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We studied the optical Bloch oscillation and resonant Zener tunneling in macroscopic quasi-period struc-
tures of alternatively stratified single negative and dielectric slabs. By a decrease in the thicknesses of the
dielectric slabs, the electronic potential of crystals subjected to external dc electric fields is mimicked and
the optical Wannier–Stark ladder (WSL) is realized. Both scattering states and the time-resolved trans-
mission of a short pulse are provided to show the existence of the optical analogue of electronic Bloch
oscillation. At a critical gradient, the resonant photon Zener tunneling is demonstrated both from the
amplitude and the time delay in the transmitted signal of a short pulse.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Electron Bloch oscillation [1] and resonant Zener tunneling [2]
are well developed concepts describing the behaviors of electrons
in crystals subjected to external dc electric fields. The former one
describes the oscillations of electrons both in real and k-space,
and quantization of this quasi-classical motion engenders
Wannier–Stark ladders (WSLs) [3] which contains some localized
equi-distance energy states. For the cases of weak external field,
WSLs belonging to different energy band are separated by band
gaps. The electron Bloch oscillation come into force as the electrons
accelerated by the external force inside the energy band and re-
flected by the band gaps at the edges. With the increasing of exter-
nal electric fields, the anticrossing of those neighboring bands
occurs and the gap between lower WSL and the higher one disap-
pears. Rather than be reflected at the band edge, electrons will tun-
nel to the higher band without additional energy, and thus the
resonant Zener tunneling appears. Although the concept of Bloch
oscillation has been predicted as long as the beginning of the last
century, the observation of this fascinating phenomenon is not
easy. The main reason that accounts for the difficulties in the
observation is that the dephasing time of electrons in crystals is
shorter than the oscillation period h/eEd, where d is the lattice per-
iod, E is the external electric field, e is the electron charge and h is
the Plank constant. By the dephasing time, the effects of electron–
ll rights reserved.
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phonons scattering and Zener tunneling which make electrons lose
their continuity in the phase is addressed. The advent of the high-
purity semiconductor superlattices (SSL) shed some lights on the
observation of electron Bloch oscillation [4] for that the oscillation
periods in these system is much faster owing to bigger super-cells
[5]. Time-resolved Bloch oscillations were then indeed observed in
SSL system [6–9].

Photons have the similar nature of wave with electrons but they
are not charged. Some quantum properties of electrons can be real-
ized in the photons without the tanglement of phonon scattering.
Optical Bloch oscillation or Zener tunneling have been predicted
and observed in various structures in recent years [10–23]. Those
structures include: linearly chirped Moiré grating written in the
core of an optical fiber [11,12], unchirped Bragg grating comprising
high and low index layers superimposed with a linearly variation
of refractive index or thicknesses [10,14–16], exponentially
chirped Bragg gratings [17], unchirped Bragg gratings with a
slowly varying lateral confinement [18,19] and waveguide arrays
[20–23]. These realized structures are either intrinsically two-
dimensional (2D) or made of electrochemical etched porous silicon
in nm range.

The experimental realization of the metamaterials [24] has
evoked special interests in many applications of their novel prop-
erties. Theoretical work of realizing optical Bloch oscillation in
structures involving metamaterials has been presented recently
[25]. Here we demonstrate the existence of microwave optical
Bloch oscillation and resonant photonic Zener tunneling in one-
dimensional (1D) macroscopic structures with the help of single
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negative materials (SNG) [26,27]. The concept of SNG depicts one
kind of materials with one of their two fundamental electromag-
netic parameters, permittivity or permeability, being negative
and the other one being positive. Propagating waves in conven-
tional materials with both permittivity and permeability being po-
sitive turn to evanescent fields inside bulk SNG and can not
transmit in such materials, which make bulk SNG perfect reflec-
tors. A conventional dielectric layer sandwiched between two
SNG layers can form a Fabry–Perot resonator with the resonant fre-
quency adjustable by simply changing the thicknesses of the
dielectric layer.

