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Abstract 

We present an analytically solvable model for stimulated Raman adiabatic passage (STIRAP) processes in three-level 
systems. It involves realistic separated pulses which vanish at infinite times, whose pulse areas am finite. and whose envelopes 
are smooth functions of time. The solution is obtained using the correspondence between three-level systems on resonance 
and two-level systems. The analytic model confitms the breakdown of the Dykhne-Davis-Pechukas exponential dependence 
of the non-adiabatic transition probability on the adiabaticity parameter found numerically recently. 

PACS: 32.80; 33.80; 42.50 
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1. Introduction 

In the recent years, stimulated Raman adiabatic pas- 
sage (ST&UP) has rapidly become a subject of con- 
siderable theoretical and experimental interest. STI- 
RAP is a very efficient and relatively simple technique 
for coherent population transfer in three-level A and 
‘ladder’ systems. It requires three main conditions to 
be fulfilled (Fig. 1) : two-photon resortace, counter- 
intuitive pulse order in which the Stokes pulse 522 ( t) 
precedes the pump pulse LJl (t) though they overlap 
partly, and ~i~~t~c ~~~~~~n. Its particularly useful 
features are the insensitivity to changes of the pulse 
parameters over wide ranges and the stability against 
decay from the intermediate level. Various aspects of 
STIRAP have been studied theoretically [ l-lo] and 
experimentally [ 111. A number of extensions of the 

’ E-mail: nikolay.vitanov@helsinki.fi. 

three-level STIRAP have been considered, including 
effects of finite pulse bandwidth [2], decay [3,4 3, 
multipIe intermediate or multiple final states [ 51, mul- 
tilevel systems [ 61, and magnetic sublevels [ 3,7]. 

As far as the excitation is perfectly adiabatic, STI- 
RAP guarantees complete population transfer from the 
initially populated level 1 to the final level 3. Not 
very much is known, however, about how the adi- 
abatic limit is approached, that is about the prob- 
ability of non-adiabatic transitions. This problem is 
of considerable theoretical interest because, as was 
shown very recently [ 8 1, for intestate-level res- 
onance, STIRAP reduces to a rather unusual effec- 
tive two-level problem. Furthermore, numerical calcu- 
lations [ 8] showed that the Dykhne-Davis-Pechukas 
(DDP) exponential dependence [ 12,8,9] of the prob- 
ability for non-adiabatic transitions on the adiabaticity 
parameter may fail in the case of ST&U? Moreover, 
this problem is of practical significance as well be- 
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cause the excitation can never be made perfectly adi- 
abatic. 

The problem of non-adiabatic transitions could be 
understood much better if there were analytic solu- 
tions involving separated pulses. Such solutions have 
not been found so far for non-zero intermediate-level 
detuning 6, apart from the trivial case of rectangu- 
lar pulses. The existing solutions [ 131 for three-level 
systems with S # 0, do not apply to STIRAP. Ana- 

lytic solutions have only been derived in the case of 1” 
intermediate-level resonance, 6 = 0 [ 10,8]. In these 

solutions, however, 01 (t) and/or 02(t) have been ei- 
ther functions that do not vanish at infinity, which is 
physically impossible, or have been non-analytic func- 

tions. 
In this paper, we show that, in the case of 

intermediate-level resonance, the Schrijdinger equa- 
tion does allow an exact analytic solution in which 
0, ( t) and & ( t) are smooth realistic physical pulses. 

Our model shows explicitly that as the adiabaticity 
parameter increases the exponential DDP dependence 
of the deviation from perfect adiabatic transfer breaks 
into oscillations with an amplitude decreasing in a 
Lorentzian manner. 

Fig. 1. The three-level A-system. Levels 1 and 2 are coupled by 
the pump laser pulse nl (t) while levels 2 and 3 are coupled by 
the Stokes laser pulse 02 ( t) . The transition between levels 1 and 
3 is electric-dipole forbidden. Levels I and 3 are on two-photon 
resonance while level 2 may be off resonance by the detuning 6. 
Only level 1 is populated initially. In STIRAP the Stokes pulse 
&(t) precedes the pump pulse RI (t) (counterintuitive pulse 
order 1. 

and we are interested in the populations at time t --f 
+00 

pn = Ic,(+m)12 (n = 1,2,3). (4) 

