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Abstract

We present an analytically solvable model for stimulated Raman adiabatic passage (STIRAP) processes in three-level
systems. It involves realistic separated pulses which vanish at infinite times, whose pulse areas are finite and whose envelopes
are smooth functions of time. The solution is obtained using the correspondence between three-level systems on resonance
and two-level systems. The analytic model confirms the breakdown of the Dykhne-Davis-Pechukas exponential dependence
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1. Introduction

In the recent years, stimulated Raman adiabatic pas~
sage (STIRAP) has rapidly become a subject of con-
siderable theoretical and experimental interest. STI-
RAP is a very efficient and relatively simple technique
for coherent popuiaiion transfer in three-ievel A and
‘ladder’ systems. It requires three main conditions to
be fulfilled (Fig. 1): two-photon resonance, counter-
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intuitive pulse order in whlch the Stokes pulse (1)
precedes the pump pulse £2;(¢) though they overlap
partly, and adiabatic evolution. Its particularly useful
features are the insensitivity to changes of the pulse
parameters over wide ranges and the stability against

decay from the intermediate level. Various aspects of
STIRAD have heen ctndied theoretically 11..101 and
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experimentally [11]. A number of extensions of the
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three-level STIRAP have been considered, including
effects of finite pulse bandwidth [2], decay [3.4],
multiple intermediate or multiple final states [5], mul-
tilevel systems [6], and magnetic sublevels [3,7].
As far as the excitation is perfectly adiabatic, STI-
RAP guarantees complete population transfer from the
initiaily populated level 1 to the final level 3. Not
very much is known, however, about how the adi-
abatic limit is approached, that is about the nrob-
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ability of non-adiabatic transitions. This problem is
of considerable theoretical interest because, as was
shown very recently [8], for intermediate-level res-
onance, STIRAP reduces to a rather unusual effec-
tive two-level problem. Furthermore, numerical calcu-
lations [8] showed that the Dykhne-Davis-Pechukas

(DNDP) aynnnantial danandancea 112 8 O1 Af tha nrah.
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ability for non-adiabatic transitions on the adiabaticity
parameter may fail in the case of STIRAP. Moreover,
this problem is of practical significance as well be-

0030-4018/96/$12.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.

PII S0030-4018(96)00216-7



216 N.V. Vitanov, S. Stenholm/Optics Communications 127 (19

cause the excitation can never be made perfectly adi-
abatic.
The problem of non-adiabatic transitions could be

mderctannd mnech hattor if thars wara analvutic enli.
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tions involving separated pulses. Such solutions have
not been found so far for non-zero intermediate-level
detuning 6, apart from the trivial case of rectangu-
lar pulses. The existing solutions [ 13] for three-level
systems with & # 0, do not apply to STIRAP. Ana-
lytic solutions have only been derived in the case of

intermediate-level resonance. 8§ = 0 1081 In thege
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solutions, however, 2, (t) and/or 2,(¢) have been ei-
ther functions that do not vanish at infinity, which is
physically impossible, or have been non-analytic func-
tions.

In this paper, we show that, in the case of
intermediate-level resonance, the Schrodinger equa-

tion does allow an exact analvtic solution in which
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£2,(t) and £2,(¢) are smooth realistic physical pulses.
Our model shows explicitly that as the adiabaticity
parameter increases the exponential DDP dependence
of the deviation from perfect adiabatic transfer breaks
into osciiiations with an ampiitude decreasing in a
Lorentzian manner.

2. General background
2.1. The STIRAP mechanism

Consider a three-level A-system shown schemati-
cally in Fig. 1. The Schrédinger equation for the prob-

ability amplitudes in the rotating-wave approximation
reads

.d
zac(t)_H(t)c(t), (1)
where
[ 0 @ o0
H(r) = | 21(r) 8(r) () (2)
0 Ny O

and ¢(t) = [c1(£),c2(8),c3(t)]T. The Rabi frequen-
cies 2, (¢) of the pump pulse and 2, (¢) of the Stokes
pulse are assumed positive without loss of generality.
We suppose that at time ¢ — —oo the three-level sys-
tem is in its ground state |1)

c3(—00) =0, (3)

ci(—o0) =1, c(—~00) =0,

L
Fig. 1. The three-level A-system. Levels 1 and 2 are coupled by
the pump laser pulse £2;(¢) while levels 2 and 3 are coupled by
ihe Stokes iaser puise §2;(r). The transition between ieveis i and
3 is electric-dipole forbidden. Levels 1 and 3 are on two-photon
resonance while level 2 may be off resonance by the detuning 8.
Only level 1 is populated initially. In STIRAP the Stokes pulse