In the typical realizations of electron Bloch oscillation in SSL
such as in Ref. [6], a sequence of quantum wells subjected to dc
electric field was used. The application of the external field leads
to gradual localization of wave functions along the direction of
external electric force, and electrons will oscillate among those
localized states. As photons can not be accelerated as electrons
do under the effects of dc electric field, micro-cavities array with
properly modulated resonant frequencies are the best analogue
to the quantum wells array subjected to dc electric field [16]. Opti-
cal Bloch oscillation and resonant Zener tunneling should be obser-
vable in a sequence of Fabry–Perot cavities composed by a series
dielectric layers sandwiched between SNG layers.

The structures considered in this paper are composed by alter-
nately stratified dielectric and SNG layers whose permeability is
negative (MNG). As shown in Fig. 1, the whole structure is AB1A-
B2 ...ABnABn + 1A ...B9A. The layer of Bn is the nth dielectric layer with
a thickness dn and all A layers are composed by MNG with a thick-
ness of da = 6 mm. The unit of the structures is a micro-cavity of
ABnA. All electromagnetic waves considered in this paper impinge
from the left-side of the structure and transmit along the direction
from B1 to B9. The corresponding parameters of the MNG layers are
[26]:

eMNG ¼ 2e0; lMNG ¼ 1� b
f 2

� �
l0; ð1Þ

where b = 100 and f is the frequency of the incident electromagnetic
wave measured in GHz. The parameters of Bn layers are e1 = 2e0,
l1 = l0. As all the layers, SNG or conventional materials can be sim-
ulated by the composite right/left-hand transmission line (CRTL)
with very low loss [27], we neglected the loss in the following cal-
culations. Comparing with the metal which has negative permittiv-
ity in microwave frequency, SNG with either negative permittivity
Fig. 1. The typical structure. The black layers denote MNG layer and the enclosed
white layers are of dielectric. There’s a gradient in the inverse of the dielectric layer
thickness. Electromagnetic waves impinge from the left side of the structure
normally.
or negative permeability can be realized in the CRTL mode. Further-
more, both the effective permeability and permittivity of each kind
of SNG are adjustable in a large range. Similar to cavities composed
by dielectric layers sandwiched by Bragg mirrors, the frequency of
fundamental cavity modes in such SNG involved cavities should
be approximately linearly related to the inverse of the cavity thick-
ness. When a gradient d 1

d1
in the inverse of layer thicknesses of

neighboring dielectric is introduced as

1
dnþ1

� 1
dn
¼ d

1
d1

ð2Þ

there should be a micro-cavities series with an equal interval be-
tween the resonant frequencies of neighboring micro-cavities. The
thickness of the first dielectric layer is chosen as d1 = 15 mm.
Although many factors such as the existence of the neighboring mi-
cro-cavities, the boundaries of the whole structure, the dispersion
of the SNG and the frequency dependent optical length of the
SNG layer may all slightly affect the resonant frequency of each mi-
cro-cavity, the intervals between resonant frequencies of neighbor-
ing micro-cavities can still approximately be seen as equal and the
expected phenomena should be observable.

For electrons in crystals subjected to dc electric field, flat energy
bands composed by delocalized state of Bloch waves are sup-
pressed and tilted by the external field and localized WSLs appear.
Arising from the twofold interplay of periodic structure and the
external field, electrons Bloch oscillation among a WSL will take
place. We firstly demonstrate an optical analogue of WSL in the
structure. In Fig. 2a, we present the scatting states map [16] calcu-
lated by transfer matrix methods (TMM) [28] inside periodic struc-
ture (d = 0). The scattering states map provides the electric field
intensity of each position inside the structure when plane EM
waves of unit amplitude impinge onto the structure normally.
The field distribution is represented by the brightness. The periodic
structure is schematically shown by the square-lattice below the
map. It can be clearly found that there’s no field localization among
different cavities in the periodic structures. Composed by some
delocalized states in space, each bright band is the optical analogue
to an electronic energy band of a periodic potential. The logarithm
of transmission of the structure is illustrated in Fig. 2b. Fig. 2c
shows the scattering states map of a structure with d = 0.12. One
can find that the energy bands of the structure take critical change.
Comparing with Fig. 2a and c demonstrates a sequence of strongly
localized states which compose a tilted energy band and is clearly
an optical counterpart of electron WSL. In the corresponding trans-
mission spectrums shown in Fig. 2d (d = 0.12), the WSL is charac-
terized by equi-distance peaks generated from those localized
states. The lowermost localized state in Fig. 2c and d belongs to an-
other WSL.

