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Two-species percolation and scaling theory of the metal-insulator transition in two dimensions

Yigal Meir
Department of Physics, Ben-Gurion University, Beer Sheva 84105, Israel

~Received 27 December 1999!

Recently, a simple noninteracting-electron model, combining local quantum tunneling via quantum point
contacts and global classical percolation, has been introduced in order to describe the observed ‘‘metal-
insulator transition’’ in two dimensions@Y. Meir, Phys. Rev. Lett.83, 3506 ~1999!#. Here, based upon that
model, a two-species percolation scaling theory is introduced and compared to the experimental data. The two
species in this model are, on one hand, the ‘‘metallic’’ point contacts, whose critical energy lies below the
Fermi energy, and on the other hand, the insulating quantum point contacts. It is shown that many features of
the experiments, such as the exponential dependence of the resistance on temperature on the metallic side, the
linear dependence of the exponent on density, thee2/h scale of the critical resistance, the quenching of the
metallic phase by a parallel magnetic field and the nonmonotonic dependence of the critical density on a
perpendicular magnetic field, can be naturally explained by the model. Moreover, details such as the nonmono-
tonic dependence of the resistance on temperature or the inflection point of the resistance vs the parallel
magnetic field are also a natural consequence of the theory. The calculated parallel field dependence of the
critical density agrees excellently with experiments, and is used to deduce an experimental value of the
confining energy in the vertical direction. It is also shown that the resistance on the metallic side can decrease
with decreasing temperature by an arbitrary factor in the nondegenerate regime (T&EF).
al

fo
n-
in

es

o
o
si
de
th

er
e
n
1
o
ia
lle

, t
as
b
a

ta
c-

n
s-

eri-
the
ned

tally

ints
-

the
nts
duc-
ally
y
-
-
n

zero
, to
h

s-
m is
I. BACKGROUND AND INTRODUCTION
OF THE MODEL

The surprising experimental observation of a met
insulator transition in two dimensions,1–5 in contradiction
with the predictions of single-parameter scaling theory
noninteracting electrons,6 has been a subject of extensive i
vestigation in recent years. Theories ranging from attribut
the effect to scattering by impurities7 to those suggesting ‘‘a
new form of matter’’8 have been proposed. Some theori
based on the treatment of disorder and electron-electron
teractions by Finkelstein,9 have been put forward,10 while
other approaches considered spin-orbit scattering11 or perco-
lation of electron-hole liquid.12 Altshuler and co-workers7

gave several arguments why this transition is not due t
non-Fermi-liquid behavior, including the fact that the exp
nential increase of the conductance with temperature per
to high densities where the conductance is almost two or
of magnitude larger than the critical conductance, and
fact that the Hall resistance is rather insensitive to temp
ture, and does not display any critical behavior. Some exp
mental results supporting the conclusion that the transitio
not driven by interactions that were mentioned in Ref.
included the fact that such a transition was observed als
high-density electron gas upon the introduction of artific
disorder14 and the fact that increasing the density in a para
electron gas increases the conductance,5 even though the in-
teractions are screened by the parallel gas. More recently
compressibility on the metallic side of the transition w
measured15 and was shown to be accurately described
Hartree-Fock approximation, again indicating a norm
Fermi-liquid behavior. Several other recent experiments16,17

have demonstrated weak-localization behavior on the me
lic side with very little effect of electron-electron intera
tions.
PRB 610163-1829/2000/61~24!/16470~7!/$15.00
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Recently13 I proposed a simple noninteracting electro
model, combining local quantum tunneling and global cla
sical percolation, to explain several features of the exp
mental observations. At low electron or hole densities
potential fluctuations due to the disorder cannot be scree
and they define density puddles~density separation into
puddles in gated GaAs was indeed observed experimen
by Eytan et al.,18 using near-field spectroscopy!. These
puddles are connected via saddle points, or quantum po
contacts~QPCs!. It is now established that even at low tem
peratures and for open puddles~or quantum dots!, the
dephasing time may be shorter than the escape time from
puddle.19 Thus it is assumed that between tunneling eve
through the QPCs dephasing takes place, and the con
tance of the system will be determined by adding classic
these quantum resistors.~A related model was introduced b
Shimshoni and co-workers20 to describe successfully trans
port in the quantum Hall regime.! Each saddle point is char
acterized by its critical energyec , such that the transmissio
through it is given byT(e)5Q(e2ec). ~I assume that the
energy scale over which the transmission changes from
to unity is smaller than the other relevant energy scales
avoid additional parameters.! Then the conductance throug
a QPC is given by the Landauer formula,

G~m,T!5
2e2

h E deS 2
] f FD~e!