{h(t) precedes the pump pulse (2;(¢) (counterintuitive pulse
order).

and we are interested in the populations at time ¢t —

L A

T

P, =lca(+00))? (n=1,2,3). (4)

The instantaneous eigenstates of the Hamiltonian
H(t) are called adiabatic states. STIRAP exploits the
existence of such an eigenstate which corresponds to
the zero eigenvalue of H(¢) and involves states |1)

and |3) only

10Y = coe () 1Y — cin 3 |13) (5)
v SCOSURY) (1) — SIRVURL) 12/, D)
where
(1)
tan 9(¢) = (6)
(1)

In STIRAP the pulses are applied in counterintuitive
order, that is the Stokes pulse 2;(t) precedes the
pump pulse £2; (), though they partly overlap. In other
words,

. () . (D)
Jm o =0 Am o =T (N
which means that
FH(—00) =0, F(+o0) =m/2. (8)

Hence, the adiabatic state |0) coincides with state |1)
before the excitation and with state |3} after it, so that
initially only state |0) among the adiabatic states is



populated. If the excitation is adiabatic, then the sys-
tem will remain in this adiabatic state all the time and
the population will eventually be completely trans-
ferred to state |3). Moreover, no appreciable popula-
tion will reside in the intermediate state |2} at any time

which makes the trangfer Pfﬁmpnny insensitive to de-
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cay from this state to other states. We should note that
as long as the adiabatic limit is concerned, STIRAP
works irrespective of the value of the detuning §. That
is why we will assume 8 = 0 (intermediate-level reso-
nance) in what follows, in order to enable an analytic
treatment.

2.2. The effective two-level problem

For 8 = 0 the three-level problem is reduced to an
effective two-level one with a detuning £ (,(r) and a
coupling %Q; (2) [10,8]. In the adiabatic representa-
tion, the Schrodinger equation for this effective two-
level system ts [8]

Wcr) = [ —a2(0) iﬂ(:)]d(t), (9)
2 b a |

with the initial conditions

di(—00) =1, dy(~00) =0, (10)

wilere d(r) = [di(1),d2(D)]7, &(¢t) is given by Egq.

(6),

D () =/ B (1) + B (1), (11)

and the dots mean time derivatives. In terms of the
adiabatic two-level probability amplitudes d(?), the
three-level amplitudes ¢{1} are given by [8]

i (1) = [|d1(t)[2 - |d2(t)|2] cos 9(£)

+ 2Reld (t)d5 (1) ]} sind (1),

(1) = =2iIm[d; (N d3 (D], (12

c3(ty = 2Reldy (1) d5 (1) ] cos 3 (1)

| PN S 1 IR
- Ud;(f}{ — {da{1}] JSHN?U’},
and the initial conditions (10) ensure that the ini-
tial conditions (3) are satisfied. For counterintuitive
pulses, #(—o0) = 0 and F(+oc) = /2. Therefore,
we have

—
N
>
N
~2
[
—
krn
(3]
[~
N2
2
-
~3

c1(+00) = 2Re[d; (+00)d; (+00) ],
c2(+00) = ~2iIm[d;(+00)d;(+00)], (13)
c3(+00) = lda(+00)[? = [di (+00) .

3. The analytic model

3.1. The pulses

The éﬁdl)ﬁﬂ; model we are gomg to solve is defined

by

(1) = Qo(1) sind (1), (h{(1) = (1) cosP(1),
(14)

with

Mo(1) = ;f(m), (15)

31 = Zr_arctane arctane“’"’" (16)

arctane” — arctane™v

where «, o and 7 are real positive parameters. Both
a and ¢ are dimensionless while 7 has the dimension
of time and determines the time scale. The function
f{x) is an arbitrary non-negative function satisfying

oG
/f(x)dx=1, (17)
]
and
t tfor
s(t) =—I— /f{t—;\dt"::a' [f'{x}dx, (18)
'rg \ot/} E{ v