It can be seen from Fig. 2d that the whole transmission spec-
trums are just very similar to those of much complicated structures
in the former papers of the WSL [10–19]: (i) the transmission peaks
near the center part of the energy band are approximately equi-
distant (here, Df � 0.289 GHz); and (ii) the frequency distances be-
tween those outer peaks get obviously wider than those between
central peaks. However, the inequality of the frequency distances
is not consistent with the classic theory of WSL. The advent of
the two boundaries of the whole structure which violates the peri-
odic boundary condition that is necessary for the classical theory of
Bloch oscillation may account mainly for this inequality. As one
can find in Fig. 2c, the peaks lying at the edge of the band are orig-
inated from the resonant mode of the micro-cavities near the
boundaries of the structure. It’s not surprise that the resonant fre-
quencies of these micro-cavities will deviate farther from the pre-
dicted ones.

To demonstrate the optical counterpart of Bloch oscillation, we
calculated the propagation of a 2 ns length pulse inside the



Fig. 2. Scatting states maps for structures (a) without gradient d = 0 or (c) with a gradient of d = 0.12. The brightness shows the intensity of the electric field. The square lattice
below (a) or (c) shows schematically the structure: the black layers are SNG, and the white ones are dielectric layers. (b) and (d) are the corresponding transmission for the
structure left to it.

Fig. 3. The WSL and the frequency distribution of the incident pulse employed in
the demonstration of Bloch oscillations. The solid black line is the transmission
spectrum of the tilted structure with a gradient of d = 0.12. The WSL is clearly seen
as a sequence of equi-distance transmission peaks which has also been shown in
Fig. 2d in a different manner. The dashed orange (gray, if the figure is black and
white in print) line shows frequency distribution of the pulse. (For interpretation of
the references in colour in this figure legend, the reader is referred to the web
version of this article.)
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structure with d = 0.12. The pulse which is chosen to be localized at
the fifth peak (f = 5.95 GHz) and covers the central three peaks of
the tilted transmission band impinges from the left side of the
structure at the time t = 0. In frequency domain the pulse is de-
picted by g(f)

gðf Þ ¼ 1
pDf

exp �1
2

f � f0

Df

� �2
" #

ð3Þ

which is shown in Fig. 3 by a dashed orange line (gray, if the figure
is black and white in print). The solid black line in Fig. 3 is the trans-
mission spectrum of the structure d = 0.12. The reason we choose
the pulse in the central of the WSL is that, as the resonant peaks ly-
ing at the center of the WSL are arisen from the central micro-cav-
ities of the structure, the transmission of this pulse inside the
structure will be less affected by the boundaries of the whole struc-
ture. Thus the physical essential of the WSL and optical Bloch oscil-
lation will be not be covered up by the effects deriving from the
finiteness of the whole structure.

By the scattering state method [29], the temporal and coordi-
nate-dependent electric field distribution within structures can
be found as

Eðz; tÞ ¼ 1
2p

Z þ1

�1
Eðf ; zÞgðf Þ expð�2ipftÞdf ; ð4Þ

where z is the coordinate in the transmission direction, E(f, z) is the
scattering states calculated from TMM. The oscillation of a particle
can be demonstrated both in position and in time domain by the
scattering state of the short pulse. The results are shown in Fig. 4.

