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We theoretically study the development of spontaneous magnetization in diluted magnetic semiconduc-
tors as arising from a percolation of bound magnetic polarons. Within the framework of a generalized
percolation theory we derive analytic expressions for the Curie temperature and the magnetization in
the limit of low carrier density, obtaining excellent quantitative agreement with Monte Carlo simulation
results and good qualitative agreement with experimental results.
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Diluted magnetic semiconductors (e.g., In12xMnxAs,
Ga12xMnxAs, Ge12xMnx ), which are materials with some
fraction of the nonmagnetic lattice atoms replaced by mag-
netic atoms (i.e., a fraction x of Ga, In, or Ge atoms being
randomly replaced by Mn atoms), have attracted a great
deal of attention [1–10] following the recent discovery
[11] of ferromagnetism in Ga12xMnxAs, with a Curie tem-
perature Tc � 100 K in the x � 0.03 0.07 range. The
subject is of considerable fundamental and technological
interest. Technologically, a semiconductor, which is also a
ferromagnet, raises the exciting potential of spintronic ap-
plications [12], where logic and memory operations could
in principle be seamlessly integrated on a single device.
From a fundamental perspective, understanding ferromag-
netism in a novel material (which is also a semiconductor)
is an important challenge. It is therefore not surprising
that there has been a great deal of theoretical activity
[1–10] trying to understand the ferromagnetic mechanism
in GaMnAs. Although no theoretical consensus on the
precise ferromagnetic mechanism has yet been reached in
the literature it is now established that the interaction be-
tween the magnetic atoms, which leads to the ferromag-
netic phase at low enough temperatures, is induced by
charge carriers (holes in the case of GaMnAs) in the semi-
conductor host. Theoretical investigation of these systems
is hampered by the fact that both disorder and interactions
are strong and must be taken into account nonperturba-
tively. This problem has been approached in a number
of ways, including theoretical approximations assuming
charge carriers being almost free [1–4] and numerical
studies in the opposite limit of strongly localized charge
carriers [5–7]. However, a comprehensive understanding
of the physics of diluted magnetic semiconductors has not
been achieved yet.

Theoretical approaches [1–4] treating the charge car-
riers as free carriers in the valence band of the semicon-
ductor have employed the simple Weiss mean field theory
incorporating the band structure details (e.g., spin-orbit
coupling, etc.), without taking into account effects of
disorder. While this approach is claimed to provide
quantitatively accurate values of Tc, it fails qualitatively
in accounting for experimentally observed transport
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properties [13] of GaMnAs where the resistivity is very
high and seems to obey a Mott variable range hopping
behavior at low temperatures reminiscent of an insulating
system. In addition, the resistivity always decreases with
increasing temperature above Tc, which is again typical
of a localized insulating system. A recent dynamical
mean field theory calculation [10] concluded that the
ferromagnetic GaMnAs may actually belong to a situation
where the carriers are just on the edge of being strongly
localized. The approach [5–7] treating the carriers as
localized carriers in a semiconductor impurity band (thus
being opposite to the free-carrier mean-field approach),
which has so far been explored only numerically, also
leads to reasonable agreement with experiments and
indicates a very strong dependence of Tc on disorder. In
this paper we provide an analytical theory which takes
into account both disorder and strong magnetic interaction
starting with localized carriers and using the physically
appealing magnetic polaron percolation picture. Our
theory has a starting point similar to that in Refs. [5–7]
except that ours is a completely analytical physical theory
in contrast to the numerical approach used in the works
[5–7]. Where applicable our analytical results agree well
with the numerical results of Refs. [5–7].

In this paper we consider a system in which transition to
the insulating state due to localization of the charge carri-
ers occurs at temperatures higher than the Curie tempera-
ture Tc. The carriers will be called “holes” throughout the
text of this paper since in GaMnAs the carriers are holes
although the theory to be developed in this paper applies
equally to the situation where the carriers are electrons.
Exchange interaction of localized holes with magnetic im-
purities leads to the formation of bound magnetic polarons
[14,15]. Since the concentration of magnetic impurities is
much larger than the hole concentration [16], most likely
due to compensation by As antisite defects, a bound mag-
netic polaron consists of one localized hole, and a large
number of magnetic impurities around the hole localiza-
tion center. Even though the direct exchange interaction
of the localized holes is antiferromagnetic, the interaction
between bound magnetic polarons may be ferromagnetic
[15] at large enough concentrations of magnetic impurities.
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FIG. 1. Interaction of two bound magnetic polarons (after
Ref. [15]). The polarons are shown with gray circles; small and
large arrows show impurity and hole spins, respectively.