FUI buupuuty’ Wwe dbbuillﬁ d!. [ \.X,} lb an ¢veén LUllb"
tion, f(—x) = f(x); then, as time runs from —oo to
+00, $(t) changes from —a to @. It is readily seen
from (16) that ¢(¢) changes from 0 at 1 — —oo to
7/2 at t — +oo, which guarantees that the pulses
£2;(¢t) and £3,(¢) are applied in counterintuitive order.
Furthermore, we require that 21(f) and £(¢) van-
ish at ¢ — 00 and iheir pulse areas are finite. Then
(1) is to be a pulse-shaped function too, because
(1) < 21(1) + £25(1). This condition is easily sat-
isfied if the function f(x) vanishes rapidly enough at
infinity. Since the number of such functions f(x) we
can choose is infinite, the number of pairs [ 2 (1),



1Y AT X7 $Pe o oo o 22
218 NV Viranov, §. Stenholm/ Optics

{2 (1)] is infinite too. Thus, Eqs. (14)-(16) define a
class of models rather than a single model with par-
ticular pulse shapes. As an example, one member of
this ciass is obtained for the function f(x} given by

f(x) = sech?x. (19)

Then

(1) = < sech? L, (20)
T or

ar arctan e” ¥h(/o7) _ aretane™
(1) = ane @y
2 arctane” — arctane=¢

The parameter a determines the pulse strengths and
thus. ¢ serves as the nr]mhnr:mfv parameter in this

model. The parameter o controls the pulse shapes. In
the limit ¢ — oo this model reduces to an earlier

model solved by Laine and Stenholm [8]

5

V1 +e~2r/r’

i

B e
(22)

nl(r)=§—

In Fig. 2 we have plotted the pulse shapes correspond-
ing to Egs. (14) with §%(#) given by (20) and §(1)
by (21) for o equal to 1, 2, 4, 8, 12, and c0. As o

increases the pulse areas increase too and become in-

finite for o — oo.

3.2. The solution

The non-adiabatic coupling 9(¢) in our model de-
fined by Egs. (14) - (16) is

. _ B t
s =Ly (m) sech s(1), (23)
where 8 is given by
= T N T
T4 [arctan e’ — arctan e“"] " 4arctan(sinho)
(24)

To find the sqlution of Egs. (9) for %(r) defined
by (15) and ¥ (t) given by (23), we change the in-
dependent variable from ¢ to s(#) and transform the

probability amplitudes from d{(2) to D{s{(9)]
Y L \¢7 DEAS P

D[s(1)]. (25)

Communications

/it

Fig. 2. The pulse shapes corresponding to Egs. (14) with £(2)
given by (20) and #(1) by (21) for o equal to 1, 2, 4, 8, 12,
and oo, In each case the pulses are applied in counterintuitive
order: the Stokes pulses £2;(¢), shown by dashed curves, precede
the pump pulses £2; (1), shown by solid curves. As o increases

the pulse areas increase too and become infinite for ¢ — oo
(model (22)). For each o, the pulse maxima are normalized (by

{ PR I PR R
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Then Egs. (9) take the form

Bsechs

.d —¥
1a—§D(s) = % [ﬁ sech s a } D{(s). (26)

Therefore, the non-adiabatic coupling 19(1?) (23) and
the eigenvalue splitting 2(¢) (15) in the present
model are related to the coupling and the detuning in
the well-known Rosen-Zener model [14]. There is,
however, a substantial difference: in our model the

- Iin o~k
variable s changes overafiniteinterval [ —o, o], while

in the Rosen-Zener model the independent variable
runs from —oc to 4-00. This leads to more complicated
formulas for the probability amplitudes in the present
case. The exact probability amplitudes at s = o, that
is at t — oo, are given by
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Di(o) = —(1 — ia) &%

2

Duto) =~ 5 |IAf - e~ o) 1A
+2B/E(1 - f}dé{j’l Re[e ™ F; Fz}},

(28)
where Fi = F(8,-1B;}1 + }ia;¢) and F, =

F(1+1B.1-1B:3 + Lia; £) are short-hand nota-
tions for the Gauss hypergeometric function [ 15] and

1
=11~ =
=}(1-tanho) = 0, (29)
p =sin’ (3wB) sech® (Jma), (30)
ra + Lieyr(-4 + jia)
= , (31
A= TA g+ Lo (L + 18+ Lia) Gh
a, &
cp.-,\/~—2-1n1_§. (32)

The solution (27) and (28) is derived in a similar way
as in Refs. [ 14]. In the resulting expressions, hyperge-
ometric functions of the arguments £ and 1 —¢ appear,
rather than of the arguments 0 and 1 as in the Rosen-
Zener model itself [14]. These expressions are then
transformed by using standard properties of the hyper-
geometric functions to obtain (27) and (28). The lat-
ter equations are more convenient as they involve hy-
pergeometric functions with arguments £ < ~’2- which
decrease exponentially as ¢ increases. This improves
considerably the accuracy of the approximations de-

rived below utilizing the power-series expansions of .