2. General background 

2.1. The STIRAP mechanism 

The instantaneous eigenstates of the Hamiltonian 

H(t) are called adiabatic states. STIRAP exploits the 
existence of such an eigenstate which corresponds to 

the zero eigenvalue of H(t) and involves states 11) 
and 13) only 

Consider a three-level A-system shown schemati- 
cally in Fig. 1. The Schriidinger equation for the prob- 
ability amplitudes in the rotating-wave approximation 

reads 

i-$c(t) =H(t)c(t), (1) 

where 

(0) = cos6(t) 11) -sin??(t) 13)) (5) 

where 

f&(t) 
tan6(t) = Jlzo’ (6) 

0 al(t) 0 
H(t) = 

[ 

01(t) S(r) .flz(t) 0 02(t) 0 1 (2) 
In STIRAP the pulses are applied in counterintuitive 
order, that is the Stokes pulse &(t) precedes the 

pump pulse a~( t), though they partly overlap. In other 
words, 

. act> =. . 
t-!%l f&(t) ’ 

G(t) 
&cm L&(t) 

-=+co, (7) 

andc(t) = [c~(t),c2(t),~3(t)]~.TheRabifrequen- 
ties fil( t) of the pump pulse and & ( t) of the Stokes 
pulse are assumed positive without loss of generality. 
We suppose that at time t + --oo the three-level sys- 
tem is in its ground state 11) 

which means that 

6(-00) =o, 4(+(x)) =7r/2. (8) 

q(-co) = 1, c2( --00) = 0, c3( --oo) = 0, (3) 

Hence, the adiabatic state IO) coincides with state 11) 
before the excitation and with state 13) after it, so that 
initially only state IO) among the adiabatic states is 
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populated. If the excitutian is adiabatic, then the sys- 
tem will remain in this adiabatic state alI the time and 
the population will eventuahy be completely trans- 
ferred to state 13). Moreover, no appreciable popma- 
tion will reside in the intermediate state 12) at any time 
which makes the transfer efficiency insensitive to de- 
cay from this state to other states. We should note that 
as long as the adiabatic limit is concerned, STIRAP 
works irrespective of the value of the detuning S. That 
is why we will assume S = 0 (inte~ediate-level reso- 
nance) in what follows, in order to enable an analytic 
treatment. 

2.2. The effective two-level problem 

For S = 0 the three-level problem is reduced to an 
effective two-level one with a detuning $4 ( t) and a 

coupling $fzi (t) [ lO,S]. In the adiabatic representa- 
tion, the Scbrijdinger equation for this effective two- 
level system is [g] 

ih(t) = !j 
-L&(t) -i4( t) if+(t) f%(t) 1 d(t), 

with the initial conditions 

&(-co) = I, dz(--w) =O, (10) 

where d(t) = [dl (t), dzft) JT, 8(t) is given by Q_ 
(6), 

J&l(t) = Jn:ct, -I- f&t), (11) 

and the dots mean time derivatives. In terms of the 
adiabatic two-Ieve probability amplitudes d(t), the 
three-levei ~pIit~des cft) are given by ES] 

Cl(t) = [ldl(t)12 - lddt)l*] cosS(t) 

+2Re[dl(t)dz(t)] sinG(t), 

Q(r) = -2iIm[dl(t)dg(t)], 

b(t) = 2Re[d~~t)d~~t)J cos6(t) 

(12) 

- [!dlft)l’- /dz(t)~~] sinb<t), 

and the initial conditions (10) ensure that the ini- 
tial conditions (3) are satisfied. For counterintuitive 
pulses, 6( --oo) = 0 and 6(+x) = 7r/2, Therefore, 
we have 

CI (+w) = 2RddI (+oo)d;(+ca) I, 

c2(+03) = -2iWdlf+lxi)dz(+oo)f, 

~C-t-w) = idz(+w)j* - fd~(i-co)/~. 

(13) 

3. The analytic model 

3.1. The pulses 

The analytic model we are going to so&e is defined 

blv 

f&(t) = 00(t) sinGQ(t), L&(t) = f&(t) cos8(f), 

(14) 

with 

f&l(t) = pf(;) 9 

7-r arctan estf) - arctan e”+ 

4it) = 5 arctan ea - arctan ewa ’ 

where LY, v and 7 are real positive parameters. Both 
a and cr are dimensionless while T has the dimension 
of time and determines the time scale. The function 
f(n) is an arbitrary non-negative function satisfying 

03 

f 
f(k) dx= I, (17) 