To understand the physics of this phenomenon, one may
consider two neighboring polarons (Fig. 1). The localized
holes of these polarons both act on the impurities surround-
ing them thus producing an effective magnetic field for
these impurities. The energy minimum is reached by this
system when the impurity spins are parallel to this effec-
tive field, and the magnitude of the field is maximum. The
maximum of this effective magnetic field is achieved when
the spins of the localized holes are parallel. Therefore at
low temperatures the system should eventually reach the
state where the spins of all holes point in the same direc-
tion, and all impurity spins point in the same or in the op-
posite direction, depending on the sign of the impurity-hole
exchange interaction.

If the hole localization radius is much less than the char-
acteristic distance between the localized holes, the disor-
der in the hole positions must have dramatic effect on the
whole picture of the ferromagnetic transition. This no-
tion has been confirmed by Berciu and Bhatt [6], who
have shown, by means of numerical simulations, that both
the Curie temperature and the shape of the magnetization
curve M�T� are indeed strongly affected by disorder. It
has been known that the percolation theory [17] provides
many adequate tools to deal with ferromagnetism in disor-
dered systems with strong localization of carriers [18]. In
this paper we present a quantitative description of the spon-
taneous magnetization in magnetic semiconductors within
the framework of the percolation theory.

In our model, the charge carriers are localized. The hole
wave function is assumed to fall off exponentially away
from localization centers, with decay length aB. We con-
sider the low carrier density regime in which the mean
distance between the localized holes is much larger than
the hole localization radius, a3

Bnh ø 1. We note that, for
GaMnAs, aB � 10 Å, and therefore our theory applies in
the regime nh ø 1021 cm23, with experimental nh val-
ues currently being around 1019 cm23. The localization
centers are distributed randomly in the sample. Magnetic
impurities are distributed within the sample with concen-
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tration ni ¿ nh randomly as well. The Hamiltonian of the
system has the form

Ĥ �
X
kj

Jkj Ŝk ŝj , (1)

where indices k and j label magnetic impurities and holes
respectively, Ŝk�ŝj are the impurity/hole spin operators.
Matrix elements Jkj of the impurity-hole exchange in-
teraction decay exponentially with the distance between
the interacting impurity and hole, Jkj � J0 exp�22jrk 2

rjj�aB�. The direct (antiferromagnetic) exchange interac-
tion between the magnetic impurities is neglected, since
their relative concentration x in the lattice of the host semi-
conductor is much less than unity although this may be
important for larger values of x, leading to the suppression
of Tc. We will not discuss possible mechanisms of hole
localization, since the properties of our model hold for any
of them as long as the decay of the localized hole’s wave
function is exponential.

At some temperature T , magnetic impurities that are at
distances r , Rp�T� � �aB�2� ln�sSjJ0j�T� from hole lo-
calization centers have their spins strongly correlated with
the spins of the corresponding holes (here s and S are the
absolute values of the hole or impurity spin, respectively).
The spins which do not have a localized hole within a
circle of radius Rp�T� around them are essentially free.
The quantity Rp�T� is the effective radius of a magnetic
polaron; it grows as the temperature is lowered. Clearly at
low enough temperatures neighboring magnetic polarons
overlap and interact with each other via interaction with
impurities between them [15]. This interaction produces
alignment of the polaron spins. When the cluster of cor-
related polarons having the size of the sample (the infinite
cluster) appears, the ferromagnetic transition occurs.