the hypergeometric functions in (27) and (28). By
keeping only the leading terms (equal to unity) of
these expansions we obtain

|Dy ()P ~ {ﬁ{1+0<f>}
2
+28VE | 2 cose {1+0<§>}} G

which is the non-adiabatic transition probability in the
effective two-level system. According to Egs. (13) the
final population of level |3) is

Py = {2 IDa()? - 1]2. (34)

The populations of the other two levels in the three-
level system can be obtained from (13), (27) and
(28) too, but they lead to more complicated expres-
sions which we do not E)resent explicitly here. In the
adiabatic limit, |D,(o)|” = 0 and the population trans-
fer is perfect, P; = 1. The deviation from perfect adi-
abatic transfer is given by

APy=1- Py =4|Dy(@)[ [1 = IDa(o) |2] . (35)

Eqgs. (28) and (35) express the exact deviation from
adiabatic transfer while Egs. (33) and (33) give the
approximation used in the analysis below.

3.3. Discussion

1t is convenient to rewrite the deviation from adia-
batic transfer {35) as a sum of two terms

APy = APV + AP?, (36)
where
AP ~ap(1 - p) [1+0(6')] 37
1667
@ . 2
APy a2+1c05 e[1+0(6)]. (38)

These two terms are such that APS") contains all p’s,

that is the exponentials of @, while AP{? contains ra-

tional functions of & only. The leading term of AP{"
is of order O(1) with respect to £ but it is exponen-
tially small with respect to a (via p). The leading
term of APS(Z) is of order O(£) with respect to £, that
is exponentially small with respect to o (see (29)),
but it is of order O(a~?) with respect to e, rather than
exponentially small. Hence, one expects that for finite
and fixed £ (that is for finite and fixed ), AP{") dom-
inates for small & while AP{® dominates for large a.

Inthe limito — oo, € is equal to zero; then AP;Z) =
0 and the deviation from perfect transfer is given ex-
actly by

APy =AP{V =4p(1—p) (o — ). (39)
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For a > 1, we have AP; ~ 16e~ 7 Sil‘lz(’ﬂ'ﬂ/2), that
is A P3 vanishes exponentially with the adiabaticity pa-
rameter «, in agreement with the DDP result. For finite
o, however, £ # 0 and the term AP3(2) is non-zero;
when « increases, it vanishes much more slowly (as
a~?) than AP3(1) and in an oscillatory manner. This
implies that after a certain value of a, which we call the
DDP breakdown value a., the term AP3(2) (38) over-
takes the exponentially vanishing term AP3( D (37) and
becomes dominant. The deviation AP; is then given
approximately by

APy = AP{D ~ap(1-p) (a<ac), (40)

2
APy =~ AP ~ ég—’i—_élcosqu (a>ac). (41)
The DDP breakdown can clearly be seen in Fig. 3
where we have plotted the deviation from perfect trans-
fer APy as a function of the adiabaticity parameter
a for o equal to 1, 2, 4, 8 and 12, that is for the
pulses shown in Fig. 2. In the figure, we compare the
exact values (Egs. (28) and (35)) with the approx-
imate ones (Eqgs. (33) and (35)); the latter coin-
cide with the exact curves almost everywhere and can
only be distinguished for o = 1. For each o, we have
also shown the two terms AP}(I) and AP3(2) by short-
dashed broken curves. The steeper dashed curve indi-
cates the term AP3( D (37), which is equal to the devi-
ation for o — oo and dominates for small a, while the
other dashed curve shows the amplitude of the oscil-
lating term AP;Z) (38), which dominates for large a.
The intersections between these two curves represent
the DDP breakdown points a.. These results clearly
demonstrate that it is the finite value of o, that is the
finite pulse area, that makes the DDP exponential de-
pendence fail. Actually, in the derivation of the DDP
result [ 12], it is necessary to assume that the eigen-
values :I:%.(Zo(t) are non-degenerate at infinity. In the
case of STIRAP, this is obviously not true; thus it is
not surprising that the DDP derivation fails.

