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ABSTRACT
We present an overview of new procedures for including quantum
mechanical effects in enzyme kinetics. Quantum effects are
included in three ways: (1) The electronic structure of the atoms
in the catalytic center is treated quantum mechanically in order
to calculate a realistic potential energy surface for the bond
rearrangement process. (2) The discrete nature of quantum me-
chanical vibrational energies is incorporated in the treatment of
nuclear motion for computing the potential of mean force. (3)
Multidimensional tunneling contributions are included. These
procedures are illustrated by applications to proton abstractions
catalyzed by enolase and methylamine dehydrogenase and hydride-
transfer reactions by alcohol dehydrogenase and xylose isomerase.

1. Introduction
The calculation of reaction rates for enzyme-catalyzed
processes is a central goal of computational biological
chemistry. There are several key points in our treatment:

(1) The free energies of reactants and transition states
are critical determinants of reaction rates. Variational

transition-state theory (VTST) and potential of mean force
(PMF) calculations provide useful tools for identifying
transition states,1-3 and an important goal of the work
summarized here is to extend VTST to enzymatic reactions
by employing PMF calculations to identify transition-state
ensembles.

(2) Quantum effects are very important in modeling
chemical reaction rates, especially the inclusion of tunnel-
ing and zero-point vibrational energy throughout the
reaction.4,5 Importantly, we can obtain good accuracy
with multidimensional semiclassical tunneling approxi-
mations.6-8

(3) By using semiclassical methods, calculations of
reaction rates can be carried out by using a manageably
localized portion of the potential energy surface (PES).4,6

Most enzyme reactions occur on the ground-electronic-
state PES, and the Born-Oppenheimer approximation is
generally valid; here we restrict ourselves to this case. It
is well known that the regions of the PES in the vicinities
of reactant and product geometries can be reasonably well
described by molecular mechanics (MM). Major effort has
gone into developing and refining MM potential energy
functions capable of describing proteins and protein-
coenzyme-substrate interactions. The regions of the PES
between reactants and products that is necessary to
describe the chemical step has partially broken and/or
partially made bonds, and they require a quantum me-
chanical (QM) treatment of their electronic structure in
order to model their PES. A critical advance summa-
rized here is the combination of QM methods for the
subsystem involving partial bonds with MM methods for
the rest of the enzyme-coenzyme-substrate system; such
hybrid methods are usually called combined QM/MM
methods.2,9

Thus, quantum mechanical effects must be included
in three key aspects of the modeling of enzyme reac-

* To whom correspondence should be addressed. E-mail: truhlar@
umn.edu and gao@chem.umn.edu.

Donald G. Truhlar was born in Chicago in 1944. In 1965 he received a B.A. from
St. Mary’s College of Minnesota, and in 1970 he received a Ph.D. from Caltech,
where his adviser was Aron Kuppermann. In 1969, he joined the Chemistry faculty
of the University of Minnesota, where he was promoted to Professor in 1976
and where he is currently Institute of Technology Distinguished Professor. He
married his wife Jane in 1965, and they have two children, Sara and Stephanie.

Jiali Gao was born in 1962. He received a B.S. degree in chemistry from Beijing
University in 1983 and a Ph.D. from Purdue University. He was a postdoctoral
associate at Harvard with Martin Karplus and held a faculty position at
SUNYsBuffalo until 1999. He is currently Professor of Chemistry at the University
of Minnesota. He enjoys Minnesota’s weather and its wilderness.
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tions: calculation of the PES, computation of vibrational
energy along the reaction path, and estimation of tun-
neling contributions.

Enzyme reactions have aspects that require special
considerations not involved in modeling simpler reactions
in the gas phase. Proteins are flexible solutes with well-
defined secondary, tertiary, and quaternary structure that
is essential to their activity. Incorporating the three-
dimensional shape of the enzyme as well as its flexibility
and computing the free energy profile along the reaction
path provide challenges to the molecular modeling of
enzyme behavior that will be considered in this Account.

2. The Potential Energy Surface
Early work in QM/MM methods demonstrated its
power2,10-13 and exposed the need for special attention
to the boundary region where QM methods for the
subsystem are joined to MM methods for its surroundings.
Two subsequent formalisms that have proved convenient
and successful for treating the boundary region are strictly
localized bond orbitals14 and generalized hybrid orbitals15

(GHOs). Both methods eliminate the need for the trouble-
some “link” atoms of earlier work.11.12 We use the GHO
approach, which appears to be more robust.