One can find from Fig. 4a that most energy of the pulse is re-
flected at the left boundary of the structure and small percentage
impinges into the structure. Inside the structure, the latter part
exhibits a clear oscillation which is just the optical counterpart
of electronic Bloch oscillation in crystals subjected to dc electric
fields. Some percentage of the pulse leaks out of the structure
when the pulse reaches the boundaries. As shown in Fig. 4b, the
leakage from the right side of the structure can be calculated as
the time-resolved transmission:

TðtÞ ¼ 1
2p

Z þ1

�1
gðf Þaðf Þ expð�i2pftÞdf ; ð5Þ

where T is transmitted electric signal as function of time, and a(f) is
the transmission coefficient for the frequency f. The period of time
domain optical Bloch oscillation can be measured as the interval be-
tween the neighboring transmission peaks (3.45 ns for this gradi-
ent). Unlike in those Refs. [14–16] about optical Bloch oscillation



Fig. 4. The optical Bloch oscillation: (a) The trace of a pulse which is centered at the
fifth peak of the first WSL of the structure with d = 0.12; (b) the amplitude of
transmitted signal as a function of time. The structure is shown in the lower part of
(a) where the black lattices denote the SNG layers. The pulse impinges onto the
structure from left.

Fig. 5. (a) Temporal response of pulses located at the fifth transmission peak of
corresponding WSLs. The d is labeled in the center of each panel. A decrease of time
interval as the gradient increases is directly demonstrated; and (b) temporal
interval as a function of d.

Fig. 6. Couplings of neighboring WSLs. From upper to below the value of d are 0.15
(a), 0.18 (b), 0.22 (c). As the gradient increases the peak b denoting the low
frequency band edges of the second WSL keeps almost unchanged, while the peak a
which is the high frequency band edge of the first WSL ramps towards higher
frequency. Neighboring WSL began to overlap with each other obviously when
d = 0.18. As d reaches 0.22 the last transmission peak a of the first WSL covers the
first transmission peak b of the second WSL completely. The peaks lying left to the
peak a peaks belonging to the lower WSL.
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in one-dimensional structures where the oscillation period is of ps
scale, the periods of the Bloch oscillation in our structures are of
ns scale. According to the correspondence principle, the oscillation
period s should be inversely proportional to the energy difference
between the neighboring localized states in the WSL, that is,
s = h/DE. For the gradient d = 0.12, the energy difference between
neighboring localized states is DE = 1.2 leV (corresponding to
Df = 0.289 GHz), and the temporal interval is thus s = 3.46 ns, which
is in good agreement with interval 3.45 ns.

In the electronic case the external field and the period of the
oscillation should be inversely related (s = h/eEd), that is, the larger
the external dc electric field the shorter the Bloch oscillation will
be. In Fig. 5a, we give the temporal responses of the Gauss pulses
transmitted from structures with different ds. The pulse illumi-
nated to each structure is centered at the fifth peak of the WSL
of corresponding structure and covering the neighboring fourth
and sixth peaks. One can clearly see that the temporal internals be-
tween transmission peaks is equal to each other for each gradient
and the temporal internals decrease as the gradient d increases. In
Fig. 5b, we figure out the relation between temporal interval s and
gradient d. The results indeed show the expected tendency.

In the structures considered here, clear demonstrations of the
optical counterpart of electronic resonant Zener tunneling are also
available. For the occurrence of the electronic resonant Zener tun-
neling, there firstly should be the disappearance of the energy gap
between two adjacent WSLs. A WSL is extended by the dc field in
the frequency domain and one of its edges will ramp to a neighbor-
ing WSL when the external field is strong enough, and thus the gap
disappears. Before discussing the optical counterpart of resonant
Zener tunneling, we will firstly demonstrate the process of the
combination of the neighboring WSL. In Fig. 6, the peak labeled
as a is the last transmission peak in the lower WSL and the peak
labeled as b is the first transmission peak in the neighboring higher
WSL. The locations of the two peaks representing the one edge of
the corresponding WSL. As the d increases, the evolutions of these
two peaks are shown in Fig. 6. From Fig. 6a to c, the gradient of the
structure are d = 0.15, 0.18, and 0.22, respectively. The peaks lying
at the left side of peak a in Fig. 6b and c are the inner peaks of the
first WSL. One can find that the upper edge of the first WSL extends
to higher frequency direction as d increases, while the lower edge
of the second WSL keeps almost unchanged during this process.
Transmission peaks representing two localized resonant states
belonging to different WSLs began to couple with each other when



