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We study decoherence of a quantum dot charge qubit due to coupling to piezoelectric acoustic phonons in
the Born–Markov approximation. After including appropriate form factors, we find that phonon decoherence
rates are one to two orders of magnitude weaker than was previously predicted. We calculate the dependence
of the Q factor on lattice temperature, quantum dot size, and interdot coupling. Our results suggest that
mechanisms other than phonon decoherence play a more significant role in current experimental setups.
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I. INTRODUCTION

Since the discovery that quantum algorithms can solve
certain computational problems much more efficiently than
classical ones,1 attention has been devoted to the physical
implementation of quantum computation. Among the many
proposals, there are those based on the electron spin2,3 or
charge4–8 in laterally confined quantum dots, which may
have great potential for scalability and integration within cur-
rent technologies.

Single qubit operations involving the spin of an electron
in a quantum dot will likely require precise engineering of
the underlying material or control over local magnetic
fields;9 both have yet to be achieved in practice. In contrast,
single qubit operations involving charge in a double quantum
dot sDQDd10 are already within experimental reach.11,12They
can be performed either by sending electrical pulses to
modulate the potential barrier between the dotsstunnel
pulsingd6,8 or by changing the relative position of the energy
levelssbias pulsingd.11 In both cases one acts on the overlap
between the electronic wave functions of the dots. This per-
mits direct control over the two low-energy charge states of
the system—the basis statesu1l andu2l of a qubit: CallingN1
sN2d the number of excess electrons in the leftsrightd dot, we
have thatu1l=s1,0d and u2l=s0,1d.

The proposed DQD charge qubit relies on having two
lateral quantum dots tuned to thes1,0d↔ s0,1d transition
line of the Coulomb blockade stability diagramssee Fig. 1d.
Along this line, an electron can move between the dots with
no charging energy cost. An advantage of this system is that
the Hilbert space is two dimensional, even at moderate tem-
peratures, since single-particle excitations do not alter the
charge configuration. Leakage from the computational space
involves energies of order the charging energy which is quite
large in practices,1 meV,10 Kd. In the case of tunnel
pulsing, working adiabatically—such that the inverse of the
switching time is much less than the charging energy—
assures minimal leakage. The large charging energy implies
that pulses as short as tens to hundreds of picoseconds would
be well within the adiabatic regime. However, the drawback
of using charge to build qubits is the high decoherence rates
when compared to spin. Since for any successful qubit one

must be able to perform single- and double-qubit operations
much faster than the decoherence time, a quantitative under-
standing of decoherence mechanisms in a DQD is essential.

In this work, we carry out an analysis of phonon decoher-
ence in a DQD charge qubit. During qubit operations, the
electron charge movement induces phonon creation and an-
nihilation, thus leading to energy relaxation and decoher-
ence. In order to quantify these effects, we follow the time
dependence of the system’s reduced density matrix, after
tracing out the phonon bath, using the Redfield formalism in
the Born and Markov approximations.13,14

Our results show that decoherence rates for this situation
are one to two orders of magnitude weaker than previously
estimated. The discrepancy arises mainly due to the use of
different spectral functions. Our model incorporates realistic
geometric features which were lacking in previous calcula-
tions. When compared to recent experimental results, our
calculations indicate that phonons are likely not the main
source of decoherence in current DQD setups.

The paper is organized as follows. In Sec. II, we introduce
the model used to describe the DQD, discuss the coupling to
phonons, and establish the Markov formulation used to solve
for the reduced density matrix. In Sec. III we study decoher-

FIG. 1. Schematic Coulomb blockade stability diagram for a
double quantum dot system at zero biassRef. 10d. sN1,N2d denotes
the number of excess electrons in the dots for given values of the
gate voltagesV1 andV2. The solid lines indicate transitions in the
total charge, while the dotted lines indicate transitions where charge
only moves between dots. The pointA marks the qubit working
point.
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ence in a single-qubit operation, while in Sec. IV we simu-
late the bias pulsing experiment of Ref. 11. Finally, in Sec. V
we present our conclusions.