0 

and 

For simplicity we assume that f(x) is an even func- 
tion, f( -x) = f(x); then, as time runs from -cc to 
+oo, s(t) changes from -ct to g. It is readily seen 
from (16) that 8(t) changes from 0 at t -+ --03 to 
7r/2 at t + +a~, which guarantees that the pulses 
at ( t) and fzz f t) are apphed in counterintui tive order. 
Fu~he~ore, we require that fit (f) and fzz (f) van- 
ish at t -+ icm and their pulse areas are finite. Then 
L$ (t) is to be a pulse-shaped function too, because 
L&(t) 5 0t( t) + f22 ( t) . This condition is easily sat- 
isfied if the function f(x) vanishes rapidly enough at 
infinity. Since the number of such functions f(x) we 
can choose is infinite, the number of pairs [ J2t (d), 
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fL2 ( t) ] is infinite too. Thus, Eqs. ( 14)-( 16) define a 
class of models rather than a single model with par- 
ticular pulse shapes, As an example, one member of 
this class is obtained for the function f(n) given by 

f(x) = sech2x. (19) 

Then 

a(t) = 4 sech2-&, (20) 

7r arctan e” tanhf t/m1 - arctan e-O 
G(t) = 2 

’ arctan e” - arctan eea 
(21) 

The parameter cy determines the pulse strengths and 
thus, cy serves as the ~~i~~atici~ parameter in this 
model. The parameter CT controls the pulse shapes. In 
the limit CT -+ oo this model reduces to an earlier 
model solved by Laine and Stenholm [ 81 

In Fig. 2 we have plotted the pulse shapes correspond- 
ing to Eqs. ( 14) with CA)(t) given by (20) and 6(t) 
by (21) for u equal to 1, 2, 4, 8, 12, and 00. As CT 
increases the pulse areas increase too and become in- 
finite for (T 4 co. 

3.2. The solution 

The non-adiabatic coupling d(t) in our model de- 
fined by Qs. (14) - (16) is 

a(t) = $f (&) sechs(t), (23) 

where p is given by 

P= 
7r ?7 

4 [arctan ec - arctan e-q] ‘- 4 arctan( sinh C) ’ 

(24) 

To find the solution of Eqs. (9) for &b(t) defined 
by ( 15) and a(t) given by (23), we change the in- 
dependent variable from t to s(t) and transform the 
probability amplitudes from d(t) to Ei[ s( t) ] 

d(t) = :, p 
[ 1 

D[s(r>l. (25) 

-20 -10 0 10 20 

Fig. 2. The pulse shapes corresponding to Eqs. ( 14) with 0o(t) 
given by (20) and 6(r) by (21) for (T equal to 1, 2, 4, 8, 12, 
and co. In each case the pulses are applied in counterintuitive 
order: the Stokes pulses &(t), shown by dashed curves, precede 
the pump pulses 01 (r), shown by solid curves. As CT increases 
the pulse areas increase too and become infinite for CT -+ co 
(model (22) ) For each CT, the pulse maxima are normalized (by 
changing (Y) to the same value. 

Then Eqs. (9) take the form 

Therefore, the non-adiabatic coupling &( t) (23) and 
the eigenvalue splitting &(t) (15) in the present 
model are related to the coupling and the detuning in 
the well-known Rosen-Zener model [ 141. There is, 
however, a substantial difference: in our model the 
variable s changes over a$&e interval [ -(T, a], while 
in the Rosen-Zener model the independent variable 
runs from -cc to +oo. This leads to more complicated 
formulas for the probability ~plitud~ in the present 
case. The exact probability amplitudes at s = CT, that 
is at t --+ 00, are given by 
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(28) 

where Ft = F($&-$P;$S~i#;~) and jr;i = 
F (1 f #,I - $p; s + $icu; 5) are short-hand nota- 
tions for the Gauss hyp~g~rnet~~ function 115 1 and 

[=f(l-tauh@=&. (29) 

p = sin2 (~LT$) sech2 (&Jxx}, (301 

s 
(P=x - p---. 

l-5 
(32) 

The solution (27) and (28) is derived in a similar way 
as in Refs. [ 14 3. Tn the resulting expressions, hyperge- 
ometric functions of the arguments 6 and l-6 appear, 
rather than of the scents 0 and 1 as in the Rosen- 
Zoner model itself [ 14 f . These expressions are then 
transformed by using standard properties of the hyper- 
geometric functions to obtain ( 27 ) and (28 ). The lat- 
ter equations are more convenient as they involve hy- 
pergeometric functions with arguments 6 < $ which 
decrease exponentially as 01 increases. This improves 
considerably the accuracy of the approximations de- 
rived below utilizing the power-series expansions of 
the hy~~~rne~i~ functions in (27) and (28). By 
keeping only the leading terms (equal to unity) of 
these expansions we obtain 

which is the non-~i~a~~ ~sition probability in the 
effective two-level system. According to Eqs. ( 13) the 
final population of level 13) is 