]e DT~e!

5
2e2

h

1

11exp@~ec2m!/kT#
, ~1!

wherem is the chemical potential andf FD is the Fermi-Dirac
distribution function. The system is now composed of cla
sical resistors, where the resistance of each one of the
given by Eq.~1!, with random QPC energies.
16 470 ©2000 The American Physical Society
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II. TWO-SPECIES SCALING THEORY

In Ref. 13 I presented numerical calculations to be co
pared to the experimental data. Here I present a diffe
approach, based on the scaling theory of a two-species
colation network. At low temperatures the resistors can
divided into two groups, the conducting ones (ec,m),
whose conductance is about 2e2/h, and the insulating one
(ec.m), whose conductance is nearly zero. Thus the dis
bution of the conductances will be a two-peak distributio
where the weight of each peak will be determined mainly
density~or chemical potential! and the position of the con
ducting peaks will be determined mainly by temperatu
Since most properties of such a percolating network are
sensitive to details of this distribution, I replace it by a tw
delta-function distribution; namely I replace the network
a network comprising of two types of conductors: an effe
tive conductorsm describing the metallic QPCs, and who
conductance is given by Eq.~1!, with an appropriately aver
agedec :

sm5
2e2

h

1

11exp@2A/kT#
~2!

(A, which depends on the potential fluctuations distributi
is taken as unity in the following, i.e., it defines the tempe
ture scale!, and an effective conductors i describing the con-
tribution of the insulating phase. The conductance of the
sulating QPC is dominated by activation,21 s i
5sa exp@2A1 /T#. @Indeed, experimental invesigations r
ported that ‘‘two different contributions to the conductivi
~or two conducting systems! may exist, one with a metallic
temperature behavior and another one with a standard, i
lating, weak-localization behavior.’’17#

The scaling form of the two-dimensional conductance
such a two-phase mixtures near the percolation threshold
well known,22,23

s5Asms i f @~n2nc!
tAsm /s i # ~3!

with t.1.3, the conductance critical exponent for tw
dimensional percolation, and

f ~x!}H x, x→`

1/x, x→2`,
~4!

so that in the cases i→0 ~a regular random resistor ne
work!, s(n);sm(n2nc)

t, while in the casesm→` ~a mix-
ture of an insulator and a superconductor!, s(n);s i(nc
2n)2t. @In the above I used the notationxt[sign(x)uxu t.#
The exact form off (x) is not very important, and in the
following I have chosen f~x!5ln(B1exp[x])/ln(B
1exp[2x]), with B52.

III. ‘‘ZERO’’ TEMPERATURE

At low enough temperatures, such thatT!A,A1 the con-
ductors have either zero conductance or a conductance e
to 2e2/h. If the dephasing time is still finite at these tempe
tures, one has a random-resistor network, which exhibi
second-order percolation transition.23 In Fig. 1 I fit the
lowest-temperature experimental data3–5 to the expected
critical dependence. Clearly, the agreement with the class
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percolation prediction is excellent. Such an agreement w
the classical percolation critical behavior may serve as
additional experimental indication that the dephasing is s
finite at the lowest available experimental temperatures.

In the inset I plot the experimental data5 for
1/(d ln s/d ln n), which, if indeeds;(n2nc)

t, is given by
(n2nc)/t. The data indeed fits on a straight line, with
slope given by 1/t.1/1.3. For comparison a straight lin
with a slope of unity is also depicted, in order to demonstr
that a critical exponent of unity cannot fit the data.

