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The Bethe-Salpeter �BS� formalism is used to study the effect of the coupling between the center of mass
and the relative internal motions of quantum-well excitons in a constant magnetic field. The BS equation in the
case of an in-plane magnetic field is reduced to the well-known Schrödinger equation for magnetoexcitons. In
a perpendicular magnetic field, the BS equation has an extra term �BS term� that does not exist in the
Schrödinger equation. Within the framework of the variational method, it is shown that �i� the ground-state
energy of a heavy-hole magnetoexciton with a zero wave vector in GaAs-�Ga,Al�As quantum wells, which is
calculated by means of the BS formalism, is very close to the ground-state energy obtained from the
Schrödinger equation by using the same trial function; and �ii� in a strong perpendicular magnetic field, the
magnetoexciton dispersion �in-plane magnetoexciton mass� is determined mainly by the BS term rather than
the term that describes the electron-hole Coulomb interaction in the Schrödinger equation.
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I. INTRODUCTION

The calculation of the energy levels of a hydrogen atom in
superstrong magnetic fields1 is an important problem in as-
trophysics and cosmology. A similar problem arises in solid
state physics, wherein the magnetoexcitons in three
dimensions,2 in a semiconductor single quantum well �SQW�
or coupled quantum wells3 �CQW’s�, have been extensively
studied over the past decades. The photon momentum is
quite small and the finite center-of-mass momentum is usu-
ally not important in optical measurements. Thus, many of
the studies are primarily focused on the effects of a strong
magnetic field on the exciton energy levels assuming the
absence of transverse motion of the exciton as a whole.
However, even a small transverse exciton velocity �or small
transverse wave vector Q� will induce an electric field in the
rest frame of the exciton. This electric field will push the
electron and the hole apart, so the binding energy must de-
crease as the transverse velocity increases. In other words,
the magnetic field induces a coupling between the center of
mass and the relative internal motions and, therefore, the
correct description of excitons in a strong magnetic field
should take into account this coupling effect.

In what follows, we focus our attention on the excitons in
SQW and CQW’s in the presence of constant in-plane B�

= �B� ,0 ,0� and perpendicular B�= �0,0 ,B�� magnetic fields.
First, we will consider a SQW of width L �−L /2�z�L /2�
made with a direct-gap semiconductor that has nondegener-
ate and isotropic bands. All SQW calculations can be trivi-
ally generalized to describe magnetoexcitons in CQW’s. In
both structures, the z axis is parallel to the growth direction
and the x-y plane is assumed to be the plane of confinement
of the two-dimensional �2D� electron-hole system. Thus, the
electron and hole motions in the z direction are quantized
into discrete levels due to the presence of confinement po-
tentials Uc,v�z� along this direction. The dispersion laws for
electrons and holes are Ec�k ,kz�=Eg+�2k2 /2mc+�2kz

2 /2mc
and Ev�k ,kz�=�2k2 /2mv+�2kz

2 /2mv, where k is a 2D wave
vector, Eg is the semiconductor band gap, and mc �mv� is the

electron �hole� effective mass. In what follows, we neglect
any electron-hole correlations along the z axis. This approxi-
mation takes place when the effective mass of the hole con-
siderably exceeds that of the electron and the slow motion of
the hole is separated from the fast motion of the electron.
The assumption is applicable for many crystals of AIIIBV

type. For simplicity, we shall take into account only the first
electron E0c and hole E0v confinement levels. This approxi-
mation allows us to write the exciton wave function as
�Q�r��c

0�zc��v
0�zv�, where r=rc−rv= �x ,y�. Here, rc�v� is the

2D electron �hole� position vector, while zc and zv are the
corresponding z coordinates. �c

0�zc� and �v
0�zv� are the elec-

tron and hole confinement wave functions.
By introducing a pseudomomentum �Q=��Qx ,Qy ,0�,

in principle, we can obtain the magnetoexciton energy
E�Q ,B����� and the corresponding wave functions from the
solutions of the Schrödinger equation with the following
Hamiltonian:3,4
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Ĥ� = Eg + E0c + E0v −
�2

2�
�r

2 +
ıe��

2�c
�B� � r� · �r

+
e2B�

2

8�c2 r2 − VC�r + R0� . �2�

Here, M =mc+mv and �=mcmv /M are the exciton in-plane
and reduced masses, respectively. �= �mv−mc� /M and R0
=R2Q0, where Q0= �−Qy ,Qx ,0� and R= ��c /eB��1/2 is the
magnetic length in the case of a perpendicular magnetic
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field. VC represents the electron-hole Coulomb attraction.
Numerical calculations with the Hamiltonians �1� and �2�
show that the binding energy decreases with increasing in-
plane pseudomomentum.4,5

We may well ask whether the Schrödinger equation cor-
rectly describes the nontrivial effects due to the finite in-
plane pseudomomentum. This question has its origin in the
fact that the magnetoexcitons are bound states between two
charged fermions in a constant magnetic field and, therefore,
the appropriate framework for the description of the bound
states is the Bethe-Salpeter �BS� formalism.6–8 Several non-
trivial effects produced by magnetic fields have been recently
predicted in quantum field theories. For example, in the
massless QED, the BS equation is reduced to the
Schrödinger equation and, as a result, it was predicted that
the external constant magnetic field generates an energy gap
�dynamical mass� in the spectrum of massless fermions
for any arbitrary weak attractive interaction between
fermions.9,10 It was shown that the effect is model indepen-
dent �universal�, because the physical reason for this effect
lies in the dimensional reduction in the dynamics of fermion
pairing in the presence of a constant magnetic field. Later, it
was suggested that a similar effect could explain some ex-
perimental findings in the physics of high-temperature lay-
ered superconductors.11

In this paper, we focus our attention on the nontrivial
effects produced by magnetic fields in the case of nonrela-
tivistic bound states, such as the excitons in semiconductors.
It is known12 that in the absence of a magnetic field, by using
a series of approximations �such as the introduction of an
equal-time wave function, in which the BS kernel is assumed
to depend only on the difference between the relative mo-
menta�, the BS equation for electron-hole bound states can
be simplified to the well-known Schrödinger equation for the
relative internal motion. The existence of a magnetic field
induces a coupling between the center of mass and the rela-
tive internal motions, so in the presence of a magnetic field,
the simplification of the BS equation to the Schrödinger
equation is not trivial. In what follows, we apply the BS
formalism to the magnetoexcitons in SQW and CQW struc-
tures. It is natural to expect the following results: �i� in the
case of an in-plane magnetic field, the BS �after reasonable
approximations� and the Schrödinger equations provide ex-
actly the same energies and wave functions; �ii� in the case
of a perpendicular magnetic field, there could be terms in the
BS equation that do not exist in the Schrödinger equation;
�iii� these extra terms should be important only in strong
magnetic fields.