As we pointed out above, the DDP breakdown oc-
curs at the point a, where the term AP;” (37) is
approximately equal to the amplitude of the oscillat-
ing term AP3(2) (38). For large o, we can easily es-
timate the value of a.. Then B = } (see (24)) and
sin® (3mB) =~ 1. It is also readily seen that when o
is large, a must be large too. Thus, we find that for
large o the DDP breakdown occurs at

10°
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5 10
[72]
S 100
—
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2
= 10
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5 100
SRS
5t
g 107
&
£ 10°
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-
L
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Fig. 3. The deviation from adiabatic transfer AP; as a function
of the dimensionless adiabatic parameter a for o equal to I,
2, 4, 8 and 12, that is for the pulses shown in Fig. 2. The
full curves represent the exact values (Egs. (28) and (35)).
The approximation (Eqs. (33) and (35)), shown by long-dashed
broken curves, coincides with the exact curves almost everywhere
and can only be distinguished for o = 1. For each o, the two
short-dashed broken curves show the terms APS(” and AP3(2).
The steeper dashed curve indicates the term AP;” (37), which
is equal to the deviation for ¢ — oo and dominates for small a,
while the other dashed curve shows the amplitude of the oscillating
term AP;Z) (38), which dominates for large a. The intersections
between these two curves determine the DDP breakdown points
ac.

o~ %ac —In (ﬁac) : (42)

which means that a, is almost a linear function of o
It turns out that an important parameter is the ratio R
between the pulse areas and the overlap area of the
two pulses. It can be shown that in the present model
this ratio is approximately a linear function of o for
large o (the approximate dependence, found numer-
ically, is R = 1.130- + 0.79). Then Eq. (42) means
that the DDP breakdown value a, is almost a linear
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function of R. This conclusion is very similar to the
results of Laine and Stenholm [8] based on numeri-
cal calculations for different pulse shapes (Gaussian
and hyperbolic-secant; in Ref. [8], the pulsc-area-to-
overlap-area ratio has been controlled by keeping the
pulse shapes the same and varying the pulse delay). A
simple manipulation of the results in Table 3 of Ref.
[8] for hyperbolic-secant pulses leads to the conclu-
sion that the DDP breakdown value of their adiabatic
parameter is approximately proportional to R!?7.

We stress that an exponential region appears for

large o only (that is for large R) because then ¢ ~
e~2" is very small which makes the term AP3(2) (38)

smaller than the term AP;I) (37) over a large enough
range of a (i.e. from zero to a. =~ 20 /7). As we can
see from Fig. 3, this is not the case for =1 and o =
2. A look at Fig. 2 confirms that for an exponential
region to appear, the pulse-area-to-overlap-area ratio R
should be large, in agreement with the conclusions of
Laine and Stenholm [8]. A (‘nmnarlenn of the curves

for o = 8 and o = 12 in Fig. 3 reminds us of Figs.
11 and 12 in Ref. [8] where the oscillations are not

shown.

4. Conclusion

We have presented an exact analytic solution de-
scribing STIRAP excitation for intermediate-level res-
onance. This model involves physically realistic sep-
arated pulses, that is pulses which vanish at infinite
times, whose punac areas arc finite and whose en-
velopes are smooth analytic functions of time. To the
best of our knowledge, this is the first such model to
appear in the literature. The pulses contain two pa-
rameters: « determines the pulse strengths and thus
plays the role of the adiabaticity parameter, while &
controls the pulse shapes Our model shows explicitly
that the cXpOi‘lf‘;i‘ltlal DDP depenueﬁce of the pfOUd-
bility for non-adiabatic transitions breaks into oscilla-
tions as the adiabaticity parameter « increases. In the
limit o0 — o0, this model reduces to an earlier solved
case involving pulses which do not vanish at infinity;
in the latter case the DDP result is perfectly valid.
These conclusions demonstrate clearly that it is the

finita valnia of + that ic tho finite nulcs aroa which
(ke Vaiul Ol &, ujadl 1S ull jiniie pulse aqreqa, wWinili

makes the DDP result fail because of the degeneracy of
the eigenvalues at infinity. On the other hand, we have

L2
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concluded that an exponential region can appear only
when the pulse-area-to-overlap-area ratio R is large.
We have also found that the DDP breakdown value of

i S | PUSRSY PR,

tne aUAauaus, palaincicr & lb almost a llllCd.l 1um.uun
of R. Finally, we should point out that the method we
have implemented to find an analytic STIRAP solu-
tion by using the Rosen-Zener solution can be utilized
to obtain additional solvable STIRAP models by using
other available two-level solutions.
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