The Born-Oppenheimer energy of the system is the
sum of the QM energy of the QM subsystem, the MM
energy of the MM subsystem, and their interaction.2 The
MM subsystem is bonded to the QM one at NB boundary
atoms, each of which is chosen to be an sp3 carbon of
the MM subsystem. The QM part is treated by a molecular
orbital calculation employing a linear combination of
atomic orbitals (AOs); the AOs consist of a minimum basis
set of NQ orbitals from the fully QM subsystem plus 4NB

hybrid AOs. Only one hybrid orbital from each boundary
atom is optimized in the self-consistent-field process,
which therefore involves NQ + NB AOs. The boundary
atom is treated as a QM atom in the QM energy calcula-
tion but as an MM atom in connection with the MM sub-
system. Matrix elements between AOs of the QM sub-
systems are calculated in a standard semiempirical way.16

The matrix elements involving orbitals on the boundary
atom were parametrized by calculations on simple al-
kanes.15

We note that the semiempirical model is typically
qualitatively reasonable16 but quantitatively inaccurate.
This is checked by preliminary calculations on the enzyme
reaction or on model systems. If quantitative inadequacies
need to be addressed, the semiempirical model is cor-
rected either by adding a few-body semiempirical valence
bond (SEVB) term or by adjusting the parameters of the
semiempirical QM matrix elements for the specific reac-
tion of interest. This adjustment can be carried out either
by adjusting parameters to experiment or by adjusting
them to higher level calculations. The adjusted parameters
are called specific reaction parameters17 (SRPs).

In all applications presented in this Account, the
molecular mechanics parameters used for enzymes are

taken from the CHARMM22 force field,18 and those for
water are taken from the TIP3P19 model.

3. Dynamics
The rate constant for a unimolecular reaction at temper-
ature T is approximated as1,20

where γ(T) is the transmission coefficient, k̃ is Boltzmann’s
constant, h is Planck’s constant, ∆GCVT(T) is the standard-
state molar free energy of activation calculated by canoni-
cal VTST (usually abbreviated as canonical variational
theory, or CVT), and NA is Avogadro’s number. As dis-
cussed below, the factor k̃T/h relates the equilibrium one-
way flux through the transition state to the equilibrium
constant for formation of the transition state; γ(T) as well
as ∆GCVT(T) depends on the solute environment. Since
experimental data are often expressed as

where ∆Gact is the phenomenological standard-state molar
free energy of activation, we have

Thus, there are two critical quantities to be calculated:
∆GCVT(T) and γ(T).

For gas-phase reactions, the transition state has tradi-
tionally been defined as a species missing one degree of
freedom, called s, the reaction coordinate.1 To make
further progress, it is essential to translate this into
mathematical terms; the transition state becomes a hy-
persurface in phase space or configuration space dividing
reactants from products, and the reaction coordinate is
normal to this surface.21 We specify the hypersurface by
two parameters, z/ and Ω, where z/ denotes its location
along some progress variable z on a path from reactants
to products, and Ω denotes the shape and orientation of
the hypersurface. The hypersurface is called a generalized
transition state (GT). The fundamental assumption of
transition-state theory is that the reaction rate equals the
one-way equilibrium flux through this hypersurface. If
classical mechanics were valid, and if the hypersurface is
a hyperplane in rectilinear coordinates, this assumption
gives22

where GR(T) is the free energy of reactants and GGT(T,z,Ω)
is an integral over the phase space of the hypersurface;
this integral is identical in form to the expression for the
free energy of a system constrained to be in the GT. The
exponential function in eq 4 is the equilibrium constant
for forming the transition state. It can be shown that,
provided the reactants are in local equilibrium (a reason-
able assumption), eq 4 provides an upper bound to the

k(T) ) γ(T)
k̃T
h

exp[-∆GCVT(T)/NAk̃T] (1)

k(T) ) k̃T
h

exp[-∆Gact/NAk̃T] (2)

∆Gact ) ∆GCVT(T) - NAk̃T ln γ(T) (3)

k(T) ) k̃T
h

exp{-[GGT(T,z/,Ω) - GR(T)]/NAk̃T} (4)
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accurate classical rate constant.21,22 If one would com-
pletely optimize the hypersurface not just in coordinate
space but in phase space, one would get the exact local
equilibrium rate constant. Furthermore, if one does not
optimize the transition-state hypersurface, the calculated
one-way flux is larger than the net flux due to trajectories
that recross the hypersurface.1 These are rigorous results
in a classical world, but the real world is quantum
mechanical. From this point on, the theory becomes less
rigorous but more relevant to real molecules such as
enzymes and their substrates.