IV. TEMPERATURE DEPENDENCE OF THE RESISTANCE

As temperature increases, the Fermi-Dirac distribution
broadened. Consequently the conductance of the transp
quantum point contacts (ec,m) decreases exponentially~to-
wards half its value!, while that of the insulating ones in
creases. Thus we expect to see rather dramatic effects
function of temperature. This is indeed depicted in Fig. 2.
~a! I plot the prediction of the model and in~b! the experi-
mental data.3 As temperature is lowered, systems wi
slightly different resistance at high temperatures will diver
exponentially with decreasing temperatures. The resista
of systems on the metallic side (n.nc) will saturate at zero
temperature, while that of insulating samples will diverge,
agreement with the general shape of the experimental cur
Note that there is an upward turn even on the metallic side
the transition. In fact, close to the transition, on the meta
side, as temperature decreases, the conductance of the
lating part decreases significantly, and its contribution to
total conductance is dramatically reduced. Since the crit
percolation cluster is very ramified~in fact of fractal dimen-
sion!, the contribution of the insulating part of the syste
dominates at high temperatures, and the increase of its r

FIG. 1. Comparison of the lowest temperature data of Re
~two sets of data, triangles and squares, 330 mK, the density g
by the lower axis! and of Ref. 3~circles, 57 mK, the density given
by the upper axis!, and of then-type data~Ref. 4! ~diamonds! to the
prediction of percolation theory~solid line!. Inset: Logarithmic de-
rivative of the data~Ref. 5! which gives a line whose slope is th
inverse of the critical exponent. The percolation predictiont
.1.3) is given by the solid line. For comparison at51 slope is
also shown~broken line!.
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16 472 PRB 61YIGAL MEIR
tance with decreasing temperature leads to an increase o
resistance as temperature is lowered, even on the me
side. At low enough temperatures, however, when the re
tance of the insulating part of the network becomes h
enough, its contribution to the total conductance becom
negligible. Then the total resistance is dominated by the p
colating conducting network, and thus the overall resista
will decrease with decreasing temperature. This leads
nonmonotonic temperature dependence on the metallic
of the critical point, which can be clearly observed both
the model@Fig. 2~c!# and in the data@Fig. 2~d!#.

The fact that only deep in the metallic regime the over
resistance increases with increasing temperature sug
that the density at which the resistance is approximately t
perature independent is not the true critical point, but rat
deeper on the metallic side. This is clearly seen in Fig. 3~b!,
where one can see a point where all the low-tempera
curves nearly cross, well inside the metallic regime. T
above discussion suggests that one should be cautiou
associating the critical point with the experimentally o
served ‘‘temperature-independent’’ point@Fig. 3~a!#, as done
routinely in the experiment interpretations.

Lastly, the resistance at the metallic regime is given
some geometrical factor times the inverse ofsm @Eq. ~2!#,
which naturally gives the observed exponential tempera
dependence observed experimentally. The high-tempera
resistance of the critical density network is naturally arou
h/e2, the only resistance scale in this model.

V. PARALLEL MAGNETIC FIELDS

The effect of a parallel magnetic field on the overall co
ductance is determined by the way it affects the individ
points contacts. The effect of a parallel field on transp
through a single QPC has been studied in detail.24 These

FIG. 2. Temperature dependence of the resistance for system
different densities, as obtained by the model~a! and compared to
the experimental data of Ref. 3~b!. The critical line is denoted by
the bold curve. All curves below the critical line saturate at ze
temperature, while above it the resistance diverges. For sys
close to the transition on the metallic side, the resistance is a
monotonic function of temperature, as seen both in the mode~c!
and in the data~d!.
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experimental and theoretical studies demonstrated that
threshold density where the QPC opens upincreasespara-
bolically with the in-plane magnetic field. This effect wa
attributed to the coupling of the in-plane motion to the stro
confinement in the vertical direction, leading to an increa
in the confining enrgy. Writing, for simplicity, the three
dimensional Hamiltonian that describes free motion in t
dimensions and a harmonic confining potential in the th
~z! direction, with a magnetic field pointing in thex direction

H5
px

2

2m
1

~py1eBz!2

2m
1

pz
2

2m
1

1

2
mv0

2z2, ~5!

it is straightforward to see that the bottom of the tw
dimensional band shifts from\v0/2 to \Av0

21vc
2/2, with

vc[eB/mc, leading to a corresponding decrease in the
netic energy of all electrons. Thus the effective critical Fer
energy, or density, becomes larger. In other words, fo
given density or chemical potential, if the system at ze
field is on the metallic side, i.e., if the Fermi momentum
above the critical momentum~or kinetic energy! allowing
percolation through the system, a parallel field will low
that energy towards the critical energy, eventually cross
the critical point and leading to an insulating behavior. F
ure 4 depicts the experimental data of Ref. 25 and the co
sponding predictions of the model. As expected, as the m
netic field increases, the system gradually crosses over f
a metallic to an insulating behavior.

