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Lewis-Riesenfeld approach to the solutions of the Schrdodinger equation in the presence
of a time-dependent linear potential
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We reexamine the general solution of a Schrédinger equation in the presence of a time-dependent linear
potential in configuration space based on the Lewis-Riesenfeld framework. For comparison, we also solve the
problem in momentum space and then Fourier transform the solution to get the general wave function. Ap-
propriately choosing the weight function in the latter method, we can obtain the same wave function as the
former method. It is found that a non-Hermitian time-dependent linear invariant can be used to obtain
Gaussian-type wave-packet solutions of the time-dependent system. This operator is a specific linear combi-
nation of the initial momentum and initial position operators. This fact indicates that the constants of integra-
tion such as the initial position and initial momentum that determine the classical motion play important roles
in the time-dependent quantum system. The eigenfunction of the linear invariant is interpreted as a wave packet
with a “center of mass” moving along the classical trajectory, while the ratio between the coefficients of the
initial position and initial momentum determines the width of the wave packet.
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INTRODUCTION Hermitian linear LR invariant. Second, we solve the

Schrodinger equation in momentum space and then trans-

f l'l(;he itUd{ 0: tln_le-?epdendeni slysthem_s hlas been ?. grol\;v '?I%rm back to the coordinate space to obtain a general wave-
Iéld not only tor IS tundamental physical perspective buly oy solution. Third, we present a physical interpretation

also Ior its ?ppzcablhty, S;JCh _a? quartwltun; trans%dr%:ﬂ, to the LR invariant for the realization of constructing an
?ua_n un; olp 'Cé _Q’t?u?ﬁ um ml ?_rmla |o|r[t.,8], anf tﬁpm' invariant and the selection of an appropriate space-time
rpnlcs[ —11. ecently, the analytical solutions of the one- v, stormation to find the general solution.

dimensional Schrodinger equation with a time-dependent lin- The Schrédinger equation for describing the motion of a

ear potential have attracted the attention of physicist o : ; ;
: . article in the presence of a time-dependent linear potential
[12-15. First, Guedes found the wave function for a?) P P P

Schrddinger equation with a time-dependent linear potentia'F' of the form

[12], using the Lewis-Riesenfeld.R) method[16,17]. Later O
on, Feng 13] found the plane-wave-type and the Airy-packet 'hg
solutions using a space-time transformation method. How- A
ever, Bekkaret al. pointed out that the Airy-packet solution where the Hamiltonia(t) is induced by an external time-

is in fact only a superposition of the plane-wave-type soludependent driving forc&(t), given by
tion [14]. Moreover, Bauel{15] showed that the solution

proposed by Ref{12] is only a special case of the so-called |:|(t) =P _rox 2
\Volkov solution with a zero wave vectd: He also showed 2m )
how to do the gauge transformation appropriately to the = _ _
time-dependent Schrodinger equation to get the different exlhis time-dependent dynamical problem could be solved in
pressions of the Hamiltonian and the corresponding Volkogither configuration or momentum space.
solution.

Besides the solutions described above, we shall show that CONFEIGURATION SPACE
the linear invariant can benon-Hermitian As such, a
Gaussian-type wave-pack@&WP) solution is then derived ~ To utilize the LR method17] solving the time-dependent
naturally based on the LR approach. This solution was rule@dystem, one should first find an operak@ such that

out in previous studies because the linear LR invariétas - A
aHermitianoperator had been assund@-15. Although in iﬁﬂ - ih&_l + [i |:|] =0 (3)
Ref. [14] the authors pointed out the incorrectness of setting dt at ’ '
B=0 in Ref.[12], the Hermiticity assumption still led them
to the conclusion oB=0, which they referred to as “a con-
straint that must be taken to get physical solutions.” This N _
assumption, however, is actually unnecessary. [O e (x, ) =Apy(X1), (4)

The main results of this Brief Report are as follows. First,with N\ being the corresponding eigenvalue. The general
we show that the GWP solution is derived using a non-wave functiony(x,t) is then written as