When one relaxes the assumption that the dividing
hypersurface is a hyperplane, the identification of the one-
way flux with a free energy, as in eq 4, becomes ap-
proximate, but for chemically reasonable dividing surfaces
it is usually assumed to be a good approximation, and
we make this approximation. The best result is obtained
by minimizing eq 4 with respect to the location z and
shape and orientation Ω of the hypersurface, which is
equivalent to maximizing GGT(T,z,Ω). Then,

For gas-phase reactions we have obtained very good
results1,7,8 by proceeding as follows: (1) Let z be the
curvilinear distance (arc length) along the isoinertial
minimum energy path (MEP). (2) Rather than optimizing
Ω, choose the dividing hypersurface to be normal to the
MEP on the MEP (so that the missing coordinate s is taken
locally as the progress coordinate z) and extend it off the
MEP in a reasonable way, without including a correction
for non-hyperplanarity. (3) Quantize the free energies in
the harmonic approximation to calculate ∆GCVT. (4) In-
clude quantum mechanical effects on the reaction coor-
dinate, which is the coordinate excluded from GGT(T,z,Ω),
by using a transmission coefficient based on an optimized
multidimensional tunneling23 (OMT) approximation. The
OMT approximation includes zero-point effects in the
effective potential for tunneling24 and optimizes the
tunneling path by a practical version of a least imaginary
action25 principle.

A critical element in the multidimensional tunneling
calculations is that the tunneling path is not on the MEP
but rather on its concave side, due to the negative internal
centrifugal effect of a quantum system (due to its negative
kinetic energy).26 This is sometimes called corner-cutting
tunneling. In many cases the optimized result for calculat-
ing tunneling reduces to using the centrifugal-dominant
small-curvature tunneling approximation,27 in which the
tunneling path is implicitly displaced from the MEP in the
direction of the reaction path curvature by approximately
the amplitude of a zero-point vibrational amplitude
transverse to the MEP. For large curvature of the reaction
path, the displacement can be greater.4,6,23,25

Note that, in principle, γ(T) can include two kinds of
effect, and one could write

where κ(T) is greater than unity and accounts for the

increased flux through the transition state due to tunnel-
ing (as discussed above), and Γ(T) is less than unity and
accounts for the dynamic recrossing events that are
omitted by the one-way flux approximation in transition-
state theory.1 We have generally achieved excellent results
for gas-phase reactions with Γ(T) ) 1.1,4,7,8

The next level of complexity, beyond the gas phase, is
reactions in liquid solutions. The assumption of equilib-
rium internal state distributions for reactants and transi-
tion states is usually quite reasonable in both the gaseous
and liquid states, but occasionally it is suspect, which can
cause the phenomenological rate to differ from the local
equilibrium one,28 or even not to exist.29 We continue,
however, to assume local equilibrium along the reaction
coordinate z. A second issue of equilibration, which should
not be confused with local equilibrium of the solute or
substrate internal degrees of freedom, is equilibration of
the solvent or protein polarization with respect to changes
in the coordinates of the solute or substrate. For reactions
of small organic molecules in liquids, this issue is the
question of equilibrium3 or nonequilibrium30-32 solvation.
Any approach in which the solvent participates in the
reaction coordinate includes nonequilibrium solvation to
some extent. If instead, the solvent is equilibrated to the
solute (equilibrium solvation), the solute can be described
as moving under the statistically averaged force of the
solvent, leading to a solute PMF.33 The clear distinction
between solute and solvent coordinates for reactions of
small molecules in liquids allows one to include quantum
mechanical vibrations in the solute analogously to the way
they are included in the gas phase.2,34 For enzyme reac-
tions, there is no clear-cut solute-solvent border unless
we treat the whole enzyme, coenzyme (if any), and
substrate as a solute, which is not the most practical
approach. Furthermore, we do not want to assume
equilibrium polarization. Therefore, we proceed differ-
ently. First, we single out a chemically motivated reaction
coordinate z, and we compute a fully coupled classical
mechanical PMF with respect to this single z. Then, to
incorporate quantum mechanical effects, we define pri-
mary and secondary subsystems35-37 to include average
quantum mechanical vibrational free energy and tunnel-
ing contributions; the division into subsystems is a gen-
eralization of an embedded cluster model used previously
for processes at gas-crystal interfaces.38 The border be-
tween primary and secondary subsystems in the dynamics
step can be the same as the QM/MM border for calculat-
ing the PES, but it need not be.

