved is air or a vacuum �because the depth of
the attractive self-polarization potential well of a spherical
QD in a given medium is related to �1/��–1/��� /R, �� and
�� being, respectively, the higher and the lower dielectric
constants of the media involved, and R the QD radius�. It
should be mentioned that we recently found that the self-
polarization well can induce electron trapping in air-filled
nanocavities of semiconductor matrices, despite the barrier-
acting nature of air.30 Within these surface states the carriers
undergo a strong radial localization, yielding a particular sce-
nario in which inter-particle Coulomb interactions can have
important effects on the system dynamics, as we showed in
another recent paper,29 where the influence of image charges
on the electron correlation in two-electron spherical QDs was
thoroughly investigated. It is shown there that we may face
two different limit situations of large dielectric mismatch in-
ducing localization of both electrons in a thin spherical
crown at the QD border. Namely, �QD��out and �QD��out.
In either case, the spherical crown is located inside/outside
the QD, respectively. When electrons are located inside they
behave almost as independent particles while outside they
strongly correlate. As the degree of confinement is similar in
both cases and the inner/outer effective masses employed in
the studied systems are of the same order, the kinetic energy
should also be similar. Hence, it is concluded that, while in
the first case the electron-electron interaction is negligible in
comparison to the kinetic energy, in the second case the op-
posite should hold.29 As the electron-electron interaction in-
cludes both bare Coulomb plus polarization terms, what must
happen is that polarization worked against bare Coulomb in
the case of electrons inside while enforced it in the outside
case, as can be qualitatively understood from an elementary
electrostatic analysis.35

In this paper we will show that if the QD is highly insu-
lating �e.g., �QD�4 for a 5.35 nm QD radius confined by a
0.9 eV confining barrier height�, no surface states can be
achieved when this QD is embedded in air or a vacuum,
accordingly to previously reported results.28,29 On bypassing
this dielectric constant threshold, a sudden increase in the
angular correlation occurs �as the electrons, confined in a
narrow crown at the external side of the QD border, exhibit a
strong tendency to avoid each other�. It is then found that as
�QD keeps growing, a monotonous decrease in the angular
correlation occurs. We rationalize this finding by looking at
the limit case of a conductor QD ��QD=��, where the strong
surface positive polarization charge induced by one electron
close to its location, and the corresponding negative charge
that it also induces on the opposite site at the QD surface,
work against the charge of this electron �which is pushing the
second electron away�. As a result, the angular correlation
decreases. We will show that similar, but enhanced, behavior
is found in a two-electron system in a spherical cavity of a

semiconductor matrix. Similarities and differences between
the two cases are discussed. Finally, we present a compre-
hensive study on the influence of image charges on electron
correlation and interaction energies of a weakly confined D−

center �two electrons bounded to a hydrogenic donor impu-
rity� in a semiconductor QD surrounded by air or a vacuum.
We show that the combination of one- and two-particle con-
tributions of the dielectric confinement leads to different situ-
ations in each system under study, above all when the elec-
tronic density is localized in a surface state.

II. THEORETICAL OUTLINE

We will focus our study on the ground state �1Sg� energies
and wave functions of spherical nanostructures containing
two interacting conduction band electrons. We employ EMA
and a macroscopiclike description of the screening of carri-
ers. Thus, a parameter, the dielectric constant, characterizes
the dielectric response of each medium that is involved. The
reliability of this approach has been well established for
zero-dimensional heterostructures similar to those presented
here.25,31

The Hamiltonian for two interacting conduction band
electrons reads, in atomic units �a.u.�,

H�r1,r2� = �
j=1,2

Hj�r j� + Vc�r1,r2� . �1�

Vc�r1 ,r2� stands for the generalized Coulomb electron-
electron interaction, including dielectric mismatch effects.
This term can be obtained by solving the Poisson equation,
which presents an analytical solution for spherically symmet-
ric QDs when a ��r�=��r� steplike dielectric function is as-
sumed. The explicit expressions for Vc�r1 ,r2� are given in
Ref. 6. Hj�r j� represents the one-particle conduction band
Hamiltonian of the system

Hj�r j� = −
1

2
� � 1

m*�rj�
� � + V�rj� + Vs�rj� + ZVI�rj� .