C 
2 t_Dz@_q2 - 1 

I 

2 
P3 = . (34) 

The ~pula~ons of the other two levels in the three- 
level system can be obtained from ( 13), (27) and 
(28) too, but they lead to more complicate expres- 
sions which we do not resent explicitly here. In the 
adiabatic limit, I&( a) 1 ! = 0 and the population trans- 
fer is perfect, Fs = 1. The d#~~r~o~ from peij%ct adi- 
afratic ~r~~~~ is given by 

AP3 = 1 - 9 =4{D+912 [l - /&(v)[~]. (35) 

Eqs. (28) and (35) express the exact deviation from 
adiabatic transfer while Eqs. (33) and (35) give the 
approximation used in the analysis below. 

It is convenient to rewrite the deviation from adia- 
batic transfer (35) as a sum of two terms 

Aq = AP$tf + AP”’ 3 ’ (36) 

where 

(38) 

These two terms are such that AP; ‘) contains all p’s, 

that is the exponentials of LY, while AP,“” contains ra- 

tional functions of QI only. The leading term of A@ lf 
is of order U( 1) with respect to 6 but it is exponen- 
tially small with respect to (Y (via p). The leading 
term of APi2’ is of order O(t) with respect to r, that 
is exponentially small with respect to ET (see (~29))~ 
but it is of order U(ru-“) with respect to cy, rather than 
~~nenti~ly small. Hence, one expects that for finite 
and fixed f (that is for finiteand fixed CT), A@” dom- 
inates for small 1y while APi2’ do~nates for large LY, 

fn the limit c --t ott, f is equal to zero; then A Pi2’ = 
0 and the deviation from perfect transfer is given ex- 
actly by 
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For a > 1, we have AP3 N 16e+O sin’(lrp/2), that 
is APs vanishes exponentially with the adiabaticity pa- 
rameter (Y, in agreement with the DDP result. For3finire 

u, however, 5 # 0 and the term APi” is non-zero; 

when u increases, it vanishes much more slowly (as 
cr-*) than APi’) and in an oscillatory manner. This 
implies that after a certain value of CT, which we call the 

DDP breakdown value crC, the term APi2’ (38) over- 

takes the exponentially vanishing term A P: ‘) (37) and 
becomes dominant. The deviation APs is then given 

approximately by 
d: 

AP3 M AP;‘) -4p(l -P) (a <ac), (40) 

16P25 
AP3 M AP$2’ N - 

LX2 $1 
co&o ((Y > au,). (41) 

The DDP breakdown can clearly be seen in Fig. 3 
where we have plotted the deviation from perfect trans- 

fer APs as a function of the adiabaticity parameter 

cr for (T equal to 1, 2, 4, 8 and 12, that is for the 
pulses shown in Fig. 2. In the figure, we compare the 
exact values (Eqs. (28) and (35)) with the approx- 

imate ones (Eqs. (33) and (35) ) ; the latter coin- 
cide with the exact curves almost everywhere and can 
only be distinguished for (+ = 1. For each (T, we have 
also shown the two terms APi’) and APi2) by short- 
dashed broken curves. The steeper dashed curve indi- 
cates the term AP3 ( ’ ) (37)) which is equal to the devi- 

ation for (+ -+ 00 and dominates for small a, while the 
other dashed curve shows the amplitude of the oscil- 

lating term A P12’ (38), which dominates for large (Y. 
The intersections between these two curves represent 

the DDP breakdown points LYE. These results clearly 
demonstrate that it is the finite value of U, that is the 
finite pulse area, that makes the DDP exponential de- 
pendence fail. Actually, in the derivation of the DDP 
result [ 121, it is necessary to assume that the eigen- 
values f i L&( t) are non-degenerate at infinity. In the 
case of STIRAF, this is obviously not true; thus it is 
not surprising that the DDP derivation fails. 