Fig. 7. Time responses of pulses centered at the first peak of the second WSL for two
structures: (a) d = 0.15 and (b) d = 0.22. The dotted line is the incident pulse. In the
frequency domain, each incident pulse is designed to cover the first peak of the
second WSL wholly. The solid orange (gray, if the figure is black and white in print)
line is the transmitted signal. The transmitted signal for the gradient d = 0.22
exhibits a longer time delay and larger amplitude. (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of
this article.)
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the frequency difference between them is smaller than the width
of the peaks: obvious overlap can be found when d = 0.18
(Fig. 6b). As d reach 0.22, these two neighboring resonant states
cover up with each other and the merged peak get enhanced
greatly (Fig. 6c). Thus, the neighboring WSLs combine with each
other completely. By the transmission amplitude, it is firstly char-
acterized by larger amplitude which is as large as two times the
sum of both single peaks for smaller gradient (d = 0.18). Besides
the enlargement in the amplitude, the merged transmission peak
also gets broader, which is the result of the repulsion between
these two coupled resonant states [16].

Driven by a strong external dc electric field, an electron lying in
one WSL can tunnel to states belonging to another one when two
neighboring WSLs merge with each other in the process of Zener
tunneling. The electron experiences resonant states belonging to
different WSLs. To observe the optical counterpart of the Zener
tunneling, we calculated the time-resolved transmission of two
specially chosen pulses through two different structures with the
corresponding gradient being 0.15 for Fig. 7a and 0.22 for Fig. 7b.
The incident Gauss pulses are centered at the first transmission
peak of the second WSL of the corresponding structure and cover-
ing the single transmission peak. The two pulses are almost cen-
tered at the same frequency because the lower band edge keeps
almost unchanged during the increase process of d. The temporal
domain profile of the incident pulse is illustrated as the black dot-
ted line in corresponding figure. The transmission signals of both
cases are illustrated by solid orange (gray, if the figure is black
and white in print) lines in corresponding figures. As the frequency
range of the pulse is covering only one resonant frequency, there
are no oscillations for both pulses, which are different from
Fig. 4. For the occurrence of an oscillation the pulse should cover
at least two resonant frequencies [30]. For the case shown in
Fig. 7b, the incident pulse is centered simultaneously at the fre-
quency of the first energy level of the higher WSL and the last en-
ergy level of the lower WSL. Comparing with Fig. 7a, there’s a
longer time delay in the transmitted signal in Fig. 7b, which should
be attributed to the establishment of the double resonances [14].
Before leaking out of the structure, the pulse experiences double
resonances one of which belongs to the first WSL and the other be-
longs to the second one. Similar to the electronic case the double
resonances of a single pulse can be a direct manifestation of the
occurrence of the resonant Zener tunneling. As a result of the cou-
pling between the two micro-cavities, the amplitude of the trans-
mitted signal in Fig. 7b is almost ten times as large as that from
structure where no tunneling occurs in Fig. 7a, which can be re-
ferred as another character of the occurrence of the resonant Zener
tunneling.

In conclusion, we have studied the transmittances of a kind of
simple 1D quasi-periodic structures involving SNG layers. The opti-
cal analogue of fundamental electronic concepts of Wannier–Stark
ladder, Bloch oscillation and resonant Zener tunneling are demon-
strated by scattering states maps and time-resolved transmissions
in microwave range. All the results should be realizable in macro-
scopic structures in composite right/left-hand transmission lines.
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