The basic assumption in the BS formalism is that the
electron-hole bound states are described by the BS wave
function �BS amplitude� ��1;2�=��rc ,zc , t1 ;rv ,zv , t2�,
where the variables 1 and 2 represent the corresponding co-
ordinates and the time variables. This function determines
the probability amplitude to find the electron at the point
�rc ,zc� at the moment t1 and the hole at the point �rv ,zv� at
the moment t2. The BS amplitude satisfies the following
equation:

��1;2� =� d�1�,2�,1�,2��Gc�1;1��Gv�2�;2�I�1� 1�

2� 2�
�

���1�;2�� . �3�

Here, I is the irreducible BS kernel and Gc,v are the electron
and hole Green’s functions. They can be obtained by solving
the Schwinger-Dyson equations, but in the effective-mass
approximation, Gc�v� satisfies the Schrödinger equation

�ı�� /�t1− Ĥc�v��1��Gc�v��1,1��=	�1−1��, where Ĥc�v� is the
effective-mass Hamiltonian for an electron �hole� in a mag-
netic field. By using the ladder approximation for the irre-
ducible kernel, one can rewrite the BS equation �3� in the
following form:

	ı�
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− Eg −

1

2mc
�− ı��rc

+
e
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A�xc,yc,zc��2

−
�2

2mc

�2

�zc
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�	ı�
�

�t2
−

1

2mv
�− ı��rv

−
e

c
A�xv,yv,zv��2

−
�2

2mv

�2

�zv
2 − Uv�zv�
��rc,zc,t1;rv,zv,t2�

= − ıI�rc,zc,t1;rv,zv,t2���rc,zc,t1;rv,zv,t2� . �4�

If the retardation effects are neglected, then the irreducible
kernel represents the Coulomb attraction between electrons
and holes that constitute the excitons as follows:

I�rc,zc,t1;rv,zv,t2� = 4
e2� d2q

�2
�2

dqz

2

�

−�

+� d�

2



−1�q,qz,��
q2 + qz

2

�exp�ı�q · �rc − rv� + qz�zc − zv�

− ��t1 − t2��� , �5�

where 
−1�q ,qz ,�� is the Fourier transform of the inverse
dielectric function. For simplicity, we neglect the dispersion
of the dielectric function by assuming 
−1�q ,qz ,��=1 /
�. In
what follows, we will use 2D relative r=rc−rv and center-
of-mass R=�crc+�vrv coordinates ��c,v=mc,v / �mc+mv��.

In a constant magnetic field, the 2D magnetic pseudomo-
mentum �Q= ��Qx ,�Qy� is an exact integral of motion. This
vector is the eigenvalue of the magnetic pseudomomentum
operator

�Q̂ = − ı��rc
− ı��rv

+
e

c
A�xc,yc,zc�

−
e

c
A�xv,yv,zv� − �e/c�B � �rc − rv� . �6�

By neglecting any electron-hole correlation along the z axis,
we can separate the variables by writing the BS amplitude in
the form
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��rc,zc,t1;rv,zv,t2�

= exp�ı�Q · R − �E/����ct1 + �vt2����Q�r,t1 − t2;zc,zv� .

�7�

Here, E=E�Q ,B� is the magnetoexciton energy, and the BS
wave function depends on the relative time t1− t2 and the
center-of-mass time �ct1+�vt2.

An outline of the paper is as follows: In Secs. II and III,
we derive the BS equation for an in-plane magnetic field
�along the x axis� and for a perpendicular magnetic field
�along the z axis�. In Secs. IV and V, we apply a variational
method to obtain the ground-state energy and the dispersion
of the heavy-hole magnetoexcitons in GaAs /AlxGa1−xAs
SQW and CQW’s, respectively.

II. IN-PLANE MAGNETIC FIELD

In the case of an in-plane magnetic field B� applied along
the x axis, we use the following vector potential A�x ,y ,z�
=A��z�= �0,−zB� ,0� �in the gauge div A=0�. With this vector

potential, we calculate �Q̂=−ı��rc
− ı��rv

. Within the cho-

sen gauge, the single-electron �hole� Hamiltonian Ĥc�v� de-
pends on the exact integral of motion Qy as follows:

Ĥ��Qy,qy ;qx� = −
�2

2m�

d2

dz�
2 + U��z��

+
m����

2 �z� − z�
0�2

2
+

�2qx
2

2m�

+ Eg	c,�. �8�

Here, � stands for c ,v, and the following notations are used:
zc

0�qy ,Qy�=��qy +�cQy� /mc��c and zv
0�qy ,Qy�=��qy

−�vQy� /mv��v. The quantity ���=eB� /cm� denotes the elec-
tron �hole� cyclotron frequency. Let

�c
��zc;qy,Qy� ,

�v
��zv;qy,Qy� ,

Ec
��L,qy,Qy ;qx� = Ec

��L,qy,Qy� + �2qx
2/2mc + Eg

and

Ev
��L,qy,Qy ;qx� = Ev

��L,qy,Qy� + �2qx
2/2mv

be the wave functions and corresponding energies of opera-
tors �8�, where � and � denote the quantum indices of the
states in the quantum well. For L→�, there is no confining
potential, and the above quantities are defined as follows:

Ec
�=n�L → �,qy,Qy� = �n +

1

2
����c,

Ec
�=n��L → �,qy,Qy� = �n� +

1

2
����v,

��
n�z�;qy,Qy� =

1


1/4R�
1/2
2nn!

exp	−
�z� − z�

0�qy,Qy��2

2R�
2 


�Hn� z� − z�
0�qy,Qy�
R�

� ,

where Hn are the Hermite polynomials, R�=
� /m����, and
n ,n�=0,1 ,2 , . . ., are the Landau magnetic subband indices.