As we pointed out above, the DDP breakdown oc- 
curs at the point cyC where the term AP,“) (37) is 
approximately equal to the amplitude of the oscillat- 

(2) ing term AP3 (38). For large U, we can easily es- 

timate the value of LY,. Then /3 % 1 (see (24)) and 

sin2 (47rp) x 1. It is also readily seen that when u 
is large, cy must be large too. Thus, we find that for 
large u the DDP breakdown occurs at 

a 
Fig. 3. The deviation from adiabatic transfer APs as a function 
of the dimensionless adiabatic parameter a for D equal to 1, 
2, 4, 8 and 12, that is for the pulses shown in Fig. 2. The 
full curves represent the exact values (Eqs. (28) and (35) ). 
The approximation (Eqs. (33) and (35) ), shown by long-dashed 
broken curves, coincides with the exact curves almost everywhere 
and can only be distinguished for (T = 1. For each (T, the two 
short-dashed broken curves show the terms APi’) and AP(*). 3 
The steeper dashed curve indicates the term APi” (37), which 
is equal to the deviation for (T + 00 and dominates for small a, 
while the other dashed curve shows the amplitude of the oscillating 
term AP$2) (38). which dominates for large a. The intersections 
between these two curves determine the DDP breakdown points 
a,. 

97 
UM -cy, -In 

2 ( > 
Jzcu, 1 

which means that a, is almost a linear function of U. 
It turns out that an important parameter is the ratio R 
between the pulse areas and the overlap area of the 
two pulses. It can be shown that in the present model 
this ratio is approximately a linear function of u for 
large u (the approximate dependence, found numer- 
ically, is R x 1.13~ + 0.79). Then Eq. (42) means 
that the DDP breakdown value rrC is almost a linear 



N.K Vitanov, S. Stenholm/Optics Communications 127 (1996) 215-222 221 

function of R. This conclusion is very similar to the 
results of Laine and Stenholm [ 81 based on numeri- 

cal calculations for different pulse shapes (Gaussian 
and hyperbolic-secant; in Ref. [ 81, the pulse-area-to- 
overlap-area ratio has been controlled by keeping the 

pulse shapes the same and varying the pulse delay). A 
simple manipulation of the results in Table 3 of Ref. 

[ 81 for hyperbolic-secant pulses leads to the conclu- 
sion that the DDP breakdown value of their adiabatic 

parameter is approximately proportional to R’.27. 
We stress that an exponential region appears for 

large CJ only (that is for large R) because then 5 N 
e-*” is very small which makes the term APi*) (38) 

smaller than the term AP:” (37) over a large enough 
range of (Y (i.e. from zero to LY, x 2~/7r). As we can 

see from Fig. 3, this is not the case for u = 1 and CT = 
2. A look at Fig. 2 confirms that for an exponential 
region to appear, the pulse-area-to-overlap-area ratio R 
should be large, in agreement with the conclusions of 
Laine and Stenholm [ 81. A comparison of the curves 
for CT = 8 and CT = 12 in Fig. 3 reminds us of Figs. 

11 and 12 in Ref. [ 81 where the oscillations are not 
shown, 

4. Conclusion 

We have presented an exact analytic solution de- 
scribing STIRAP excitation for intermediate-level res- 
onance. This model involves physically realistic sep- 

arated pulses, that is pulses which vanish at infinite 
times, whose pulse areas are finite and whose en- 
velopes are smooth analytic functions of time. To the 
best of our knowledge, this is the first such model to 

appear in the literature. The pulses contain two pa- 
rameters: cx determines the pulse strengths and thus 

plays the role of the adiabaticity parameter, while cz 
controls the pulse shapes. Our model shows explicitly 
that the exponential DDP dependence of the proba- 
bility for non-adiabatic transitions breaks into oscilla- 
tions as the adiabaticity parameter (Y increases. In the 
limit CT --f 00, this model reduces to an earlier solved 
case involving pulses which do not vanish at infinity; 
in the latter case the DDP result is perfectly valid. 
These conclusions demonstrate clearly that it is the 
finite value of CT, that is the finite pulse area, which 
makes the DDP result fail because of the degeneracy of 
the eigenvalues at infinity. On the other hand, we have 

concluded that an exponential region can appear only 

when the pulse-area-to-overlap-area ratio R is large. 
We have also found that the DDP breakdown value of 
the adiabatic parameter cy is almost a linear function 
of R. Finally, we should point out that the method we 
have implemented to find an analytic STIRAP solu- 
tion by using the Rosen-Zener solution can be utilized 

to obtain additional solvable STIRAP models by using 
other available two-level solutions. 
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