�2�

The first term on the right-hand side of Eq. �2� represents
the variable mass hermitic kinetic energy operator.32,33 A
steplike function is employed for the effective mass in order
to account for different masses in different materials �mi

* and
m0

* for the confined and the surrounding medium, respec-
tively�. V�rj� is a steplike function representing the finite
spatial confining potential due to the band offset between the
media involved. Since, in all the cases studied, the media are
air �or a vacuum� and a semiconductor, the depth of the
confining well �V0� is given by the semiconductor electroaf-
finity. The origin of energies has been set at the bottom of the
semiconductor conduction band. Vs�rj� stands for the self-
polarization potential induced by the dielectric mismatch,
which can be obtained from Vc�r1 ,r2� as

Vs�rj� =
1

2
Vc�r j,r j� , �3�

after excluding the bare Coulomb terms. A smooth variation
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of the dielectric constant at the interface has been employed
in order to bypass the non-integrability of Eq. �2� when a
steplike dielectric function and a finite confinement barrier
occur simultaneously. A cosine-like profile within a layer at
the interface with a width of 0.3 nm �the order of a lattice
constant� is assumed. We have found that, as in Ref. 6, self-
energy effects are nearly no sensitive to the smoothing model
and to small changes in the interface width.

Finally, VI�rj� is the Coulomb potential �including polar-
ization� generated by a shallow donor impurity located at the
origin

VI�rj� = �−
1

�irj
− � 1

�0
−

1

�i
� 1

R
if r � R ,

−
1

�0rj
if r � R ,	 �4�

where R stands for the interface radius, and �i and �0 are the
dielectric constants of the confined and surrounding media,
respectively. Z in Eq. �2� is 1 �0� when the impurity is in-
cluded �excluded�.

The spherical symmetry of the problem allows the angular
coordinates of the electron to be integrated analytically in
Eq. �2�. The radial parts of the exact one-particle wave func-
tions �nlm�r� and the corresponding energies are obtained by
means of numerical integration �finite differences in a grid
extended far beyond the interface radius R�. The numerical
nature of this integration requires the discretization of the
continuous ��r� function yielding a multistep profile within
the interfacial layer, so that new, artificially introduced diver-
gences are encountered. Such numerical divergences have
been overcome by means of a discretization scheme that
avoids calculating at the interfaces.34

Products of the basis functions �nlm are then used to con-
struct configuration-interaction �CI� expansions �LS=� j	 j
of the symmetry- and spin-adapted two-electron configura-
tions, where L and S are the total angular and total spin
quantum numbers, respectively. The two-electron Hamil-
tonian containing Coulomb interaction and polarization
terms �1� is then diagonalized in the CI basis set. As a result,
we get two-particle wave functions �LS�r1 ,r2� and energies
E�2S+1L�. We use as many single-particle basis functions �nlm

and as long a CI expansion as are needed to achieve conver-
gence and the required accuracy.

Here we will not use the standard quantum-chemical defi-
nition of correlation energy and correlation effects �related to
differences between CI and Hartree-Fock variational proce-
dures�. Electronic correlation is understood in the present
paper as the contribution of the excited configurations to the
exact ground state �1Sg� wave function in comparison to the
ground configuration 1s2. The quantification of this correla-
tion can be expressed, then, as ccorr=1− �c1s2�2, where c1s2 is
the coefficient of the 1s2 configuration in the CI expansion.

From the wave functions we define the radial pair density
P�r1 ,r2�,

P�r1,r2� = 2
 ���r1,r2��2r1
2r2

2 sin 
1 sin 
2d�1d�2d
1d
2,

�5�

to study radial correlations, and the angular correlation den-
sity Z�
�,

Z�
� = NZ����rmax,0,0�,�rmax,
,0���2, �6�

with rmax corresponding to the coordinates r1=r2 of the
P�r1 ,r2� maximum and NZ to the appropriate normalization
factor, to study angular correlations.

The D− center will be characterized by its binding energy
Eb, which is defined as

Eb�D−� = E0 + E�D0� − E�D−� . �7�

Here E0 is the lowest energy of the Hamiltonian Eq. �2� with
Z=0, i.e., the single-particle ground state energy of the un-
doped QD, and E�D0� and E�D−� are the single- and the
two-particle ground state energies of the doped �Z=1� QD,
respectively.