Even though the picture presented above is qualitatively
correct, one needs to find the maximum characteristic tem-
perature T2p�r� at which the spins of two polarons at a
given distance r from each other are still strongly cor-
related. The Hamiltonian of a two-polaron subsystem is
given by Eq. (1), where hole index j takes only two values
j1 and j2 corresponding to the two polarons under con-
sideration. Our present goal is to find the characteristic
spin-correlation temperature T2p�r� at given r, aB, J0, and
ni. Since we are interested in the system behavior only
at and below the percolation transition, we may limit our
consideration to polaron pairs with r * n

21�3
h ¿ aB. A

rough preliminary estimate, which can be obtained from
straightforward dimensional analysis, reads

T2p�r� � A�r, aB, ni�sSjJ0j exp�2r�aB� , (2)

where dependence of the dimensionless prefactor function
A�r, aB, ni� on its arguments is weaker than exponential.
Since at T � sSjJ0j exp�2r�aB� the two polarons must
be correlated, A $ 1. At temperatures of the order of the
right-hand side of Eq. (2), each polaron already has a large
number of impurity spins near its center strongly polarized
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along the direction of the spin of its hole. Because of this
coupling, the spin of the polaron’s hole becomes “mas-
sive,” and may be considered a classical field as far as its
interaction with more remote impurities is concerned. This
effective field produces polarization of the remote impuri-
ties; the characteristic value of the projection S

� j1�
k of the

spin of kth impurity onto the spin direction of the j1th po-
laron is roughly S min�1, sJkj1 �T�. The characteristic en-
ergy of interaction of this impurity with the other polaron is
of the order of sSJkj2

, therefore the contribution of the kth
impurity to the interaction of two polarons is of the order of
S2sJkj2 min�1, sJkj1 �T� [here we assume that sSJkj1 , T .

sSJkj2 since T2p�r� $ sSjJ0jexp�2r�aB�]. This estimate
allows us to determine which impurities are important for
the interaction of two given polarons. Namely, these im-
purities are the ones in the lens-shaped region between the
two localization centers; see Fig. 1. The diameter of this
region is of the order of

p
raB; more remote impurities

are interacting too weakly with both polarons to be of any
importance. Finding the thickness of the lens-shaped re-
gion is less trivial. As we consider impurities away from
the middle point and closer, say, to j1, decrease of Jkj2 is
fully compensated by the increase of Jkj1 , until we enter
the region where the spins of the impurities are saturated
due to their proximity to j1. Thus the size of the region
of interest in the direction along rj1

2 rj2
depends on the

temperature. Since the characteristic correlation tempera-
ture T2p�r� is the quantity to find, we will proceed by itera-
tions, starting with the value given by the right-hand side
of Eq. (2) with A�r, aB, ni� � 1 (so the thickness of the
lens-shaped interaction region equals aB). As we will see,
just one iteration yields the answer with good precision.

We will take into account only the impurities in the
interaction region; the total number of these impurities
equals N � a2

Brni in the first iteration. The coupling of
each of these impurities to either hole is approximately
J�r�2� � J0 exp�2r�aB�. It allows us to reduce the Ham-
iltonian to the following form:

Ĥ � sJ�r�2� cos
u

2

NX
k�1

S
�z�
k . (3)

Here the angle between the spins of the two polarons is
denoted u, and the direction of the z axis is chosen along
the direction of the vector sj1 1 sj2 . We have neglected
spatial variation of the polaron exchange field in the inter-
action region, since the relative magnitude of this variation
does not exceed unity.

The partition function of the system described by Ham-
iltonian (3) can easily be found, and after straightforward
algebra we arrive at the expression for the average cosine
of the angle u between the spins of the two interacting po-
larons:

	cosu
 �

(
N�sSJ�r�2��T�2,

p
N sSjJ�r�2�j ø T

1 2
1

N�sSJ�r�2��T�2

p
N sSjJ�r�2�j ¿ T .

(4)
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Therefore, the spins of the two polarons at distance r are
correlated at temperatures below

p
N sSjJ�r�2�j. Using

the estimate N � a2
Brni , we finally arrive at

T2p�r� � aB
p

rni sSjJ0j exp�2r�aB� . (5)

The maximum possible distance rcorr�T � between two po-
larons with correlated spins at a given temperature T is
therefore

rcorr�T� � aB

∑
ln

sSjJ0j

T
1

1
2

ln

µ
a3

Bni ln
sSjJ0j

T

∂∏
. (6)

Now we can use result (5) to get a better estimate for
the thickness of the lens-shaped interaction region in or-
der to perform the next iteration. It is determined by the
condition Jkj1,2 , T , so the thickness is of the order of
aB ln�aB

p
rni �. The resulting correction to T2p�r� is just a

factor of ln�aB
p

rni �. Taking this correction into account
is clearly beyond the accuracy limits of the approximation
used above, so we neglect it, and use Eq. (5) as our final
result.