The above discussion allows a quantitative prediction
the effective critical energy in a parallel field,

ec~H !5ec~H50!1\~Av0
21vc

22v0!/2. ~6!

At zero temperature, when the resistance on the insula
side is infinite, we expect the resistance on the metallic s
m.ec(H50) to diverge with increasing field,

R~H !;@m2ec~H !#2t. ~7!

For a finite temperature this divergence is cutoff by t
finite resistance of the insulator, and the magnetic-field

of

ms
n-

FIG. 3. Comparison of the density dependence of the cond
tance between the data of Ref. 3~a! and the model~b! for several
temperatures. The density at which the theoretical curves see
cross each other is well above the true critical point.
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PRB 61 16 473TWO-SPECIES PERCOLATION AND SCALING THEORY . . .
pendence changes as one crosses into the insulating
This behavior is clearly seen in the experimental data of R
25 ~very similar data was also reported by Merteset al.26!.
Figure 5 depicts the experimental data25 for the magnetic-
field dependence of the resistance, compared to what is
pected from the model. The difference in behavior betwe
the metallic and the insulating regimes is clear. On the m
tallic side we see that the resistance increases rapidly a
magnetic field brings the critical point closer to the chemi
potential and then an abrupt change of behavior as the
tem enters the insulating regime. If the system was on
insulating side to begin with, then the magnetic field dep
dence of the resistance is similar to what is usually see
systems where transport is via variable-range hopping.27 In
these systems the positive magnetoresistance is due to
polarization.28 The magnetic-field dependence on the insu
ing side depicted in Fig. 5 is assumed here to be due to
process. In this regime, however, the magnetic field at wh
there is a marked change in behavior is spin-related
should depend only weakly on density. The fact that
resistance keeps changing with magnetic field, even tho
the spins saturated and the insulator resistance is fi
independent in this regime, is due to the fact that the crit
energy keeps shifting, and thus the relative contribution
the insulating and the metallic QPCs is still changing.
recent experimental investigation of the magnetoresistanc
the insulating side29 indeed supports this mechanism.

As was mentioned above, the critical point in the densit
magnetic-field plane shifts towards higher densities with

FIG. 4. Comparison between the experimental data~Ref. 25!
and the predictions of the model, demonstrating that a parallel m
netic field causes the metallic system to cross over gradually to
insulating regime.
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creasing magnetic field. Yoonet al.25 have also measured th
dependence of the critical field on density, which can
deduced from the inversion of Eq.~6!,

Hc5m* c/eAD~H !212\v0D~H !, ~8!

where D(H)[ec(H)2ec(H50). The comparison of the
prediction of this simple equation to the data is depicted
Fig. 6 for two samples cut from the same wafer. The fitti
parameters are the zero-field critical point, which can be r
directly from the data, the gate capacitance—the rate
which the Fermi energy changes with density, and the c
fining energy in the perpendicular direction,\v0. It is en-
couraging to note that while the critical energy, which
determined by the disorder realization, and the gate cap
tance, which is determined by the geometry, are different
the two samples, both sets of data can be fitted by the s
value of the perpendicular confining energy, which ought
be the same for the two samples, and turns out to be\v0
.0.8 meV, leading to an extension of the wave function

g-
he

FIG. 5. Comparison of the experimentally measured resista
as a function of the parallel magnetic field~Ref. 25! to the model
predictions. On the metallic side, the magnetic field shifts the c
cal point towards the chemical potential, leading to a divergenc
the resistance, which is cut off by finite temperature.
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16 474 PRB 61YIGAL MEIR
the perpendicular direction of the order of 11 nm, similar
the value used by the authors of Ref. 15 to fit their expe
mental data.