III. NUMERICAL RESULTS

A. Quantum dot in air or a vacuum

This section is devoted to studying the effects of the po-
larization of Coulomb interaction on the electronic correla-
tion of a two-electron QD in the large dielectric mismatch
regime �i.e., in the presence of a large QD-surrounding di-
electric mismatch leading to a transition from volume to sur-
face states�. To this end we consider a two-electron QD simi-
lar to the one studied in Ref. 29, defined by an R=5.35 nm
radius, a V0=0.9 eV confining barrier and an m*=0.5 effec-
tive mass. This QD is surrounded by air or a vacuum ��0

=m0
*=1�. The polarization of the Coulomb interaction is var-

ied from zero ��QD=1� up to a maximum value �achieved by
a conductor QD, �QD=��. From a numerical point of view,
no significant changes occur beyond �QD=40–80, and we
limit our study up to this range of QD permittivities.

First of all, we should mention that, as expected, an in-
crease in the dielectric mismatch is accompanied by an in-
crease in radial localization. This is basically a single-
particle self-polarization effect. In our case, as the QD
surroundings consist of air or a vacuum ��0=1�, the larger
the �QD, the deeper the self-polarization well and, hence, the
stronger the electron localization in this well. The transition
from volume to surface states takes place, in our case, at
�QD�4. This transition can be monitored very well by plot-
ting the radial density or the pair radial density P�r1 ,r2� vs
�QD. The corresponding figures, similar to Figs. 1 and 2 in
Ref. 29, have been omitted for the sake of conciseness.

From now on, we should keep in mind that in our case
�that is, �QD��0�, the surface states are localized in a spheri-
cal crown beyond the QD border �outside crown�, i.e., the
electrons are mostly in a vacuum. Therefore, regardless of
the QD permittivity, the electron-electron interaction con-
tains an enhanced bare Coulomb term including a null
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screening ��0=1� in the denominator. QD permittivity plays
its role in the polarization of the Coulomb interaction �inter-
actions between an electron and the charge induced by the
other one�.

As the polarization of the dielectric material by a given
charge can have a naive view as a set of charges of opposite
sign close to its location and of the same sign in the region
farthest away from it, we should conclude that polarization
works against bare Coulomb, by trying to bring electrons
nearer. This naive picture of the Coulomb interaction polar-
ization Vpol�r1 ,r2� is quantitatively confirmed in Fig. 1,
where a cross section of Vpol�r1 ,r2� is represented. In order
to draw this figure, the first electron is fixed at �0,0 ,rmax�,
i.e., at the bottom of the self-polarization well �the maximum
of the electron density� along the z axis. The second electron
is allowed to move along the line �0,0 ,z�. Two profiles cor-
responding to �QD=4 and 80 are included. We see that this
picture is a quantitative counterpart of our simplified reason-
ing stated above. On the one hand, the higher �QD is, the
more relevant Vpol turns to be. On the other hand, Vpol is
strongly attractive near z=R=5.35 nm and it is repulsive
close to z=−R=−5.35 nm, where, according to our naive ex-
planation, we meet opposite and same sign polarized
charges, respectively.

An immediate consequence is that angular correlation
should decrease as �QD increases, thus pushing the polariza-
tion of the Coulomb interaction up. This can be seen in Fig.
2, where Z�
� is plotted vs 
 for �QD=4 and 80, respectively.

In the previous section we defined a numerical parameter
ccorr=1− �c1s2�2 to account for electron correlation in a very
simple way. We will now use it to gain a deeper understand-
ing of the influence of polarization on the system dynamics.
To this end, we plot it in Fig. 3 vs �QD �set of data labeled as
P1�. By looking at this figure we can see that, initially, in the
range 1��QD�3, ccorr exponentially decreases vs �QD. We
deal with volume states in this range �surface states arise for
�QD=4 and beyond�. If, in a simplified reasoning, we disre-

gard the still small polarization effects, we can rationalize the
decrease in correlation as coming from an increase in the
screening arising in the dominant bare Coulomb term.36