Now we consider a system of randomly placed magnetic
polarons. As the temperature is being lowered, the spins
of neighboring polarons become aligned, and clusters of
polarons with the same spin appear. At any given tempera-
ture T , the polarons separated by a distance smaller than
rcorr�T � are joined into magnetic clusters. The lower the
temperature, the more such “links” between polarons are
established, and the larger the average cluster size. Finally,
at low enough temperatures, a cluster having the dimen-
sions of the sample, the so-called “infinite cluster” appears,
and the magnetization of the sample acquires some finite
value. The problem of finding the transition temperature
is identical to the problem of finding the critical percola-
tion radius in the problem of randomly placed overlapping
spheres [17]. The latter problem has been solved numeri-
cally, and it has been demonstrated that the infinite cluster
forms in the system when the link length reaches the value
rperc � 0.86� 3

p
nh [19]. Substituting this expression into

Eq. (5), we get the expression for the ferromagnetic tran-
sition temperature

Tc � sSjJ0j �a3
Bnh�1�3

q
ni�nh exp

µ
2

0.86

�a3
Bnh�1�3

∂
. (7)

The limit of applicability of Eq. (7) is determined by the
condition a3

Bnh ø 1. A similar exponent was obtained in
Ref. [20] for ferromagnetic transition in PdFe alloys.

It is instructive to point out that our Eq. (7) is consistent
with the mean-field result derived in the literature [1–4]
for the opposite limit of almost free holes,

Tc � niJ
2
mfj�Tc� ,

where Jmf is related to J0 of Eq. (1) by Jmf � a3
BJ0, and

j�T � � nh�max�´F , T � is the magnetic susceptibility of
holes, with ´F being the Fermi energy. In the case of low
electron density, T ¿ ´F ,

Tc �
p

ninh jJmfj ,
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FIG. 2. The solid lines show the relative magnetization of the
magnetic impurities [Eq. (9)] for a3

Bnh � 1023 (curve 1) and
1022 (curve 2). The dashed lines show the relative magnetiza-
tion of localized holes, whose contribution to the total sample
magnetization is small.

which matches the result (7) of the bound-polaron picture
at the limit of applicability of the latter, a3

Bnh � 1.
Since nh ø ni , one polaron includes many magnetic

impurities, and the total magnetization of the sample is
that of impurities:

M�T� � SniV �rcorr�T , ni , nh, aB� 3
p

nh � , (8)

where rcorr is defined by Eq. (6), and universal function
V � y� is the infinite cluster’s volume in the model of
overlapping spheres; it depends only on the product y
of the spheres’ diameters and the cubic root of their
concentration.

Using Eqs. (6) and (7), we cast Eq. (8) in the form

M�T �
M�0�

� V

∑
0.86 1 �a3

Bnh�1�3 ln
Tc

T

∏
, (9)

with the Curie temperature Tc given by Eq. (7). One can
see that the shape of the magnetization curve is determined
by only one dimensionless parameter a3

Bnh, while the ex-
pression (7) for Tc is more complicated and depends on all
parameters of the model. Figure 2 shows the temperature
dependence of the magnetization at two values of a3

Bnh;
the curve is more concave at smaller values of this parame-
ter. The concave shape of the curve is consistent with the
experimental magnetization data in Ge12xMnx [21] and
low-Tc III-V samples [22] where our polaron percolation
picture applies better due to stronger carrier localization
associated with lower values of a3

Bnh. Our magnetization
results also agree with the numerical results of Ref. [6].

To conclude we have developed an analytic polaron
percolation theory for diluted magnetic semiconductor fer-
romagnetism in the limit of low carrier density or equiva-
lently strong carrier localization a3

Bnh ø 1. Interestingly
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our polaron percolation theory reproduces the free carrier
Weiss mean field theory in the limit of a3

Bnh � 1. Our
analytic results are in good agreement with existing
numerical results in the strongly localized limit [5–7].
The experimental systems currently have a3

Bnh � 1021 2

1023 which makes our theory marginally applicable to the
experimental systems, and we get reasonable agreement
with experimental results for Tc [23] and for M�T �.
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