Let us introduce the Fourier transform �E,Q�q ,� ;zc ,zv�
of the exciton wave function �E,Q�r , t ;zc ,zv� as follows:

�Q�r,t1 − t2;zc,zv�

=� d2q

�2
�2�
−�

+� d�

2

eı�q·r−�t1−t2����Q�q,�;zc,zv� . �9�

The function �Q�q ,� ;zc ,zv� satisfies the BS equation as fol-
lows:

	�� + �cE −
mc�

2Qx
2

2M2 −
�2

M
p · Q − Ĥc�Qy,py�


�	− �� + �vE −
mv�2Qx

2

2M2 +
�2

M
p · Q − Ĥv�Qy,py�


��Q�p,�;zc,zv�

= − ı� d2q

�2
�2

dqz

2

�

−�

+� d��

2

exp�ıqz�zc − zv��

�
4
e2


���q − p�2 + qz
2�

�Q�q,��;zc,zv� . �10�

By separating the variables, we write the solution of the
above BS equation in the form

�Q�q,�;zc,zv� = �
�,�

C�,��c
��zc;qy,Qy��v

��zv;qy,Qy��Q
���q,�� .

As we have mentioned, we take into account only the first
electron �=0 and hole �=0 confined levels E�

0�L ,qy ,Qy�. By
assuming perfect confinement for the electrons and holes in-
side the quantum well with a thickness L, the wave functions
of the first electron and hole confined levels must obey the
boundary conditions ��

0�z�= �L /2;qy ,Qy�=0. In the first-
confined-level approximation, these functions satisfy the fol-
lowing equation:

	−
d2

dZ�
2 + �Z� − ���qy,Qy��2
��

0�Z�;qy,Qy�

= 2
��L,qy,Qy���
0�Z�;qy,Qy� . �11�

Here, we introduce the dimensionless variables Z�=z� /R�,
�c�qy ,Qy�=R��qy +�cQy�, �v�qy ,Qy�=R��qy −�vQy�, and

��L ,qy ,Qy�=E�

0�L ,qy ,Qy� /����. In this section, we shall
use magnetic length R� = ��c /eB��1/2 for the unit length,
and the exciton cyclotron energy ��� =�eB� /c� for the unit
energy. By writing the wave function as ��

0�Z� ;qy ,Qy�
=exp�−Z�

2 /2�u�(Z� ;���qy ,Qy�), we find the following equa-
tion for u�:
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d2u�

dZ�
2 − 2Z�

du�

dZ�

+ �2���qy,Qy�Z� + 2
�

− ��
2�qy,Qy� − 1�u�„Z�;���qy,Qy�… = 0, �12�

with the following boundary conditions: u�(Z�

= �L /2R� ;���qy ,Qy�)=0. The solution of Eq. �12� is a su-
perposition of two special solutions:

u�„Z�;���qy,Qy�… = C1 exp„���qy,Qy�Z�…H

��− 1 + 2
�

2
,Z� − ���qy,Qy��

+ C2 exp„���qy,Qy�Z�…1F1

��1 − 2
�

4
,
1

2
,�Z� − ���qy,Qy��2� .

�13�

Here, H and 1F1 are the Hermite and hypergeometric func-
tions. The boundary conditions provide a set of two linear
homogeneous equations for the arbitrary constants C1 and
C2. The corresponding determinant must be zero, which al-
lows us to calculate the eigenvalues 
��L ,qy ,Qy�. The nor-
malization condition provides exact expressions for the arbi-
trary constants C1 and C2.

In the first-confined-level approximation, we have

�Q�q,�;zc,zv� = �c
0�zc;qy,Qy��v

0�zv;qy,Qy��Q�q,�� ,

where �Q�q ,�� is the solution of the following equation:

��� − �c
0�q,Q,E����� − �v

0�q,Q,E���Q�q,��

= ı
2
e2

��
� d2q�

�2
�2�
−�

+� d��

2


Fqy,Qy�q − q��
�q − q��

�Q�q�,��� .

�14�

Here, the following notations are used:

Fqy,Qy�q� = �
−L/2

L/2 �
−L/2

L/2

dzcdzv�c
0�zc;qy,Qy��c

0�zc;qy,Qy�

��v
0�zv;qy,Qy��v

0�zv;qy,Qy�exp�− �q� �zc − zv�� ,

�c
0�q,Q,E� = − �cE +

mc�
2Qx

2

2M2 +
�2

M
q · Q + Ec

0�L,qy,Qy ;qx� ,

�v
0�q,Q,E� = �vE −

mv�2Qx
2

2M2 +
�2

M
q · Q − Ev

0�L,qy,Qy ;qx� .

�15�

We are looking for the solution of the BS equation �14� of
the form

�Q�q,��

=
gQ�q�

��� − �c
0�q,Q,E� + ı0+���� − �v

0�q,Q,E� − ı0+�
,

�16�

where gQ�q� is an unknown function. Let us define the func-
tion

�Q�q� = �
−�

+� d�

2

�Q�q,�� =� dr exp�− ıq · r��Q�r� ,

�17�

which is the Fourier transform of the equal-time BS ampli-
tude �or exciton wave function� �Q�r�. Thus, by taking into
account the analytic properties of �Q�q ,��, we obtain the
following BS equation for determining the exciton energy E
and the Fourier transform of the exciton wave function
�Q�q�:

	E − Eg −
�2Qx

2

2M
−

�2qx
2

2�
− Ec

0�L,qy,Qy�

− Ev
0�L,qy,Qy�
�Q�q�

+
2
e2


�
� d2q

�2
�2

Fqy,Qy�q − p�
�q − p�

�Q�q� = 0. �18�

In position representation, the last equation is equivalent
to the well-known Schrödinger equation for magnetoexcitons
in an in-plane magnetic field Ĥ��Q�r ,zc ,zv�= �E
−Eg��Q�r ,zc ,zv�, where �Q�r ,zc ,zv�=�Q�x ,y��c

0�zc��v
0�zv�

and the Hamiltonian is given by Eq. �1�. Thus, in the case of
an in-plane magnetic field, the BS equation in the ladder
approximation and the Schrödinger equation provide exactly
the same energies and wave functions �for a numerical solu-
tion of the Schrödinger equation in the case of CQW’s and
an in-plane magnetic field, see, e.g., Ref. 4 and references
therein�.