The following abrupt increase in ccorr, shown in Fig. 3,
reveals the transition from volume to surface states. These
states are localized in an outside spherical crown close to the
QD border. Two relevant facts go in parallel to this phase
transition. On the one hand, the screening parameter of the
bare Coulomb term also undergoes a sudden transition from
�QD up to �0, with the corresponding sudden increase in the
bare electron-electron repulsion, which contributes in turn to
an �also abrupt� increase in correlation. On the other hand,
the electronic density suddenly moves from the QD center
region to the external crown. This transition goes in parallel
with a sudden increase in the contribution of l�0 orbitals,
with a node at the QD center, to the CI wave function. As
shown in Ref. 29, only a few configurations have relevant
coefficients in the CI expansion of the 1Sg surface ground
state, the 1p2 configuration being, by far, the most relevant
one. Our present calculations confirm this fact, and the set of
data with the label �c1p2�2 in Fig. 3 shows the evolution of the
contribution of this most relevant excited configuration vs
�QD. It can be clearly seen how this set of data parallels ccorr
�labeled as P1�.

FIG. 1. Coulombic potential Vpol generated by the polarization
charges induced by an electron located at �0,0 ,rmax�, in an outside
spherical crown close to the border of a R=5.35 nm quantum dot
surrounded by air or a vacuum, at the �0,0 ,z� line. Two different
QD dielectric constants are included. Dotted lines indicate the QD
edge. The auxiliary arrow indicates the position of the electron pro-
ducing Vpol.

FIG. 2. Angular correlation density Z�
� corresponding to a R
=5.35 nm, mi

*=0.5, V0=0.9 eV quantum dot in air or vacuum, for
two different QD dielectric constants.

FIG. 3. Two-electron quantum dot in air. ccorr=1− �c1s2�2 and
square CI coefficient of the most relevant excited 1p2 configuration
as a function of the QD dielectric constant �QD. P0 �P1� series
represents ccorr in the absence �presence� of polarization of the
electron-electron interaction. Lines are only guides for the eye.
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Once the phase transition has taken place, ccorr shows a
new gradual decrease vs �QD. Indeed, the bare Coulomb term
cannot contribute to it, as it is approximately constant �since
the screening parameter coming into it is �0 and not �QD�.
Then, the driving force for this new decrease in correlation,
as �QD increases, must be the growing polarization of the
Coulomb interaction, which works against the bare Coulomb
term. It is confirmed in Fig. 3, where ccorr is determined in a
set of calculations in which we have artificially removed the
polarization of the Coulomb interaction term �set of data
labeled as P0�.37

B. Air-filled nanocavities in semiconductor matrices

We have recently reported that self-polarization can in-
duce electron trapping in the air-filled nanocavities of a
semiconductor matrix.30 This trapping occurs in surface
states localized in an inside spherical crown close to the cav-
ity border. Therefore, the electron density is mainly located
in the barrier-acting air region. In the present paper we re-
port, to our knowledge, the first set of CI calculations of a
two-electron system trapped in a spherical nanocavity. As in
the previous section, we focus our study on the effects that
the polarization of the Coulomb two-body interaction has
upon the electron correlation. For a proper comparison with
the above presented results, an R=5.35 nm air-filled spheri-
cal barrier-acting �V0=0.9 eV� nanocavity �mC

* =�C=1� in a
semiconductor matrix defined by mM

* =0.5, and several val-
ues of �M �4 �which ensures electron-trapping in this nano-
cavity� is considered.

This is a problem similar to that of QD in air. Coming
back to the naive description of polarization of the Coulomb
interaction, we may say that an electron in the inside crown
induces positive charges on the cavity surface, mainly close
to its location, and negative charges in the regions farthest
away from it, i.e., at infinity or, in other words, no negative
charges influencing the second electron are induced. There-
fore, a stronger polarization potential with no repulsive char-
acter anywhere can be expected. This reasoning is confirmed
by calculations. Thus, the same cross section of Vpol�r1 ,r2�
as in Fig. 1, but for the two-electron system in a nanocavity
is plotted in Fig. 4 for the same values of the dielectric semi-
conductor permittivity, namely, �M =4 and 80. Indeed, we
can see in Fig. 4 that Vpol is always negative �attractive� and,
by comparison with Fig. 1, we can also see that it is stronger
than the one corresponding to a QD in air. Therefore for
electrons in a nanocavity one may expect correlation trends
similar to those of electrons in the QD surrounded by air, but
enhanced. This behavior can be seen in Fig. 5 �which paral-
lels Fig. 3�. Note we have only calculated the region of per-
mittivities �M �4, since for �M �4 there are no trapped, i.e.,
bounded, states.

