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We reexamine the general solution of a Schrödinger equation in the presence of a time-dependent linear
potential in configuration space based on the Lewis-Riesenfeld framework. For comparison, we also solve the
problem in momentum space and then Fourier transform the solution to get the general wave function. Ap-
propriately choosing the weight function in the latter method, we can obtain the same wave function as the
former method. It is found that a non-Hermitian time-dependent linear invariant can be used to obtain
Gaussian-type wave-packet solutions of the time-dependent system. This operator is a specific linear combi-
nation of the initial momentum and initial position operators. This fact indicates that the constants of integra-
tion such as the initial position and initial momentum that determine the classical motion play important roles
in the time-dependent quantum system. The eigenfunction of the linear invariant is interpreted as a wave packet
with a “center of mass” moving along the classical trajectory, while the ratio between the coefficients of the
initial position and initial momentum determines the width of the wave packet.
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INTRODUCTION

The study of time-dependent systems has been a growing
field not only for its fundamental physical perspective but
also for its applicability, such as quantum transport[1–3],
quantum optics[4–6], quantum information[7,8], and spin-
tronics [9–11]. Recently, the analytical solutions of the one-
dimensional Schrödinger equation with a time-dependent lin-
ear potential have attracted the attention of physicists
[12–15]. First, Guedes found the wave function for a
Schrödinger equation with a time-dependent linear potential
[12], using the Lewis-Riesenfeld(LR) method[16,17]. Later
on, Feng[13] found the plane-wave-type and the Airy-packet
solutions using a space-time transformation method. How-
ever, Bekkaret al. pointed out that the Airy-packet solution
is in fact only a superposition of the plane-wave-type solu-
tion [14]. Moreover, Bauer[15] showed that the solution
proposed by Ref.[12] is only a special case of the so-called
Volkov solution with a zero wave vectork. He also showed
how to do the gauge transformation appropriately to the
time-dependent Schrödinger equation to get the different ex-
pressions of the Hamiltonian and the corresponding Volkov
solution.

Besides the solutions described above, we shall show that
the linear invariant can benon-Hermitian. As such, a
Gaussian-type wave-packet(GWP) solution is then derived
naturally based on the LR approach. This solution was ruled

out in previous studies because the linear LR invariantÎstd as
a Hermitianoperator had been assumed[12–15]. Although in
Ref. [14] the authors pointed out the incorrectness of setting
B=0 in Ref. [12], the Hermiticity assumption still led them
to the conclusion ofB=0, which they referred to as “a con-
straint that must be taken to get physical solutions.” This
assumption, however, is actually unnecessary.

The main results of this Brief Report are as follows. First,
we show that the GWP solution is derived using a non-

Hermitian linear LR invariant. Second, we solve the
Schrödinger equation in momentum space and then trans-
form back to the coordinate space to obtain a general wave-
function solution. Third, we present a physical interpretation
to the LR invariant for the realization of constructing an
invariant and the selection of an appropriate space-time
transformation to find the general solution.

The Schrödinger equation for describing the motion of a
particle in the presence of a time-dependent linear potential
is of the form

i"
]c

]t
= Ĥc, s1d

where the HamiltonianĤstd is induced by an external time-
dependent driving forceFstd, given by

Ĥstd =
p̂2

2m
− Fstdx̂. s2d

This time-dependent dynamical problem could be solved in
either configuration or momentum space.

CONFIGURATION SPACE

To utilize the LR method[17] solving the time-dependent

system, one should first find an operatorÎstd such that

i"
dÎ

dt
= i"

]Î

]t
+ fÎ,Ĥg = 0, s3d

and then find its eigenfunctionwlsx,td satisfying

Îstdwlsx,td = lwlsx,td, s4d

with l being the corresponding eigenvalue. The general
wave functioncsx,td is then written as
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csx,td =E dlgsldclsx,td, s5d

wheregsld is a weight function forl.
The wave functionclsx,td in Eq. (5) is related towlsx,td,

clsx,td = eialstdwlsx,td, s6d

whereastd is a function of time only, satisfying

ȧl = wl
−1si]/]t − Ĥ/"dwl. s7d

We note that the integration in Eq.(5) includes, in general,
all possible degeneracies ofl. It turns out that the time-

dependent invariant operatorÎstd takes the linear form[12]

Îstd = Astdp̂ + Bstdx̂ + Cstd, s8d

in which Astd, Bstd, and Cstd are time-dependentc-number
functions to be determined.