For enzyme reactions, we proceed in three stages, the
first of which has two steps. In stage 1, we pre-define the
shape and orientation of the dividing surfaces such that
they correspond to constant z, and we set

where rB is the instantaneous bond length of the breaking
bond, and rM is that of the making bond. Further, we let
zR denote the value of z that corresponds to the reactant
(the Michaelis complex). Step one of stage 1 does not use
the separation into primary and secondary subsystems,

∆GCVT(T) ) max
z,Ω

GGT(T,z,Ω) - GR(T) (5)

γ(T) ) κ(T)Γ(T) (6)

z ) rB - rM (7)
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but later stages do. In step one of stage 1,35-37 we use
classical mechanical umbrella sampling39 to calculate the
PMF on z. For rectilinear z, the PMF is equal to GGT(T,z,Ω)
within a constant that can be computed from the free
energy of reactants. In step 2, instantaneous generalized
normal-mode analysis5 is carried out for a subsystem to
include quantum vibrational energies for many configura-
tions sampled during the umbrella sampling simulation.
We carry out instantaneous normal-mode analysis for the
atoms that are used in the definition of z and the atoms
that are most strongly coupled to these atoms; this
typically includes the substrate molecule and residues or
coenzymes in the active site. These atoms constitute the
primary subsystem, and the rest of the enzyme-solvent
system is called the secondary subsystem or the bath. For
the generalized normal-mode frequencies so obtained, we
estimate the difference, called ∆Wvib(T,z), between the
primary subsystem’s quantum mechanical and classical
mechanical vibrational free energy, and this is added to
the classical PMF along z. This yields a quasiclassical
(QC) free energy of activation by maximizing GGT(T,z,Ω)
+ ∆Wvib(T,z), and by setting the transmission coeffi-
cient equal to unity, we obtain a QC rate constant since
the reaction coordinate is still classical at the GT.37 (Note
that the reaction coordinate is excluded from the in-
stantaneous generalized normal modes of the GT by a
projection operator.5)

In stages 2 and 3, we build on the quasiclassical value
of GCVT(T,z), but we no longer assume that the transmis-
sion coefficient is unity. Stage 2 differs from stage 3 in
the way that the protein-solvent potential field is included
in the primary zone dynamics calculations.37 In either
stage, the transmission coefficient γ is an ensemble
average over reaction paths of the primary system corre-
sponding to transition-state configurations obtained dur-
ing the umbrella sampling calculation of stage 1. Each
individual γi consists of two factors, γi ) Γiκi, with one
factor Γi being an approximation to the dynamic recross-
ing transmission coefficient20,21,40,41 and the other factor
κi accounting for the increase in the rate due to quantum
mechanical tunneling contributions. The latter factor is
defined by extending the definitions of a consistent CVT
transmission coefficient that were used earlier in the gas
phase,1 in embedded clusters in solids,38 and in liquid
solution.3 The ensemble averages of γi, κi, and Γi are
denoted by γ, 〈κ〉, and〈Γ〉, respectively.

In stage 2, the effective potential for the calculation of
the transmission coefficient γi is computed in the static
(frozen) potential field of configuration i. The transmis-
sion coefficient γ obtained in stage 2 is called the
ensemble-averaged static secondary zone (EA-SSZ) trans-
mission coefficient.37 Even in stage 2, the calculation
includes a realistic estimate of the entropic contribu-
tions of all the low-frequency modes, which are included
in the PMF and hence in eq 1. Furthermore, the high-
frequency modes of the primary system are quantized, as
they should be.

In stage 3, the effective potential used to evaluate the
transmission coefficient includes the change in free energy

of the secondary system along the primary system reaction
coordinate in an average way, by assuming that the
secondary zone is equilibrated to the primary zone. This
stage of the calculation is performed by equilibrating the
secondary zone to the primary one at points along the
reaction path by using free energy perturbation42 theory.
The transmission coefficient in stage 3 is averaged over
reaction paths, each with the solvent equilibrated along
the path; consequently, it is called the ensemble-averaged
equilibrium secondary zone (EA-ESZ) approximation.37

One could imagine an even more sophisticated treatment
in which the secondary zone motion is included but
without assuming it is equilibrated, but so far we have
not done this for enzymes. Such a treatment would be
required to allow the secondary zone atoms or the
polarization of distant parts of the enzyme or solvent to
participate even more fully in the reaction coordinate. It
is important to note that, because the reaction coordinate
used for the transmission coefficient depends on the
secondary zone configuration, the secondary zone does
participate in the reaction coordinate, and the ensemble-
averaged transmission coefficients do not assume equili-
bration of the secondary zone to the solute. Thus, the
calculation involves nonequilibrium polarization of the
secondary zone. Although stage 3 is much more expensive
than stage 2, it is not clear, a priori, whether the ensemble
average of the frozen or equilibrated secondary zone is a
better approximation.

For the applications presented below, stochastic bound-
ary molecular dynamics43 and umbrella sampling at 300
K or a specified temperature were performed for all
residues with any atom within a 24-Å sphere centered on
the substrate molecule.