In the region where comparison can be carried out, we
observe the same qualitative trends in QDs and nanocavities.
Thus, the full calculation �P1� shows a decrease in correla-
tion vs �M, and the set of calculations only including bare
Coulomb �P0� display an almost constant correlation. When
only bare Coulomb is included �P0�, the agreement between
cavities and QDs is quantitative. However, when full elec-

tron-electron interaction is considered �P1�, nanocavities
show lower correlation than QDs, due to the polarization
which, as discussed above, is induced more strongly in cavi-
ties than in QDs. Extending this reasoning, we also expect
nanocavities to have a smaller angular correlation than QDs
�the calculations proving this to be the case have not been
included for the sake of conciseness�.

C. Doped quantum dot in air or a vacuum

In this section we investigate the influence of a central
shallow donor impurity on the formation of a surface ground
state and on the system dynamics of a two-electron QD in
air. For the sake of comparison, here we consider the same
QD that was defined in Sec. III A but with a hydrogenic
impurity located at its center.

As in previous sections, we explore the influence of po-
larization on electron correlation by plotting the parameter
ccorr vs �QD �see Fig. 6�. Three regions or phases can be
distinguished in this figure. We name them according to their

FIG. 4. Coulombic potential Vpol generated by the polarization
charges induced by an electron located at �0,0 ,rmax�, in an inside
spherical crown close to the border of a R=5.35 nm cavity in a
semiconductor matrix, at the �0,0 ,z� line. Calculations for two dif-
ferent matrix dielectric constants are included. Dotted lines indicate
the QD edge. The auxiliary arrow indicates the position of the elec-
tron producing Vpol.

FIG. 5. Two electrons in an air-filled cavity of a semiconductor
matrix. ccorr=1− �c1s2�2 and square CI coefficient of the most rel-
evant excited 1p2 configuration, as a function of the matrix dielec-
tric constant �M. P0 �P1� series represents ccorr in the absence
�presence� of polarization of the electron-electron interaction. Lines
are only guides for the eye.
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main physical trend. Namely, impurity �1��QD�4.3�,
radial-Wigner �4.3��QD�5.5�, and angular-Wigner phase
��QD�5.5�.

In the impurity phase �1��QD�4.3�, the confinement re-
gime is weak �R�a0

*, a0
* being the Bohr radius�, both elec-

trons are tightly trapped by the impurity potential �see Fig.
7�a�, where the radial pair density P�r1 ,r2� for �QD=4 is
presented38� and the system is almost not influenced by the
confinement barrier V0. As for ccorr, it decreases vs �QD, this
trend being related to the growing screening of the electron-
electron interaction.

A main difference with the undoped QD is that the most
relevant excited configuration coming into the CI expansion
of the 1Sg ground state is not 1p2 but 1s2s. In this phase, the
excited 1s2s configuration accounts for most of the correla-
tion in the 1Sg ground state.

When �QD goes beyond 4.4, we enter in the radial-Wigner
phase. This is revealed in Fig. 6 by an abrupt increase in ccorr,
which reaches a value close to one, this value being main-
tained throughout the whole phase. The abrupt ccorr change at
�QD=4.4 is accompanied by a reconstruction of the 1Sg
ground state, i.e., the dominant configuration of this state
undergoes a sudden transition from 1s2 up to 1s2s, thus vio-
lating the Aufbau filling rule. The CI 1s2s coefficient re-
mains greater than 0.99 throughout all the radial-Wigner

phase. This ground state reconstruction involves, in turn, a
strong increase in radial correlation, as can be seen in Fig.
7�b�, where the radial pair correlation is shown for �QD=5.
This large radial charge separation can be described as one
electron deeply attached to the impurity at the QD center and
the other one localized mainly in an outside spherical crown
at the self-polarization well. In other words, in this phase, the
electronic density experiences a radial-Wigner-like localiza-
tion.