III. PERPENDICULAR MAGNETIC FIELD

Though the BS equation in this case is not new,13 we tread
the subject in detail for the sake of completeness.

We assume that the magnetic field is along the z axis and
is given by B�=rot A�r�=B�z, where z= �0,0 ,1�. In the
gauge div A�r�=0, the vector potential of the magnetic field
B� is defined by A��r�= �1 /2�B��r. Because of the con-
finement potentials, the electron and hole motions along the z
direction are quantized into discrete levels. The correspond-
ing wave functions � and � are the solutions of the corre-
sponding one-particle Schrödinger equations as follows:
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−
�2

2mcz

d2��

dzc
2 + Uc�zc����zc� = E�c���zc� ,

−
�2

2mvz

d2��

dzv
2 + Uv�zv����zv� = E�v���zv� .

Here, E�c �E�v� is the electron �hole� confinement energy,
while � and � denote the quantum numbers of the states in
the confinement potential. In our calculations, we take into
account only the first electron E0c and hole E0v confinement
levels.

By means of the chosen vector potential, we calculate

for the magnetic pseudomomentum operator �Q̂=−ı��rc
− ı��rv

− �e /2c�B�� �rc−rv�. By separating the variables,
we write the BS amplitude in the following form:

��rc,zc,t1;rv,zv,t2�

= exp�ı	Q · R −
e

c�
r · A��R�

−
E

�
��ct1 + �vt2�
��Q�r;t1 − t2��0�zc��0�zv� .

Here, E=E�Q ,B�� is the magnetoexciton energy. It is useful
to introduce the Fourier transform of the BS amplitude as
follows:

�Q�r;t1 − t2� =� d2q

�2
�2�
−�

+� d�

2


�exp�ı�q · r − ��t1 − t2����Q�q;�� .

The function �Q�q ;�� satisfies the BS equation as follows:

� d2q�

�2
�2� d2r exp�ı�q� − q� · r���� − �c�q�,Q�

− �c
B��Q,q�;r����� − �v�q�,Q�

− �v
B��Q,q�;r���Q�q�;��

= − ı� d2q�

�2
�2

2
e2f��q − q���

��q − q�� �

−�

+� d��

2

�Q�q�;��� .

�19�

The following notations are used:

�c�q,Q� = Ec�q + �cQ� + E0c − �cE,

�v�q,Q� = − Ev�q − �vQ� − E0v + �vE ,

�20a�

�c
B��Q,q;r� =

e�

2Mc
�B� � r� · Q +

e�

2mcc
�B� � r� · q

+
e2B�

2

8mcc
2r2, �20b�

�v
B��Q,q;r� =

e�

2Mc
�B� � r� · Q −

e�

2mvc
�B� � r� · q

+
e2B�

2

8mvc2r2. �20c�

Here, Ec,v�q�=Ec,v�q ,qz=0�, and the structure factor f is
given by

f��q�� = f�q� = �
−�

+�

dzc�
−�

+�

dzv

�exp��− q�zc − zv����0c
2 �zc��0v

2 �zv� . �21�

By comparing the left-hand sides of Eqs. �10� and �19�, one
can see that the perpendicular magnetic field is nonlocally
created in momentum �or position� representation terms.

We rewrite Eq. �19� in the following form:

�Q�q;�� −� d2q�

�2
�2

�c
B��Q,q,q����� − �v�q�,Q��

��� − �c�q,Q� + ı0+���� − �v�q,Q� − ı0+�

��Q�q�;�� −� d2q�

�2
�2

�v
B��Q,q,q����� − �c�q�,Q��

��� − �c�q,Q� + ı0+���� − �v�q,Q� − ı0+�

��Q�q�;�� +� d2q�

�2
�2

�cv
B��Q,q,q��

��� − �c�q,Q� + ı0+���� − �v�q,Q� − ı0+�
�Q�q�;��

=
− ı

��� − �c�q,Q� + ı0+���� − �v�q,Q� − ı0+�� d2q�

�2
�2

2
e2f��q − q���

��q − q�� �

−�

+� d��

2

�Q�q�;��� , �22�

VARIATIONAL METHOD FOR SOLVING THE BETHE-… PHYSICAL REVIEW B 77, 165333 �2008�

165333-5



where the nonlocal terms are defined as follows:

��
B��Q,q,q�� =� d2r exp�ı�q� − q� · r���

B��Q,q�;r� ,

�23�

�cv
B��Q,q,q�� =� d2r exp�ı�q� − q� · r��c

B��Q,q�;r�

��v
B��Q,q�;r� . �24�

We are looking for the solution of Eq. �22� of the form

�Q�q;�� =
gQ�q�

��� − �c�q,Q� + ı0+���� − �v�q,Q� − ı0+�
,

�25�

where gQ�q� is a function to be determined. Let us define the
function �Q�q�, which is the Fourier transform of the equal-
time BS amplitude �or exciton wave function� �Q�r�
=�Q�r ; t1− t2=0�, as follows:

�Q�q� = �
−�

+� d�

2

�Q�q;�� . �26�

By taking into account the analytic properties of �Q�q ;��,
we obtain the following BS equation to determine the exci-
ton energy E�=E�Q ,B��−Eg−E0c−E0v and the Fourier
transform of the exciton wave function �Q�q�:

� d2q�

�2
�2	��2Q2

2M
+

�2q2

2�
�	�q − q�� + �c

B��Q,q,q��

+ �v
B��Q,q,q�� −

2
e2


�

f��q − q���
�q − q�� 
�Q�q��

−� d2q�

�2
�2VBS�q,q�;Q,E���Q�q�� = E��Q�q� ,

�27�

where the BS term, VBS, is defined as follows:

VBS�q,q�;Q,E��

=
�Ev�q� − �vQ� − Ev�q − �vQ���c

B��Q,q,q��
E� − Ec�q� + �cQ� − Ev�q − �vQ�

+
�Ec�q� + �cQ� − Ec�q + �cQ���v

B��Q,q,q��
E� − Ec�q + �cQ� − Ev�q� − �vQ�

+ �cv
B��Q,q,q��	 1

E� − Ec�q� + �cQ� − Ev�q − �vQ�

+
1

E� − Ec�q + �cQ� − Ev�q� − �vQ�
 . �28a�

In position representation, the function VBS�q ,q� ;Q ,E�� is
related to a nonlocal potential that depends on the energy E�
as follows:

VBS�r,r�;Q,E�� =� d2q

�2
�2� d2q�

�2
�2VBS�q,q�;Q,E��

�exp�ı�q · r − q� · r��� . �28b�

The solution of Eq. �27� can be written as

�Q�q� = exp�− ıq · R0���q − Q0� ,

where R0=R2Q0, Q0= �−Qy ,Qx ,0�, R= ��c /eB��1/2 is the
magnetic length, and the function ��q� satisfies the follow-
ing equation:

�2q2

2�
��q� − ı

��e

2�c
�B� � q� · �q��q� −

��

8R2�q
2��q�

−
2
e2


�
� d2q�

�2
�2exp�ı�q − q�� · R0�
f��q − q���

�q − q��
��q��

−� d2q�

�2
�2exp�ı�q − q�� · R0�VBS�q +
�

2
Q0,q�

+
�

2
Q0;Q,E����q�� = E���q� . �29�

Here, ��=�eB� /�c is the exciton cyclotron energy and �
= �mv−mc� / �mv+mc�. The BS equation �29� differs from the
Schrödinger equation. If we neglect the BS term in the left-
hand side of Eq. �29�, we obtain the Schrödinger equation for
magnetoexcitons with the Hamiltonian �2�. The Coulomb
term is the only term in the right-hand side of Eq. �2�, which
depends on the exciton wave vector Q as follows:

VC�r + R0� =
2
e2


�
� dq

�2
�2exp�ıq · �r + R0��
f��q��

�q�
.

�30�

In other words, according to the Schrödinger equation, the
magnetoexciton dispersion is determined by the Coulomb
term only, while according to the BS equation, the effective
potential �28b� also contributes to the magnetoexciton dis-
persion.

Since the Bethe-Salpeter term plays an important role in
determining the magnetoexciton dispersion �see Secs. IV and
V�, one may well ask a question about the physical meaning
of this term. The answer is not trivial, and the only thing we
know for sure is that a similar phenomenon was predicted in
QED, where the dynamical mass �energy gap� can be defined
by considering the BS equation for composed fermion-
antifermion pairs �Nambu-Goldstone bosons9� or the
Schwinger-Dyson equation for the dynamical mass
function.10 Our calculations are similar to the first approach,
and the only difference is that we applied a nonrelativistic
version of the BS equation for electron-hole pairs in a con-
stant magnetic field.

IV. SINGLE GaAs ÕAlxGa1−xAs QUANTUM WELL:
VARIATIONAL CALCULATIONS

In this section, we calculate first the ground-state energy
of a heavy-hole magnetoexciton with a zero wave vector
�Q=0�, assuming a single GaAs quantum well with a thick-
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ness L sandwiched between two AlxGa1−xAs layers. The
electron in-plane mass mc and the electron z mass mcz are
chosen to be mc=mcz=0.067m0, where m0 is the bare elec-
tron mass. The in-plane heavy-hole mass mv and the hole z
mass mvz are expressed in terms of the Luttinger parameters
�1 and �2: mv=m0 / ��1+�2� and mvz=m0 / ��1−2�2�. It is
known that the difference between the band-gap energies of
GaAs and AlxGa1−xAs provides a finite potential well, which
confines the electron-hole pairs in the GaAs quantum well.
We assume that the potentials are square-well potentials of
finite depths Vc=0.6�Eg�x� and Vv=0.4�Eg�x�, respec-
tively. The energy-band-gap discontinuity14 is assumed to be
�Eg�x�= �1.555x+0.37x2� meV. The confinement energy
levels Ec0 and Ev0 are obtained by solving the following
transcendental equations:

tan� L

2aB


mczEc0

�EB
� =
 Vc

Ec0
− 1, �31�

tan� L

2aB


mvzEv0

�EB
� =
 Vv

Ev0
− 1. �32�

Here, aB=���2 /�e2 and EB=�2 /2�aB
2 are the effective Bohr

radius and the exciton Bohr energy, respectively. Structure
factor �21� is calculated by means of the following wave
functions:

�c,v
0 �z� = Ac,v exp	z

L

aB


mcz,vz�Vc,v − Ec0,v0�
�EB


,

− � � z � − 1/2,

�c,v
0 �z� = Bc,v cos�z

L

aB

�mcz,vzEc0,v0�

�EB
�, − 1/2 � z � 1/2,

�c,v
0 �z� = Ac,v exp	− z

L

aB


mcz,vz�Vc,v − Ec0,v0�
�EB


, 1/2 � z

� � ,

Bc,v = 	1

2
+ aB/�L
mcz,vz�Vc,v − Ec0,v0�

�EB
�
−1/2

,

Ac,v = Bc,v exp	 L

2aB


mcz,vz�Vc,v − Ec0,v0�
�EB



�cos� L

2aB


�mcz,vzEc0,v0�
�EB

� . �33�

Since the BS equation �29� is rather complicated, we shall
obtain numerical results for the ground-state energy within
the framework of the variational approach. In the case of
weak magnetic fields, i.e., ���EB, we use a hydrogenlike
trial function with a variational parameter � as follows:

���r� =
2
2�



aB

exp�−
2r�

aB
� . �34�

With this trial function, we calculate the following magne-
toexciton energy:

E = Eg + Ec0 + Ev0 − E���EB,

where E��� is defined by the solution of the following equa-
tion:

E��� = − 4�2 + 128�3�
0

�

dx
f�x L

aB
�

�16�2 + x2�3/2 −
3

128�2���

EB
�2

+ VBS��,E,B� . �35�

With trial function �34�, the BS contribution VBS�� ,E ,B� to
the ground state is analytically calculated as follows:

VBS��,E,B� =
��

EB

aB
2�1 − �2�

212E2�4�aB
2E − 2�2�7��aB

2E − 2�2��15aB
14E7 − 162aB

12E6�2 + 8aB
8E4�6�− 195 + 896E2 − 36�2�

− 4aB
10E5�4�− 173 + 128E2 + 4�2� + 64aB

4E2�10�41 + 1408E2 − 322�2 − 492�4�

− 512aB
2E�12�3 + 208E2 − 18�2 + 15�4� − 32aB

6E3�8�79 + 1152E2 + 802�2 + 172�4�

+ 1024�14�48E2 + �− 1 + �2�2�� − 64E2�8
†− 2048aB

2E�6 + 1024�8 + 48aB
4�4�1 + 32E2 + �2 − 12�4�

− 16aB
6E�2

„3 + 32E2 + 24�2�2 + �2� + aB
8E2�64E2 − 3�11 + 8�2�7 + �2���…‡ln�aB

2E

2�2�� . �36�

The dimensionless variables E and aB in the right-hand side
of Eq. �36� must be replaced by E����� /EB

2 and aB /R, re-
spectively.

The results obtained by using the hydrogenlike trial func-
tion are presented in Table I. We used more significant fig-
ures to stress the fact that the magnetoexciton energies,

which are calculated by applying the BS formalism, are ex-
tremely close to those provided by the Schrödinger equation.

The magnetoexciton dispersion is determined by Cou-
lomb interaction �30� and the BS term in Eq. �29�. The con-
tribution from the Coulomb interaction to the energy of the
magnetoexciton �in EB units� quadratically increases for

VARIATIONAL METHOD FOR SOLVING THE BETHE-… PHYSICAL REVIEW B 77, 165333 �2008�

165333-7



small wave vectors QaB�1 and can be written as
�QaB�2� /MC. The hydrogenlike trial function provides the
following expression for the in-plane exciton mass MC:

�

MC
= 32�3� R

aB
�4�

0

�

dx
x2f�x L

aB
�

�16�2 + x2�3/2 .

The contribution to the exciton dispersion due to the BS term
can be analytically evaluated. We found that it also quadrati-
cally increases for small wave vectors, but for B��4 T, this
contribution is about one-tenth of �QaB�2� /MC. Thus, in a
weak magnetic field, there is no measurable difference be-
tween the results calculated by the Schrödinger equation and
those obtained by the more complicated BS formalism. For a
weak perpendicular magnetic field and small wave vectors,
the Coulomb interaction dominates, which means that a hy-
drogen type of ground state that is slightly modified by the
magnetic field exists.

Next, we consider the case of a strong magnetic field. In
this regime, one can apply the lowest Landau level �LLL�
approximation, according to which one can ignore transitions
between Landau levels and consider only the states on the
lowest Landau level. In the LLL approximation, we choose
the trial wave function ���r� to be similar to the correspond-
ing ground-state wave function of a charge particle in a mag-
netic field but which depend on a variational parameter � as
follows:

���r� =
1


2
�
exp�−

r2

4�2� . �37�

Here, and in what follows, we use the exciton cyclotron en-
ergy �� for unit energy and magnetic length R for unit
length. The ground-state magnetoexciton energy will be cal-
culated by minimizing the energy functional E����= �E−Eg

−E0c−E0v� /�� with respect to the variational parameter �
as follows:

E� =
1

4
� 1

�2 + �2� + VC��� + VBS��,E��

+ VC��,Q� + VBS��,E�,Q� . �38�

Note that �i� all terms in Eq. �38� are dimensionless �in a
cyclotron energy �� unit� and �ii� we have written the con-
tributions from the Coulomb interaction and from the BS
term �28a� as a sum of Q-independent terms, VC��� and
VBS�� ,E��, and Q-dependent terms, VC�� ,Q� and
VBS�� ,E� ,Q�. The Q-dependent terms will be used to obtain
the magnetoexciton dispersion. The second and third terms
in Eq. �38� are given by

VC��� = −
Eb

��

 2



�

0

�

dxf�x
L

R
�exp�−

x2�2

2
� , �39�

VBS��,E�� =
e−4E��2

�2�− 1 + �2�
64E�2 ˆe4E��2

�− 56E�2�4�4

+ 32E�3�6�4 + �− 1 + �2�2 + 4E��2�− 1 − 2�2

+ 3�4�� − 32E�2
„− 1 + �4�2�− 1 + �3 + 4E��2

��− 2 + E��2���2�…Ei�4E��2�‰ . �40�

Here, Eb=

 /2e2 / �
�R� is the binding energy of the two-
dimensional �L=0, �=1� magnetoexciton, which is calcu-
lated according to the Schrödinger equation.

The energy of the magnetoexciton quadratically increases
for small wave vectors �QR�1�: VC�� ,Q�
= �� /2MC�L ,B ,����QR�2 and VBS�� ,E� ,Q�
= �� /2MBS�L ,B ,����QR�2. The in-plane mass MC�L ,B ,�� is
due to the Coulomb interaction and does not depend on the
electron or hole mass as follows:

TABLE I. Variational calculations of the heavy-hole exciton ground-state energies with Q=0 for various
well widths L and weak magnetic fields B. The trial function �34� depends on the variational parameter �.
The energy gap is Eg=1.519 eV. The electron and hole confinement energy levels Ec0 and Ev0 are calculated
by assuming square-well potentials of finite depths. The Evar column represents the results from the varia-
tional calculations with the following Luttinger parameters: �1=7.36 and �2=2.57 �Ref. 14�. The measured
ground-state energies Eexp are reproduced from Ref. 15. The ESchr column represents the ground-state ener-
gies calculated according to the Schrödinger equation with the Hamiltonian �2� and a variational parameter
�Schr.