=Hy, (1)

n2

and then find its eigenfunctioa, (x,t) satisfying

1050-2947/2005/11)/0141014)/$23.00 014101-1 ©2005 The American Physical Society



BRIEF REPORTS

Q[/(X,t):fd)\g()\)l/f)\(x,t), (5)

whereg(\) is a weight function for.
The wave function/, (x,t) in Eq. (5) is related tog, (X, t),

l/f)\(X,t) = eia)\(l)()o)\(xvt)v (6)
where «(t) is a function of time only, satisfying
ay = @y Xidlot - AIf) @y . 7)

We note that the integration in E¢b) includes, in general,
all possible degeneracies af It turns out that the time-

dependent invariant operatHrt) takes the linear fornfil2]

1(t) = AM)p+ B+ C(1), (8)

in which A(t), B(t), andC(t) are time-dependerd-number
functions to be determined.
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t t
Ct)=Cqy- A()f F(ndr+ &)f F(r)rdr
0 mJo

B
=Co-ABG() - —Gy(t), (16)
where Aq, By, and C, are arbitrary complex constants. Fur-
thermore, substituting Eqé11)—<(16) into Eq.(8), we find

1(t) = Agp(0) + BgX(0) + Co=1(0). (17)

In other words, the invariaritis precisely the linear combi-
nation of the initial momentunp(0) and the initial position
X(0) with an arbitrary constar,,.

For the convenience of later discussion, we defigé)
and p(t) as the expectation value &ft) and p(t) with re-
spect to the wave functior (x,1), i.e.,

Pot + Gy(t)

Xe(t) = (X(1)), =%o + (18

The operators describing the equations of motion are

given by

dx _[XH]_p

dt A m ©
and

dp_[pH] _

t__iﬁ =F(t) (10

By solving the above two equations, the space and momen-
tum operators can be obtained in terms of initial conditions,

given by
f((t) = 5‘((0) + M (11)
m
and
p(t) = p(0) + G(1), (12
whereG,(t) and G(t) are defined, respectively, as
t
Gy(t) = f G(ndr (13
0
and
t
G(t) = f F(ndr. (14)
0

Substituting Eqs(8)—(10) into Eq. (3), and solving these
operator equations, we get

A=Ag- 22, B() =By, (15)

Pe(t) = (Pt = po + G(1),

where xo=x.(0) and py=p.(0) are, respectively, the initial
position and initial momentum of the corresponding classical
problem.

To find a solution of Eqg¢l), we have to solve Eq4) first.
Note that in Eq.(6) the phase facto€“? is a function of
time only, thusy, (x,t) is also an eigenfunction dfwith the
same eigenvalug. It turns out that

A = A)P(t) + B(t)xc(t) + C(t) = Agho + BoXo + Co.
(20)

(19

By solving Eq.(4), after some algebra, we find

i| 2[A = C(t)]x - Bpx?
e e

Substituting Eq(21) into Eq.(7), we obtain

_ [ IN-C(P+ ihBko)]
a,(t) =, (0) - J;) [ P A2 dr. (22

Here we see that in generalt) is a complex function.
Using the identities

A-C()

Bo
A(t) - pc(t) + A(t) XC(t)a

d
i BYAD]= BY/[mA(Y)], (23

d.._2
dtxc(t)— mpc(t)xc(t),

we finally obtain the general expression of the wave-packet
solution
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g0 “pi(7) g _ 9 d_
-— —=— —. 32
h(x,1) = TR~ p[ f } o A at’ F(t) (32

B t2 i It turns out that Eq(30) becomes
y p{ 1BolX = X(1)] m} 24

ZﬁA(t) 9 "+ G(t 2
"y o n 20 =t 0L, (33
It is important to note that the probability density is of the ot 2m

form

which yields
@2 ImLay (0 [+Im(Fo){[x = (O T/ A®IA%}

D?= . (25 DN = e _i_f" [p' +G(DT
O |At)/A| ) d(p',t') = o(p )eXp{ P = dry, (34

where the factorF is defined byFy=By/A. It is crucial to
note that#, must satisfy

or equivalently

t _ 2
M(Fo) <0 (26) ¢<p,t>=¢o[p—e(t>]exp{—'— Lp G(‘Z)r:G(T’] df}.
0

to ensure Eq(24) really provides a physically acceptable (35)
solution. This is a key result of this Brief Report.
In the case in which IifiFy) <O, the ¢, obtained in Eq. Here ¢, is an arbitrary single-variable function.