The last phase transition takes place at �QD=5.6 �see Fig.
6�, yielding the angular-Wigner phase. Within this phase, the
dominant configuration 1s2 is recovered and, simultaneously,
a fairly relevant contribution of the excited 1p2 configuration
takes place. These trends are similar to those of the undoped
QD, as can be seen in Fig. 6. Indeed, the electronic density
distribution shows, as in the case of the undoped QD, a very
strong radial localization of both electrons in the self-
polarization well �see Fig. 7�c��, and a large angular correla-
tion �not shown for conciseness�.

In summary, a two-electron doped QD in air experiences
three different phases, depending on the screening capability
of its building block material. Low dielectric constants yield
the so-called impurity phase, in which impurity is the main
driving force for the system dynamics. Intermediate values
of �QD monitor the radial-Wigner phase. In this intermediate
phase, the impurity still plays a relevant role by trapping one
of the electrons close to it. This electron-impurity pair is
viewed by the second electron as a neutral-like entity39 and it
therefore behaves as an isolated electron in a QD, choosing
the bottom of the self-polarization potential as its favorite
location. Finally, large values of �QD are associated with the
angular-Wigner phase, where impurity plays a minor role
and the two-electron doped QD almost behaves as though it
was undoped.

Orbital and binding energies in a doped QD vs �QD

This last section is devoted to investigating the influence
of the dielectric mismatch on the single-particle energy struc-
ture and its relation with the phases encountered in a two-
electron doped QD. It is also devoted to studying the evolu-
tion of binding energy in the different phases.

Figure 8 represents the energy of the low-lying single-
particle orbitals vs �QD. In this figure, the range of dielectric

FIG. 6. Two-electrons doped quantum dot in air. ccorr=1
− �c1s2�2 and square CI coefficients of the most relevant excited
configurations, as a function of the QD dielectric constant �QD.
Nondoped QD ccorr is also enclosed for the sake of comparison.
Lines are only guides for the eye.

FIG. 7. �Color online� Radial pair densities P�r1 ,r2� of the two-electron ground state of a doped QD in air or a vacuum for three different
values of the QD dielectric constant. �a� �QD=4, �b� �QD=5, �c� �QD=6. Dotted lines indicate the quantum dot edge.
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constants corresponding to the radial-Wigner phase has been
highlighted in order to delimit the range of all three phases.
In the low-�QD region, the low-lying single-particle energy
spectrum resembles that of an impurity in an extended me-
dium, i.e., the 1s ground orbital is energetically well sepa-
rated from the nearly degenerated 1p and 2s orbitals.

As �QD increases, the self-polarization well becomes
deeper and the impurity potential shallower. In the inter-
mediate-�QD region, orbitals 1p and 2s are quite stabilized by
the self-polarization potential becoming surface states and
appearing energetically close to 1s �which is still a volume
state�. An anticrossing between same symmetry orbitals 1s
and 2s then occurs, i.e., the 1s orbital concentrates mostly in
the self-polarization well while 2s turns back into a volume
state. Further on, 1s and 1p become quasidegenerate and
increasingly stabilized by the self-polarization well, while 2s
is left unstabilized.

A key factor for reconstructions and strong correlations is
the energy distance between interacting orbitals. Thus, the
radial-Wigner phase corresponds to the region where 1s and
2s are very close. As both orbitals show a very different
density distribution �one is close to the QD center while the
other is at its surface� Coulomb repulsion is small, so that a
reconstruction from 1s2 up to 1s2s becomes favorable. All
the same, the angular-Wigner phase corresponds to the re-
gion where 1s and 1p are quasidegenerate and the formation
of an angular-Wigner-like molecule with a minimum Cou-
lomb repulsion arises.

Looking at Fig. 6 one realizes that the radial-Wigner
phase occurs in a rather short range of dielectric constants
�4.3��QD�5.5 for an R=5.35 nm QD confined by a barrier
of height V0=0.9 eV�. On the one hand, we have proved that
this phase is robust to large changes in the QD radius. In
particular, we fixed �QD=5 and observed that the radial
charge separation remains unaltered for R ranging from 4 to
more than 20 nm. On the other hand, we also considered
taller confining barriers. In this regard we should remember
that the larger the confining barrier is, the larger the value of
�QD required to induce surface states will be. As �QD rises,
the 1p orbital stabilizes with respect to the 2s. If the increase
is large, it may give rise to a diffuse phase transition with

simultaneous increasing of both radial and angular correla-
tions in a short range of dielectric constants. In other words,
the intermediate radial-Wigner phase may eventually be re-
placed by a diffuse transition from the first to the third phase.