L
�nm�

B
�T�

� Ec0

�meV�
Ev0

�meV�
Evar

�eV�
Eexp

�eV�
ESchr

�eV�
�Schr

4.03 0 0.786 100 26.9 1.6355 1.638 1.6355 0.786

4.03 2 0.810 100 26.9 1.6356 1.639 1.6357 0.810

4.03 4 0.869 100 26.9 1.6365 1.640 1.6367 0.867

4.32 0 0.776 93.5 24.3 1.6262 1.630 1.6262 0.776

4.32 2 0.802 93.5 24.3 1.6265 1.631 1.6266 0.802

4.32 4 0.861 93.5 24.3 1.6274 1.632 1.6275 0.859

7.2 0 0.702 51.0 11.0 1.5716 1.571 1.5716 0.702

7.2 2 0.734 51.0 11.0 1.5719 1.572 1.5720 0.734

7.2 4 0.803 51.0 11.0 1.5730 1.573 1.5731 0.800
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M2D

MC�L,B,��
=
 2



�

0

�

dxf�x
L

R
�x2 exp�−

x2�2

2
� , �41�

where M2D=23/2
��2 / �

e2R�. The second in-plane mass,
MBS, has its origin in the fact that the BS term depends on Q
and, for QR�1, MBS is defined by the following:

�

2MBS�L,B,��
=

e−4E��2
�− 1 + �2�

256E�3 †e4E��2
�256E�5�12�6 + 64E�4�10�4�5 − 17�2� − 3�2�− 1 + �2�3 − 2E��4�− 1 + �2�2�1 + 12�2�

− 48E�2�6�2�2 − 7�2 + 5�4� + 16E�3�− 2 + 2�4 + �8�2�4 − 53�2 + 74�4��� − 64E�3�2�− �2 + 16E�3�12�6

+ 4E�2�10�4�5 − 18�2� + �6�2�− 7 + 33�2 − 30�4� + 2E��− 1 + �4 + �8�2�2 − 29�2 + 45�4���Ei�4E��2�‡ , �42�

where Ei�x�=−�−x
� dt exp�−t� / t is the exponential integral

function �the principle value of the integral is taken�.
Table II gives the results of our variational calculations. It

can be seen that the BS equation provides similar results for
the ground-state energies as does the Schrödinger equation.
Since the BS mass is much smaller than the Coulomb mass,
one can say that in strong magnetic fields, the exciton dis-
persion for small wave vectors �QR�1� is determined by the
BS term rather than the Coulomb interaction.

V. COUPLED QUANTUM WELLS IN STRONG
MAGNETIC FIELDS

In this section, we consider exactly the same double well
electron-hole system as in Ref. 18. The electron layer and
hole layer have finite widths, denoted below by Lc and Lv,
and they are separated by a distance D. As in Ref. 18, we
assume that the electrons and holes are confined between two
parallel, infinitely high potential barriers. This assumption
greatly simplifies our numerical calculations of the magne-
toexciton energy and the Coulomb mass, but by neglecting

TABLE II. Variational calculations of the heavy-hole exciton ground-state energies for various well widths L and strong magnetic fields
B. Trial function �37� depends on the variational parameter �. The energy gap is Eg=1.519 eV for the L=4.03, 4.32, 7.2, and 7.49 nm wells,
and Eg=1.512 eV for the L=7.5 nm. The electron and hole confinement energy levels Ec0 and Ev0 are calculated by assuming square-well
potentials of finite depths. VC��� is the average Coulomb energy. The Evar column represents the energies obtained by the variational method
using the following Luttinger parameters: �1=6.9 and �2=2.4 �Ref. 16�. The measured ground-state energies Eexp for the L=4.03, 4.32, 7.2,
and 7.49 nm wells are reproduced from Ref. 15, and for the L=7.5 nm well from Ref. 17. The ESchr column represents the ground-state
energies calculated according to the Schrödinger equation with �Schr. The MC and MBS are the masses calculated according to Eqs. �41� and
�42�.

L
�nm�

B
�T�

� Ec0

�meV�
Ev0

�meV�
VC���
�meV�

Evar

�eV�
Eexp

�eV�
ESchr

�eV�
�Schr MC /m0 MBS /m0

4.03 20 0.85 100 25.9 23.7 1.650 1.644 1.651 0.85 0.145 0.0025

4.03 18 0.84 100 25.9 22.9 1.648 1.643 1.649 0.83 0.127 0.0010

4.03 16 0.84 100 25.9 21.8 1.647 1.642 1.647 0.82 0.114 0.0002

4.32 20 0.84 93.5 23.4 23.8 1.641 1.636 1.642 0.85 0.147 0.0026

4.32 18 0.83 93.5 23.4 23.1 1.639 1.635 1.640 0.83 0.129 0.0011

4.32 16 0.83 93.5 23.4 22.0 1.638 1.634 1.638 0.82 0.116 0.0002

7.2 20 0.86 51.1 10.5 22.2 1.587 1.583 1.588 0.86 0.176 0.0044

7.2 18 0.84 51.1 10.5 21.7 1.585 1.582 1.586 0.85 0.159 0.0022

7.2 16 0.84 51.1 10.5 20.7 1.583 1.581 1.584 0.84 0.142 0.0007

7.49 20 0.86 48.3 9.84 22.1 1.584 1.580 1.584 0.86 0.178 0.0046

7.49 18 0.84 48.3 9.84 21.6 1.582 1.579 1.582 0.85 0.161 0.0024

7.49 16 0.84 48.3 9.84 20.6 1.580 1.578 1.580 0.84 0.144 0.0008

7.5 14.5 0.67 48.3 9.82 23.6 1.577 1.577 1.572 0.83 0.131 0.0302

7.5 12 0.64 48.3 9.82 22.8 1.575 1.573 1.570 0.60 0.049 0.0160

7.5 8.5 0.60 48.3 9.82 20.9 1.572 1.570 1.569 0.52 0.026 0.0071
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the existence of the finite confinement potentials, we cannot
provide a more realistic value for this part of the exciton
energy related to the exciton confinement along the z direc-
tion than the sum of the well-known terms �2
2 /2mc,vLc,v