Interestingly, it seems that the effects of parallel fields c
be understood without employing the electron spin. As
parallel field will also reduce the conductance of some of
point contacts from 2e2/h to e2/h, the Zeeman effect will
also increase the system’s resistance. It should be noted
while the coupling of the in-plane motion to the confinin
potential in the perpendicular direction was also conside
by Das Sarma and Hwang,30 the magnetoresistance predict
here, in contrast with Ref. 30, should not exhibit any anis
ropy. The reason is that the direction of transport through
quantum point contacts is expected to be random, with
preferred direction.

VI. PERPENDICULAR MAGNETIC FIELDS

While the longitudinal resistance depends exponenti
on temperature, the weak-field Hall resistance is practic
independent of temperature.31 Such an observation might b
hard to account for in theories that argue for new non-Fer
liquid-like behavior, but it is trivial in the present model—
the critical exponent for the Hall coefficient in a two dime
sional percolation problem is exactly zero,32 and thus the
Hall coefficient should display no critical behavior at th
critical point. This prediction was indeed confirmed in cla
sical percolation experiments,33 and is very similar to that
observed by Pudalov et al.31

The situation in larger perpendicular magnetic fields
more interesting, as quantum Hall~QH! states are formed
Transport through a single QPC in the perpendicular fi
and the crossover between the zero-field limit and the
limit have been studied in detail.34 As expected, one finds
that the critical energy oscillates with magnetic field due
the depopulation of Landau levels. In the present case,
oscillations are smoothed out by the disorder and by
averaging over many QPCs. Thus only the strongest osc

FIG. 6. Comparison of the measured density dependence o
critical magnetic field~Ref. 25! ~circles! to the prediction of the
theory @Eq. ~8!, solid lines#. The two data sets are two differen
samples cut from the same wafer, and can be fitted using the s
value of the perpendicular confining energy.
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tion, nearn51, may survive, leading to a single dip in th
critical density vs the magnetic field plot, as was observ
experimentally. In order to allow for the averaging proc
dure, one has to take the full conductance distribution i
account, which is beyond the two-species scaling theory.
completeness I report here results of numerical calculatio13

and effective-medium theory.35,36 In the numerical calcula-
tion I studied the energy levels of one puddle of electro
which we modeled by a circular disk, in the presence
disorder.37 In Fig. 7 I plot the ‘‘critical density’’—the num-
ber of electrons that need to occupy the puddle, so that
energy of the highest-energy electron will be enough
transverse the QPC,38 equivalent in the bulk system to th
critical density—as a function of magnetic field. Indeed a d
near n51 is clearly seen, with all other oscillation
smoothed out by the disorder. This curve has a strong res
blance to the experimental data39 ~top-right inset!. The re-
sults of the effective-medium theory are depicted in t
bottom-left inset, again demonstrating a dip nearn51. In
addition, it is expected that as the magnetic field is lowe
below then51 minimum, more than one channel will tran
verse some QPCs, leading to an increase in the critical c
ductance, as indeed reported experimentally.

VII. REDUCTION FACTORS LARGER THAN 2

In the degenerate electron limit (T!EF), the biggest re-
duction factor in the resistance on the metallic side with
creasing temperature is a factor of 2. On the other ha
reduction factors close to an order of magnitude and e
larger40 have been observed experimentally, especially
silicon-based samples. Here I show that when tempera
becomes of the same order of magnitude ofEF , the reduc-
tion factor in the model can assume arbitrarily lar
factors.41

The electron density is given by

he

me

FIG. 7. The critical density—the number of electrons in t
puddle, so that the topmost energy will allow transport through
point contact—as a function of the magnetic field in the presenc
a finite disorder. The continuous curve is an averaged fit through
~necessarily integer! data points. Top-right inset: the correspondin
experimental data~Ref. 39!. Bottom-left inset: results of the
effective-medium theory~Ref. 36!.



o

nd
r

tra
ty
sit

d

th

si
e

e

ra
s
y

im
to

th
d
d
th

ec-

se
ef-

sion
nel

, the
ata
ite

as
the

eld
very

ted
ola-

emi-
e

tely
ffer-
ter-

the

the

and

y
al
the

ef.
as

e.
cal
em-
on.
ing
ven
the

in.
ere

em-
son

.
D.
en,
k
for
ted
nce

t

re
ra
ot

PRB 61 16 475TWO-SPECIES PERCOLATION AND SCALING THEORY . . .
n5E
0

`

de
r0

11exp@~e2m!/T#
5r0 T ln@11exp~m/T!#

~9!