4. Applications
4.1. Enolase. Enolase catalyzes the proton-transfer reac-
tion in the conversion of 2-phospho-D-glycerate (2-PGA)
to phosphoenolpyruvate. Primary and secondary kinetic
isotope effects (KIEs) provided strong evidence for a
stepwise mechanism (Scheme 1), involving the initial
formation of a carbanion intermediate by abstraction from
the carbon acid at the C-2 position, which is followed by
the removal of the â-hydroxyl group.44,45 We35 obtained a
QC free energy of activation of 14.5 kcal/mol. The corre-
sponding experimental value is 15.0 kcal/mol. A significant
finding is that the effect of treating the vibrations by

Scheme 1. Stepwise Mechanism for the Enolase Reaction
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quantum mechanics is large, reducing the QC free energy
of activation by 2.1 kcal/mol from the CM value of 16.8
kcal/mol. Tunneling further lowers ∆Gact by 0.3 kcal/mol
(〈κ〉 ) 1.7).

The computed KIEs for deuteron transfer35 are listed
in Table 1. We find excellent agreement with experiment
when quantum effects are included, but not when the
calculations are classical. The reason is illustrated in Figure
1, which compares the CVT geometries for proton and
deuteron transfer. For deuteron transfer, the CVT transi-
tion state has rB ) 1.57 Å and rM ) 1.26 Å, which are
within 0.01 Å of values at the saddle point. However,
because the zero-point energy associated with the forming
N-H bond increases more rapidly than the potential
energy decreases, the variational transition state for
proton transfer deviates significantly from the saddle
point, resulting in CVT geometries of rB ) 1.75 Å and rM

) 1.12 Å.
4.2. Alcohol Dehydrogenase. The work of Klinman and

co-workers on liver alcohol dehydrogenase (LADH) pro-
vides experimental evidence for hydrogen tunneling.46,47

We carried out simulations35,36 to determine whether KIEs
can be accurately predicted for such enzymatic reactions
and to determine to what extent tunneling contributes to
this reaction.

LADH catalyzes the reversible conversion of an alcohol
to an aldehyde (Figure 2). We obtained a QC free energy
of activation of 14.7 kcal/mol for the oxidation of benzyl
alcoholate anion. For comparison, the experimental phe-
nomenological value is 15.6 kcal/mol. The good absolute
agreement with experiment confirms the reasonableness

of the potential, which involves parameters calibrated36

using ab initio calculations on model compounds, X-ray
structure data for Zn interactions, and experimental data
on the free energy profile in the enzyme. The QC free
energy of activation is 1.8 kcal/mol lower than the CM
result. A similar quantization effect of 1.8 kcal/mol was
calculated by Hammes-Schiffer and co-workers by using
an empirical potential energy function and mixed quan-
tum/classical molecular dynamics,48 in encouraging agree-
ment.

The stage 2 transmission coefficient γ was averaged
over 18 configurations of the transition state. Although
the frozen bath approximation in the stage 2 calculation
is reasonable for the short time scale of the barrier
crossing, we further incorporated the dynamic contri-
butions of the surrounding protein-solvent bath in our
stage 3 algorithm, which yielded γ ) 4.1.37 This exceeds
unity because of tunneling (〈Γ〉 ) 0.98, so γ = 〈κ〉), and it
is essential to include tunneling effects to obtain accurate
KIEs (Table 2). The total effect of quantizing nuclear
motion on ∆Gact is 2.6 kcal/mol. A preliminary study49 of
this oxidation reaction by a path-integral method with an
empirical potential energy has also been carried out.

Our study36,37 provides insight into the critical portion
of the tunneling process that is responsible for exhaltation
of the secondary H/T Swain-Schaad exponent. As the
C-H bond begins to break during the hydride-transfer
reaction, there is significantly more tunneling for the case
of secondary H than for the case of secondary T; about
half of this increase is due to participation of secondary
hydrogen in the reaction path, and about half is due to a
greater probability for corner-cutting tunneling.

4.3. Methylamine Dehydrogenase. Methylamine de-
hydrogenase (MADH) is a quinoprotein that converts
primary amines to aldehyde and ammonia (Scheme 2),
and large primary KIEs of 5-55 have been observed for
the proton-transfer step.50,51

We found52 that the net effect of the inclusion of the
quantum mechanical nature of vibrational free energy
and the effect of the average Γi (the dynamic recrossing
transmission coefficient) in stage 2 reduces the CM free
energy of activation from 20.3 kcal/mol to a value of 17.1
kcal/mol. Tunneling effects further lower the free energy
of activation by 2.5 kcal/mol, resulting in a theoretical
value of 14.6 kcal/mol at 298 K, in good accord with the
experimental value of 14.2 kcal/mol at 303 K. This overall
lowering of the activation barrier by 5.7 kcal/mol il-
lustrates the need to incorporate quantum mechanical
vibrational free energies and tunneling contributions into
enzyme kinetics.