2 .
Obviously, the more realistic model of a symmetric �or
asymmetric� DQW with finite quantum-well widths19 will
cause minor corrections to our main conclusions, which are
as follows: �i� the BS formalism provides a term that does
not exist in the Schrödinger equation, and �ii� the term plays
an important role in determining the magnetoexciton disper-
sion.

The basic features of the CQW magnetoexcitons are the
same as those of the SQW magnetoexcitons. However, be-
cause of the separation between the electron and hole layers,
the Coulomb energy and the Coulomb in-plane mass quanti-
tatively differ from those of the SQW magnetoexciton. In
other words, in strong magnetic fields, Eq. �38� holds, but the
Coulomb interaction and the corresponding in-plane mass
are defined as follows:

VC��� = −
Eb

��

 2



�

0

�

dxe−x2�2/2F�x,
Lc

R
,
Lv

R
,
D

R
� ,

M2D

MC�L,B,��
=
 2



�

0

�

dxx2e−x2�2/2F�x,
Lc

R
,
Lv

R
,
D

R
� .

�43�

In CQW’s, the structure factor is

F�x,�c,�v,d� =
16
4�1 − e−�cx��1 − e−�vx�e−dx

�c�vx2�4
2 + �c
2x2��4
2 + �v

2x2�
.

Table III gives the result of our numerical calculation of the
magnetoexciton energy relative to the Eg+E0c+E0v level. We
used the same parameters as in Refs. 5 and 18. It can be seen
that the BS equation provides slightly different results for the
binding energy than the Schrödinger equation.

The main difference between the BS and the Schrödinger
equation is in their predictions about the in-plane magne-
toexciton mass in a strong magnetic field. Unfortunately, op-

tical experimental studies can provide information about the
exciton dispersion only for Q�Qph, where �Qph is the pho-
ton momentum. Other studies, such as the photolumines-
cence measurement experiments that can measure the
exciton-mass dependence of the recombination time or ex-
perimental data related to the polariton effects, can provide
information about the magnetoexciton dispersion. Many of
these experimental techniques20 are used to measure the
magnetoexciton dispersion in the presence of an in-plane
magnetic field. As we mentioned above, the measurable dif-
ferences between the magnetoexciton dispersions, as pre-
dicted by the BS formalism and by the Schrödinger equation,
are to be expected in strong perpendicular magnetic fields.
To the best of our knowledge, there is only one paper18

wherein the exciton dispersion in GaAs /Ga0.67Al0.33As
CQW’s in a weak perpendicular magnetic field was mea-
sured. There is good agreement between the mass MC and
the measured mass in a weak magnetic field. By referring to
the conclusion that the BS term in a weak magnetic field has
a very small contribution to the dispersion as compared to
the contribution due to the Coulomb interaction, one can say
that there exists good agreement between the BS formalism
and the measurements.

Next, we discuss the fact that MC increases by about four
times if we increase the magnetic field from 4 to 10 T. If the
magnetoexciton dispersion in strong magnetic fields �B
�5 T� is determined mainly by the BS term, then the mag-
netoexciton mass should not increase so dramatically and,
therefore, additional experimental points are needed to prove
or disprove the conclusions drawn by applying the BS for-
malism.

VI. SUMMARY

In summary, we applied the BS formalism to the
quantum-well excitons in an in-plane magnetic field and in a
perpendicular magnetic field. We found that in the case of an
in-plane magnetic field, the BS equation and the Schrödinger
equation both provide exactly the same results. In contrast, in
a perpendicular magnetic field, the BS equation contains an

TABLE III. Variational calculations of the magnetoexciton energies for various strong magnetic fields B,
measured relative to the Eg+E0c+E0v level. The trial function �37� depends on the variational parameter �.
The Evar column contains the energies calculated by the variational method with the following parameters:
mc=0.067m0, mv=0.18m0, 
�=12.35, Lc=Lv=8 nm, and D=11.5 nm. The ESchr column represents the
magnetoexciton energies calculated according to the Schrödinger equation with �Schr. MC is the in-plane
mass defined by Eq. �43�. The MBS is the mass calculated according to Eq. �42�.

B
�T�

� Evar

�meV�
ESchr

�meV�
�Schr MC /m0 MBS / m0

10 0.96 6.36 6.56 0.98 2.06 0.228

9 0.96 5.17 5.43 0.97 1.75 0.221

8 0.96 4.03 4.31 0.97 1.46 0.216

7 0.96 2.94 3.20 0.96 1.19 0.215

6 0.95 1.91 2.11 0.95 0.95 0.218

5 0.94 0.95 1.04 0.94 0.72 0.230

4 0.92 0.01 0.01 0.92 0.52 0.247
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extra term �BS term�. We applied a variational procedure to
obtain the effect of the BS term on the magnetoexciton
ground-state energy and magnetoexciton mass. We used a
simple hydrogenlike trial wave function in a weak magnetic
field and figured out that in a weak perpendicular magnetic
field, the results obtained by the BS formalism are very close
to the results calculated by means of the Schrödinger equa-

tion. In a strong magnetic field, we used a trial function
similar to the wave function of a charged particle in a mag-
netic field. We calculated that in a strong magnetic field, the
ground-state energy is very close to that obtained by means
of the Schrödinger equation, but the magnetoexciton disper-
sion is determined by the BS term rather than by the
electron-hole Coulomb term in the Schrödinger equation.
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