The operators describing the equations of motion are
given by

dx̂

dt
=

fx̂,Ĥg
i"

=
p̂

m
s9d

and

dp̂

dt
=

fp̂,Ĥg
i"

= Fstd. s10d

By solving the above two equations, the space and momen-
tum operators can be obtained in terms of initial conditions,
given by

x̂std = x̂s0d +
p̂s0dt + G1std

m
s11d

and

p̂std = p̂s0d + Gstd, s12d

whereG1std andGstd are defined, respectively, as

G1std ; E
0

t

Gstddt s13d

and

Gstd ; E
0

t

Fstddt. s14d

Substituting Eqs.(8)–(10) into Eq. (3), and solving these
operator equations, we get

Astd = A0 −
B0

m
t, Bstd = B0, s15d

Cstd = C0 − A0E
0

t

Fstddt +
B0

m
E

0

t

Fstdtdt

= C0 − AstdGstd −
B0

m
G1std, s16d

whereA0, B0, andC0 are arbitrary complex constants. Fur-
thermore, substituting Eqs.(11)–(16) into Eq. (8), we find

Îstd = A0p̂s0d + B0x̂s0d + C0 = Îs0d. s17d

In other words, the invariantÎ is precisely the linear combi-
nation of the initial momentump̂s0d and the initial position
x̂s0d with an arbitrary constantC0.

For the convenience of later discussion, we definexcstd
and pcstd as the expectation value ofx̂std and p̂std with re-
spect to the wave functionclsx,td, i.e.,

xcstd ; kx̂stdll = x0 +
p0t + G1std

m
, s18d

pcstd ; kp̂stdll = p0 + Gstd, s19d

where x0=xcs0d and p0=pcs0d are, respectively, the initial
position and initial momentum of the corresponding classical
problem.

To find a solution of Eq.(1), we have to solve Eq.(4) first.
Note that in Eq.(6) the phase factoreiastd is a function of

time only, thusclsx,td is also an eigenfunction ofÎ with the
same eigenvaluel. It turns out that

l = Astdpcstd + Bstdxcstd + Cstd = A0p0 + B0x0 + C0.

s20d

By solving Eq.(4), after some algebra, we find

wlsx,td = expH i

"
F2fl − Cstdgx − B0x

2

2Astd GJ . s21d

Substituting Eq.(21) into Eq. (7), we obtain

alstd = als0d −E
0

t F fl − Cstdg2 + i"B0Astd
2m"A2std Gdt. s22d

Here we see that in generalastd is a complex function.
Using the identities

l − Cstd
Astd

= pcstd +
B0

Astd
xcstd,

d

dt
fB0/Astdg = B0

2/fmA2stdg, s23d

d

dt
xc

2std =
2

m
pcstdxcstd,

we finally obtain the general expression of the wave-packet
solution
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clsx,td =
eials0d

ÎAstd/A0

expF−
i

"
E

0

t pc
2std
2m

dtG
3expF−

iB0fx − xcstdg2

2"Astd
+

i

"
pcstdxG . s24d

It is important to note that the probability density is of the
form

uclsx,tdu2 =
e−2 Imfals0dg+ImsF0dhfx − xcstdg2/"uAstd/A0u2j

uAstd/A0u
, s25d

where the factorF0 is defined byF0;B0/A0. It is crucial to
note thatF0 must satisfy

ImsF0d ø 0 s26d

to ensure Eq.(24) really provides a physically acceptable
solution. This is a key result of this Brief Report.

In the case in which ImsF0d,0, thecl obtained in Eq.
(24) describes exactly a GWP with position uncertainty

Dx =Î"

2S uAstd/A0u
Î− ImsF0dD , s27d

and momentum uncertainty

Dp =Î"

2S uF0u
Î− ImsF0d

D , s28d

which leads to the uncertainty relation

DxDp =
"

2
1UF0S1 −F0

t

m
DU

− ImsF0d 2 ù
"

2
. s29d

The equality holds att=Resm/F0d. That is, at that time the
position uncertainty of the particle goes to the minimum.

We can see that, in general,B0 (or F0) is not zero, al-
though it is taken to be zero in Refs.[12–15]. In the case in
which ImsF0d=0, the result obtained in Eq.(25) enforces
F0=0. This means that the solution becomes plane-wave-like
rather than GWP, otherwiseuclu2 becomes divergent at the
momentt=m/F0.