The tunneling effects (∆∆Gact ) 2.5 kcal/mol) in the
proton-transfer reaction in MADH are much larger than
those for the reactions in enolase and LADH, where
tunneling reduces the free energy of activation by 0.3 and
0.8 kcal/mol, respectively. In MADH, tunneling is an
important factor in the absolute reaction rate, increasing
the rate constant by a factor of 〈κ〉 ) 84 (see Table 3, and
note that the ratio of the CVT/SCT and QC rate constants
is {〈κ(T)Γ(T)〉}/{〈Γ(T)〉}, where the average value of Γ(T)

FIGURE 1. Active site of the proton-transfer reaction catalyzed by
enolase. The substrate is on the left, and the Lys345 side chain is
on the right. The breaking and making bond distances (in angstroms)
are shown for the variational transition states for H+ abstraction
(top) and D+ abstraction (bottom).

Table 1. Primary Kinetic Isotope Effect for Deuteron
Transfer in Enolase at 300 K

kH(T)/
kD(T)

kH(T)/
kD(T)

semiclassical TST 4.7 classical TST 1.4
CVT 3.7 CVT 1.3
CVT/SCT 3.5 experiment 3.3
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is 0.76 for the CH3 case). Our calculations indicate that
about 1% of the reaction occurs by overbarrier processes,
with the rest due to tunneling.

A KIE of 18.3 was obtained for the all-protium ver-
sus the trideuterium reaction in MADH, as compared
with the experimental value50 of 17.2. The good agree-
ment of theory and experiment for this KIE provides
evidence that our tunneling calculations are semiquan-
tatively accurate and hence provides the most striking
evidence yet for the contribution of tunneling processes
to enzymatic reactions at physiological temperatures.
Conventional TST without tunneling yields a considerably
smaller KIE value of 5.9 due to zero-point energy loss in
a C-H/D stretch as the reaction progresses toward the
transition state.

4.4. Xylose Isomerase. Xylose isomerase (XyI) catalyzes
the interconversion of glucose and fructose (xylose and
xylulose under physiological conditions) and is one of the
most widely used enzymes in industry. It has also begun
to receive theoretical attention.53,54 An important aspect
of the active site of XyI is the involvement of two metal
ion cofactors (Mg2+ ions) bridged by Glu216. X-ray crystal

structures showed that the movements of the Mg2+ ions
are intimately involved in the enzyme-catalyzed reaction.55

We56 used two models to determine the PMF for the
hydride-transfer reaction whose mechanism57 is depicted
in Scheme 3; these models contain the same number of
atoms in the simulation system, but they differ in the
partition between the QM and MM parts. Model 1 treats
the electronic structure of all 19 atoms of the substrate
xylose (with its O-2 deprotonated) as QM, whereas in
model 2, the Mg ions and the side chains of all their
ligands are also included in the QM region, giving rise to
a total of 79 QM atoms. The rate constants were calculated

FIGURE 2. Benzyl alcoholate substrate in the active site of LADH in the act of transferring a hydride ion from the donor carbon atom to the
acceptor carbon on NAD+. The alcoholate anion is in the first coordination shell of a zinc cation (shown in orange), which also has three
protein residues in its first ligation shell. The rest of the protein is in the background.

Table 2. Primary and Secondary Kinetic Isotope
Effects for Oxidation of Benzyl Alcoholate Anion

Catalyzed by NAD+ and LADH at 300 K

CVT/SSZ CVT/ESZ

CVT ZCT µOMT ZCT µOMT expta

primaryb kH
H/kT

H 6.7 6.6 6.9 5.2 7.5 7.1 (7.3-7.8)

kD
D/kT

D 1.8 1.8 1.8 1.8 1.7 1.9 (1.8-1.9)
secondaryb kH

H/kH
T 1.09 1.18 1.26 1.21 1.36 1.33 (1.31-1.32)

kD
D/kD

T 1.02 1.04 1.05 1.12 1.08 1.07 (1.03-1.05)

a References 46 and 47. Wild-type value is shown first, followed
by values for mutants in parentheses. b Notation: kprimary

secondary.

Scheme 2. Key Reaction Steps in Methylamine Dehydrogenase
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using static secondary zone transmission coefficients. The
computed CM and QC potentials of mean force, the latter
for both hydride and deuteride transfer, are shown in
Figure 3. The two models yielded similar free energies of
activation, in particular 25.0 kcal/mol classically and 23.7
kcal/mol including quantum mechanical vibrations. The
figure shows that the QC ∆Gact is 24.1 kcal/mol for
deuteride transfer, a difference of 0.4 kcal/mol from the
hydride value.