where r0, assumed constant, is the electronic density
states~per energy and per volume!, and m, the chemical
potential, is measured relative to the bottom of the ba
Inverting the above equation, the chemical potential fo
given density is

m5T ln@exp~n/r0T!21#[T ln@exp~EF /T!21#, ~10!

where the Fermi energy is defined as theT→0 limit of the
chemical potential. These textbook expressions demons
that while the Fermi energy varies linearly with the densi
the chemical potential may be more sensitive to den
variations in the nondegenerate limitT;EF . Moreover, the
chemical potential is now temperature dependent, and
creases with increasing temperature~see the inset in Fig. 8!.
Substituting the above expression in the expression for
conductance through a single point contact~1! demonstrates
that the conductance can decrease arbitrarily with increa
temperature~or, equivalently, that the resistance can d
crease by an arbitrary factor with decreasing temperature!. In
Fig. 8 the temperature dependence of the conductanc
plotted for two values of the Fermi energy,EF . The curve
for EF@T shows the expected behavior for the degene
electron gas—the conductance decreases and saturate
value smaller from the zero temperature conductance b
factor of 2. On the other hand, in the nondegenerate reg
EF;T, the conductance decreases by a much larger fac

VIII. CONCLUSIONS

All the above results and discussion demonstrated
many of the experimental observations can be explaine
the context of the simple semiclassical, noninteracting mo
introduced here. This is not to say that interactions and o

FIG. 8. The temperature dependence of the conductance in
degenerate (kT!EF) and in the degenerate regime (kT.EF).
While in the nondegenerate regime, the conductance can dec
by a factor of two, it can decrease arbitrarily in the nondegene
regime, due to the temperature dependence of the chemical p
tial ~inset!.
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effects are irrelevant. For example, the formation of the el
tron puddles may be dominated by interaction effects~see,
e.g., Ref. 12!, and dephasing is certainly dominated at the
low temperatures by electron-electron interactions. Other
fects, including the energy dependence of the transmis
coefficient and the possibility of more than one chan
through the QPCs, the role of interband-scattering5 and
temperature-dependent impurities7 may also be important to
understand quantitative aspects of the data. Nevertheless
fact that several important aspects of the experimental d
can be explained in the context of a simple model is qu
encouraging.

Some predictions made in Ref. 13, where the model w
presented, were already confirmed. The mechanism for
quenching of the metallic phase by a parallel magnetic fi
was suggested there, and, as discussed above, agrees
well with recent experiments. Moreover, it was sugges
that local measurements will be able to explore the perc
tive nature of the insulating phase. Indeed, Ilaniet al.15 have
used local probes to measure the change of the local ch
cal potential with density. While on the metallic side th
signals from all probes were identical, and were accura
described by Hartree-Fock theory, these probes gave di
ent signals on the insulating side, which the authors in
preted as a signature of a percolative phase.~An indirect
experimental verification of the percolation process in
QH regime was already reported in Ref. 42!. As the metallic
puddles can be thought of as quantum dots, one can use
abundant information about such structures43 to gain addi-
tional understanding of the characteristics of the puddles
the phase separation. Such local probes44,45 can give a
‘‘smoking gun’’ verification of the picture presented here b
looking for the periodic oscillations of the local chemic
potential on the insulating side, due to depopulation of
Landau levels, as was observed in quantum dots.46 ~Re-
cently, after the submission of my work, the authors of R
15 reported the formation of local puddles or local states
the system crosses from the metallic to the insulating sid!

To conclude, a semiclassical model, combining lo
quantum transport and global classical percolation was
ployed to explain the observed metal-insulator transiti
The model attributes the transition to the finite dephas
length in these temperatures. As temperature is lowered e
further, and the dephasing length becomes larger than
puddle size, quantum localization effects should kick
Such weak-localization corrections in the metallic side w
indeed observed experimentally,16,17 confirming the expecta-
tion that if the dephasing length indeed diverges at zero t
perature, these systems will eventually becomes Ander
insulators.
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Pis’ma Zh. Éksp. Teor. Fiz.65, 887 ~1997! @JETP Lett.65, 932
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