MOMENTUM SPACE

We now turn to solve the problem in the momentum space
by denoting the wave function asfsp,td and using the sub-
stitution x→ i"] /]p. We thus have

i"S ]

]t
+ F

]

]p
Df =

p2

2m
f. s30d

By changing the momentum and time variables fromsp,td
to sp8 ,t8d,

p8 ; p − Gstd, t8 ; t, s31d

the corresponding differential operators can be transformed
to the form

]

]p
=

]

]p8
,

]

]t
=

]

]t8
− Fstd

]

]p8
. s32d

It turns out that Eq.(30) becomes

i"
]f

]t8
=

fp8 + Gst8dg2

2m
f, s33d

which yields

fsp8,t8d = f0sp8dexpH−
i

"
E

0

t8 fp8 + Gstdg2

2m
dtJ , s34d

or equivalently

fsp,td = f0fp − GstdgexpH−
i

"
E

0

t fp − Gstd + Gstdg2

2m
dtJ .

s35d

Heref0 is an arbitrary single-variable function.
The general solution of the wave functioncsx,td can be

obtained by the Fourier transform,

csx,td =
1

Î2p"
E

−`

`

fsp,tdeipx/"dp,

=
1

Î2p"
E

−`

`

f0sp8dexpH i

"
fp8 + Gstdgx

−
i

"
E

0

t fp8 + Gstdg2

2m
dtJdp8. s36d

COMPARISON

We now show that the GWP solution Eq.(24) obtained
using the LR method can also be obtained from the general
solution(36). We consider the time-dependent wave function
f0sp8d in momentum space, given by

f0sp8d = S 2s2

p"2D1/4

expF−
s2sp8 − p0d2

"2 − i
sp8 − p0dx0

"
G .

s37d

After some algebra, we obtain the space-time wave function,
given explicitly as

fsp,td = S 2s2

p"2D1/4

expF−
i

"
E

0

t pc
2std
2m

dtG
3expF−

s2s1 + it/Td
"2 fp − pcstdg2G

3expF−
i

"
fp − pcstdgxcstdG . s38d

Here the parameter

T ;
2ms2

"
s39d
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indicates a measure of thespreading timeof the GWP.
Substituting Eqs.(37) and (38) into Eq. (36) and accom-

plishing the integration, we get

csx,td =
1

s2pd1/4Îss1 + it/Td
expF−

i

"
E

0

t pc
2std
2m

dtG
3expF−

fx − xcstdg2

4s2s1 + it/Td
+

i

"
pcstdxG . s40d

By suitably choosing the initial condition parameters as

eials0d =
1

s2ps2d1/4,
B0

A0
= −

im

T
, s41d

we can see that this wave function is exactly of the form
given by Eq.(24).

SUMMARY

In this Brief Report, we have studied the Schrödinger
equation with a time-dependent linear potential. We reexam-
ine the linear invariant proposed by Guedes[12]. We have
shown that if we assume this opterator to be a non-Hermitian
one, then a GWP solution can be obtained. This GWP has a
“center of mass” moving along the trajectory of the corre-
sponding classical particle. The trajectory is determined by
the classical initial positionx0 and initial momentump0. In
the corresponding quantum problem,x̂s0d does not commute
with p̂s0d, thus the particle described by a wave function

proportional to the eigenfunction of the linear invariant op-

erator Î =A0p̂s0d+B0x̂s0d+C0 acquires position and momen-
tum uncertainties, as given by Eqs.(27) and (28), respec-
tively. The size of the uncertainties is determined by the
factor F0=B0/A0.

On the other hand, we have investigated the time-
dependent system in momentum space. After performing a
transformation of variables, the problem becomes exactly
solvable. Moreover, we have presented a specific example
for comparison between these two approaches. Our analysis
has shown that the key to solving the time-dependent
Schrödinger equation is to find a way to transform the prob-
lem to a standard form. For a linear time-dependent case, the
standard form is simply a free-particle problem. It is inter-
esting to note that if we treat the driving force as a time-
dependent gravity, then an observer in the “free-fall frame”
will not be able to feel the gravity. As a result, the frame
effectively becomes an inertial frame. This provides a physi-
cal picture for the transformation Eq.(31) we have per-
formed.
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