Figure 4 depicts the variation in the average distance
between the two Mg2+ ions as a function of the hydride-
transfer reaction coordinate. The average Mg-Mg distance
at the reactant state is in good accord with the second
magnesium position found in the structure of the complex
with D-glucose by Petsko and co-workers.55 The simula-
tions show that the magnesium distance increases by
more than 1 Å during the hydride transfer. In the reactant
state, the substrate 2 alkoxide anion is ligated to both
magnesium ions, keeping them in close proximity; how-
ever, the product neutral carbonyl group produced by the

hydride transfer provides a much weaker binding force.
This leads to weaker interactions between the Mg ions
and the O-2 oxygen, and the two Mg ions move to a
greater separation.

Using the QC rate constants without tunneling, we
obtain a KIE of 1.8 at 298 K. Our CVT/SCT calculations
show that tunneling increases the rate constant by a factor
of about 7 for the hydride transfer and increases the
computed KIE to 3.8, which is in good accord with the
experimental KIEs of 2.7-4.0 measured for enzymes from
different species with glucose substrate and at 333 K.58,59

5. Conclusions
The examples presented above demonstrate the impor-
tance of quantum mechanical nuclear motion in reactions
catalyzed by enzymes. In this Account, we have presented
an overview of a combination of new procedures that
provide a practical approach for including such effects in
enzyme kinetics. Our approach features a combination of
molecular dynamics simulations for determining the PMF
that includes quantum vibrational free energies for en-
zyme reactions and VTST for dynamics calculations.
Quantum effects are included in this procedure in three
ways: (1) The electronic structure of the atoms in the
catalytic center is treated quantum mechanically in order
to calculate a realistic PES for the bond rearrangement
process. (2) The discrete nature of quantum mechanical
vibrational energies is incorporated in the treatment of
nuclear motions. (3) Multidimensional tunneling contri-
butions and dynamic recrossing transmission coefficients
are included. The resulting method is called ensemble-

Scheme 3. Proposed Key Mechanistic Steps for the Isomerization of Xylose to Xylulose in Xylose Isomerase (Scheme Shows Residues
Discussed in the Text)

Table 3. Computed Classical Mechanical,
Quasiclassical, and CVT/SCT Rate Constants for the

Proton- and Deuterium-Transfer Reaction in
Methylamine Dehydrogenase, and Primary Kinetic

Isotope Effect with (CVT/SCT) and without (QC)
Multidimensional Tunneling Contributions at 298 K

k(T) (1/s) kH(T)/kD(T)

CM QC CVT/SCT QC CVT/SCT

theory 0.0087 1.77 132 5.9 18.3
expta 275 ( 9b 17.2 ( 0.6,b

16.8 ( 0.5c

a 303 K. b Reference 50. c Reference 51.

FIGURE 3. Classical mechanical PMF (solid curve) for hydride
transfer and quasiclassical PMFs that include QM vibrational free
energies for hydride- (dashed curve) and deuteride- (dotted curve)
transfer reactions of xylose isomerase.

FIGURE 4. Computed Mg-Mg distance as a function of the hydride-
transfer reaction coordinate for conversion of xylose to xylulose in
xylose isomerase. The magnesium separation is accompanied by
the migration of the hydride from C-2 to C-1, yielding a 1-alkoxide
anion that favors strong binding with Mg-2.
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averaged VTST with multidimensional tunneling (EA-
VTST/MT).

These procedures have been applied to proton abstrac-
tions catalyzed by enolase and methylamine dehydroge-
nase and hydride-transfer reactions catalyzed by liver
alcohol dehydrogenase and xylose isomerase.35-37,52,56 The
effect on the free energy of activation of quantizing bound
vibrations was found to be 2.1, 3.3, 1.8, and 1.3 kcal/mol
for these reactions, respectively. Quantum mechanical
tunneling further reduces the barrier heights by 0.3, 2.4,
0.8, and 1.1 kcal mol, respectively. Adding the two
quantum effects gives a total lowering of ∆Gact that equals
2.4, 5.7, 2.6, and 2.4 kcal/mol due to (2) and (3) for these
four reactions, in the order listed in this paragraph.

In all cases, we found that the computed KIEs are in
agreement with experiment only when quantum mechan-
ical tunneling contributions are included. In the case of
liver alcohol dehydrogenase, coupled motions from the
secondary hydrogen atom coupled to the reaction coor-
dinate were found to be critical for interpreting the
observed secondary KIEs. On the other hand, the largest
quantum mechanical tunneling effects were found in the
proton abstraction reaction by methylamine dehydroge-
nase, where tunneling increases the reaction rate by a
factor of about 80.