Finally, we calculate the binding energy Eb�D−� of the
doped two-electron QD. The results are summarized in Fig.
9, where the D− binding energy Eb�D−� �Eq. �7�� is repre-
sented vs the QD dielectric constant. The binding energy in
the same case but now disregarding dielectric effects ��0

=�QD� has also been included as a reference. In this last case,
Eb�D−� diminishes monotonically as �QD increases, due to
the enhanced screening of the attractive impurity potential.
But when dielectric effects are included, the binding energy
is canceled out in the range of existence of the radial-Wigner
phase �see Fig. 9�. Then, this phase can be considered to be
the superposition of one electron in the ground state of a
doped QD and the other in the ground state of an indepen-
dent, undoped QD �see Eq. �7��. The underlying reason is
that the Coulomb potential �including polarization terms�
produced by the s-like internal electron is almost totally can-
celled out with the one produced by the impurity, thus pro-
viding no net effect on the external electron. This external
electron then behaves as a single electron in an undoped QD,
while the internal electron, located very close to the impurity,
is negligibly affected by the electron in the external crown.

IV. CONCLUSIONS

A comprehensive study is carried out to investigate the
influence of dielectric mismatch effects on Coulombic corre-
lations and energies in several zero-dimensional two-electron
spherical systems, namely, a semiconductor quantum dot in
air or a vacuum, an air-filled nanocavity in a semiconductor
matrix, and a D− center confined in a semiconductor quan-
tum dot surrounded by air or a vacuum. We focus our atten-
tion on situations in which surface states are formed as a
consequence of single-particle self-polarization effects. It is
shown that the polarization of the electron-electron interac-

FIG. 8. Energies of the low-lying orbitals 1s, 2s, and 1p, corre-
sponding to a doped QD in air, as a function of its dielectric con-
stant �QD. In the figure, the range of dielectric constants correspond-
ing to the radial-Wigner phase has been highlighted in order to
delimit the range of all three phases occurring in this system. Lines
are only guides for the eye.

FIG. 9. Binding energy, Eb�D−� as a function of the doped two-
electron QD dielectric constant �QD. The binding energy resulting
when the dielectric effects are disregarded ��0=�QD� has also been
included as a reference. In the figure, the range of dielectric con-
stants corresponding to the radial-Wigner phase has been high-
lighted in order to delimit the range of all three phases occurring in
this system. Lines are only guides for the eye.
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tion induced by the dielectric discontinuity strongly affects
interparticle correlations and interaction energies. In addi-
tion, the study also demonstrates how the combination of
single- and two-particle Coulombic effects may give rise, in
weakly confined D− systems, to the appearance of different
phases. Strong, Wigner-like localizations of the electronic
density and important reconstructions of the two-electron
ground state are found.

The main conclusions of the paper are itemized as fol-
lows.

�i� Surface states in QDs surrounded by air or a vacuum
may localize the electronic density in the external medium,
and, then, electrons undergo a strong angular correlation.
This correlation is gradually reduced as the QD dielectric
constant increases, due to the influence of the polarization
charges induced at the dielectric interface.

�ii� In the case of surface states in air-filled nanocavities
of semiconductor matrices, polarization charges reduce the
electronic correlation to a greater extent than in the QD case.

�iii� A transition phase from volume to surface states ac-
companied by a strong radial Wigner-like localization of the

electronic density is produced when a quantum dot is doped
with a central shallow donor impurity in the weak confine-
ment regime. Within this phase, the D− center presents zero
binding energy, providing a situation in which the system
behaves as a twofold electron reservoir. We show that the
impurity is able to attach the first excess electron strongly.
However, this electron totally blocks the effect of the impu-
rity, and the system now behaves as an undoped �and empty�
QD for the second excess electron.

�iv� The radial-Wigner phase vanishes as we approach the
strong confinement regime. However, it is stable within a
wide range of QD sizes, thus making its experimental search
and characterization feasible.
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