(24) describes exactly a GWP with position uncertainty The general solution of the wave functi@fix,t) can be
= 1AM obtained by the Fourier transform,
t
Ax:\/j<|()AO|>, - .
2\\=Im(Fo) Pxt) = =—= f #(p,ne™"dp,
\'27Tﬁ —o0
and momentum uncertainty
T ) _;f Nexol Lo’
Ap= \ﬁ ALY 28 =2 | gp)exp Hp' + GO
P 2(\,_ Im(Fo) 2 Ve ] i
H t ’ 2
which leads to the uncertainty relation - '_f Mdr}dp'. (36)
t
Fol L - Fo—
-ms)l)
AxAp=—|\————— | = . (29
2\ ~Im(F) 2 COMPARISON

The equality holds at=Re(m/F). That is, at that time the e now show that the GWP solution E(4) obtained

position uncertainty of the particle goes to the minimum.  ysing the LR method can also be obtained from the general
We can see that, in generd, (or ) is not zero, al-  solution(36). We consider the time-dependent wave function

though it is taken to be zero in Refd2-15. In the case in  ¢(p’) in momentum space, given by

which Im(F,)=0, the result obtained in Eq25) enforces Ui , ) ,

F,=0. This means that the solution becomes plane-wave-like bo(p) = (E x| - o*(p' ~po)® i (p" = Po)Xo

rather than GWP, otherwis@gy, |> becomes divergent at the 0 2 h '

momentt=m/ F,. (37)

After some algebra, we obtain the space-time wave function,
given explicitly as
We now turn to solve the problem in the momentum space S2\1/4 2
by denoting the wave function a#(p,t) and using the sub- B(p,b) = (2_> exp| - '_f pc(T)dT
stitution x— i/ dp. We thus have ’ mh? hly 2m

MOMENTUM SPACE

a1 +it/T)
|ﬁ<—+F >¢_—¢ (30) ><exp{—T[|o—|oc(t)]2
, (I?/ (;P)angmg the momentum and time variables frgnt) xexp[— g[p - pc(t)]xc(t)] . (39
p'=p-Gt), t' =t, (31  Here the parameter
the corresponding differential operators can be transformed T= Zﬂz (39
to the form h
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indicates a measure of tlspreading timeof the GWP.
Substituting Eqs(37) and(38) into Eq.(36) and accom-
plishing the integration, we get

) 1 G
P(x,t) = 2m) Y4 o (1 +it/T) exp[ ﬁfo 2m dT]

[x=%OF i }

X - — + —p(t)x]. 40
ex{ 221 +itm) P (40

By suitably choosing the initial condition parameters as

_ 1  B__im

rHY™ Ay T

en0 = (41)
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proportional to the eigenfunction of the linear invariant op-
eratorl =Agp(0) +Byk(0) +C, acquires position and momen-
tum uncertainties, as given by Eq®7) and (28), respec-
tively. The size of the uncertainties is determined by the
factor Fo=By/Aq.

On the other hand, we have investigated the time-
dependent system in momentum space. After performing a
transformation of variables, the problem becomes exactly
solvable. Moreover, we have presented a specific example
for comparison between these two approaches. Our analysis
has shown that the key to solving the time-dependent
Schrédinger equation is to find a way to transform the prob-
lem to a standard form. For a linear time-dependent case, the
standard form is simply a free-particle problem. It is inter-

we can see that this wave function is exactly of the forMegiing to note that if we treat the driving force as a time-

given by Eq.(24).

SUMMARY

In this Brief Report, we have studied the Schrodinger
equation with a time-dependent linear potential. We reexa

ine the linear invariant proposed by Guedég]. We have

shown that if we assume this opterator to be a non-Hermitian

dependent gravity, then an observer in the “free-fall frame”
will not be able to feel the gravity. As a result, the frame
effectively becomes an inertial frame. This provides a physi-
cal picture for the transformation E@31) we have per-
formed.

m_
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