Finally, we found that motions of the two magnesium
ions in the active site of xylose isomerase are essential
for mediating the proton- and hydride-transfer processes,
and the ability of the present methods to incorporate
quantum effects even in such a difficult case is attested
by the fact that computed KIE for deuteride transfer in
XyI is in good agreement with experiment when quantum
mechanical tunneling contributions are included.

The limitations of the present methodology are that we
need to start with an experimental crystal structure, the
potential energy functions are not completely trustworthy
although they are more accurate for the overall shape of
the PES than methods based on a simple combination of
empirical functions, and the dynamics is not treated in a
fully coupled way when quantum effects are included.
Nevertheless, we have had encouraging success in includ-
ing the quantum effects, and we can look forward to
applications to increasingly difficult problems in enzyme
kinetics.

We thank the National Institutes of Health and the National
Science Foundation for support of this work.

Note Added after ASAP Posting. On page 4 of this paper,
left column, lines 3 and 4, “related to ∆Gact(T) by eq 3”
was changed to “equal to GGT(T,z,Ω)”. Line 6, ref 6 was
changed to ref 5; line 24, ref 50 was changed to ref 37.
The ASAP version of this paper that was posted on 4/15/
2002 is correct.
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Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-
atom empirical potential for molecular modeling and dynamics
studies of proteins. J. Phys. Chem. B 1998, 102, 3586-3616.

(19) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.;
Klein, M. L. Comparison of simple potential functions for simulat-
ing liquid water. J. Chem. Phys. 1983, 79, 926-935.

(20) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. Generalized transition
state theory. In Theory of Chemical Reaction Dynamics; Baer, M.,
Ed.; CRC Press: Boca Raton, FL, 1985; Vol. 4, pp 65-137.

(21) Keck, J. C. Variational theory of reaction rates. Adv. Chem. Phys.
1967, 13, 85-121.

(22) Garrett; B. C.; Truhlar, D. G. Criterion of minimum state density
in transition state theory. J. Chem. Phys. 1979, 70, 1593-1598.

(23) Liu, Y.-P.; Lu, D.-h.; Gonzalez-Lafont, A.; Truhlar, D. G.; Garrett,
B. C. Direct dynamics calculation of the kinetic isotope effect for
an organic hydrogen-transfer reaction, including corner-cutting
tunneling in 21 dimensions. J. Am. Chem. Soc. 1993, 115, 7806-
7817.

(24) Truhlar, D. G.; Kuppermann, A. Exact tunneling calculations. J.
Am. Chem. Soc. 1971, 93, 1840-1851.

(25) Garrett, B. C.; Truhlar, D. G. Least-action variational method for
calculating multidimensional tunneling probabilities. J. Chem.
Phys. 1983, 79, 4931-4938.

(26) Marcus, R. A. Analytical mechanics of chemical reactions. J.
Chem. Phys. 1966, 45, 4493-4499.

(27) Liu, Y.-P.; Lynch, G. C.; Truong, T. N.; Lu, D.-h.; Truhlar, D. G.;
Garrett, B. C. Molecular modeling of the kinetic isotope effect for
the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene. J. Am.
Chem. Soc. 1993, 115, 2408-2415.

(28) Lim C.; Truhlar, D. G. Nonequilibrium effects in chemical kinetics.
J. Phys. Chem. 1983, 87, 2683-2699.

(29) Karplus, M. Aspects of protein reaction dynamics. J. Phys. Chem.
2000, 104, 11-27.

Quantum Effects in Enzyme Kinetics Modeling Truhlar et al.

348 ACCOUNTS OF CHEMICAL RESEARCH / VOL. 35, NO. 6, 2002



(30) Hynes, J. T. Theory of reactions in solution. In Theory of Chemical
Reaction Dynamics; Baer, M., Ed.; CRC: Boca Raton, FL, 1985;
Vol. 4, pp 171-234.

(31) Chuang, Y.-Y.; Truhlar, D. G. Nonequilibrium solvation effects for
a polyatomic reaction in solution. J. Am. Chem. Soc. 1999, 121,
10157-10167.

(32) Schenter, G. K.; Garrett, B. C.; Truhlar, D. G. Role of collective
solvent coordinates and nonequilibrium solvation in charge-
transfer reactions. J. Phys. Chem. B 2001, 105, 9672-9685.

(33) McQuarrie, D. A. Statistical Mechanics; Harper & Row: New York,
1973.

(34) Cramer, C. J.; Truhlar, D. G. Implicit solvation models. Equilibria,
structure, spectra, and dynamics. Chem. Rev. 1999, 99, 2161-
2200.

(35) Alhambra, C.; Gao, J.; Corchado, J. C.; Villà, J.; Truhlar, D. G.
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