II. MODEL SYSTEM

We begin by assuming that the DQD is isolated from the
leads. The DQD and the phonon bath combined can then be
described by the total Hamiltonian7

H = HS+ HB + HSB, s1d

whereHS andHB are individual DQD and phonon Hamilto-
nians, respectively, andHSB is the electron–phonon interac-
tion. We assume that gate voltages are tuned to bring the
system near the degeneracy pointA sFig. 1d where a single
electron may move between the two dots with little charging
energy cost. To simplify the presentation, only one quantum
level on each dot is included;E1s2d denotes the energy of an
excess electron on the leftsrightd QD spossibly including
some charging energyd. Likewise, spin effects are
neglected.15 Thus, in the basishu1l,u2lj, the DQD Hamil-
tonian reads

HS=
«std
2

sz + vstdsx, s2d

where sz,x are Pauli matrices,«std=E1−E2 is the energy
level difference, andvstd is the tunneling amplitude connect-
ing the dots. Notice that both« and v may be time depen-
dent. The phonon bath Hamiltonian has the usual forms"
=1d

HB = o
q

vqbq
†bq, s3d

where the dispersion relationvq is specified below. The
electron-phonon interaction has the linear coupling form,7,16

HSB= o
q

o
i=1

2

aq
sidNisbq

† + b−qd, s4d

whereNi is the number of excess electrons in theith dot and
aq

sid=lqe−iq·RiPisqd, with R1=0 andR2=d the dot position
vectors, see Fig. 2. The dependence of the coupling constant
lq on the material parameters and on the wave vectorq will
be specified in the following. The dot form factor is

Pisqd =E d3r nisr de−iq·r , s5d

wherenisr d is the excess charge density in theith dot. With
no significant loss of generality, we will assume that the form
factor is identical for both dots and, therefore, drop thei
index hereafter. In the basishu1l,u2lj, after dropping irrelevant
constant terms, the electron–phonon interaction simplifies to

HSB= KF, s6d

where

K =
1

2
sz, F = o

q
gqsbq

† + b−qd, s7d

with gq=lqPsqds1−e−iq·dd. The phonons propagate in three
dimensions, while the electrons are confined to the plane of
the underlying two-dimensional electron gass2DEGd. Notice
that the electron–phonon coupling is not isotropic for the
DQD sFig. 2d: Phonons propagating alongf=0 and anyu do
not cause any relaxation, while coupling is maximal along
f=u=p /2 direction. We neglect any mismatch in phonon
velocities at the GaAs/AlGaAs interface, where the 2DEG is
located.

We now proceed with the Born–Markov–Redfield
treatment13,14 of this system. While the Born approximation
is clearly justified for weak electron–phonon interaction, the
Markov approximation requires, in addition, that the bath
correlation time is the smallest time scale in the problem.
These conditions are reasonably satisfied for lateral GaAs
quantum dots, as we will argue in the following.

Let us assume that the system and the phonon bath are
disentangled att=0. Using Eqs.s2d, s3d, and s6d, we can
write the Redfield equation for the reduced density matrix
rstd of the DQD,13,14

ṙstd = − ifHSstd,rstdg + hfLstdrstd,Kg + h.c.j. s8d

The first term on the right-hand side yields the Liouvillian
evolution and the other terms yield the relaxation caused by
the phonon bath. The auxiliary matrixL is defined as

Lstd =E
0

`

dtBstde−itHSstdKeitHSstd, s9d

where Bstd=TrbhFstdFs0dfsHBdj is the bath correlation
function, Fstd=eiHBtFe−iHBt, and fsHBd=e−bHB/Trbhe−bHBj,
with b=1/T the inverse lattice temperatureskB=1d.

Using Eq. s3d in the definition of the bath correlation
function, we find that the latter can be expressed in the form

Bstd =E
0

`

dvnsvdheitvnBsvd + e−itvf1 + nBsvdgj, s10d

wherenBsvd is the Bose–Einstein distribution function and

nsvd = o
q

ugqu2dsv − vqd s11d

is the spectral density of the phonon bath.
We now specialize to linear, isotropic acoustic phonons:

vq=suqu, wheres is the phonon velocity. Moreover, we only

FIG. 2. Geometry of the double quantum dot charge qubit.
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consider coupling to longitudinal piezoelectric phonons, ne-
glecting the deformation potential contribution. For bulk
GaAs, this is justifiable at temperatures below approximately
10 K.17 Thus,

ulqu2 =
gphp

2s2

Vuqu
, s12d

wheregph is the piezoelectric constant in dimensionless form
sgph<0.05 for GaAs16,17d andV is the unit cell volume.

The excess charge distribution in the dots is assumed
Gaussian:

nsr d = dszd
1

2pa2 expS−
x2 + y2

2a2 D . s13d

This is certainly a good approximation for small dots with
few electrons, but becomes less accurate for large dots. The
resulting form factor reads

Psqd = e−sqx
2+qy

2da2/2. s14d

Note that this expression differs from that in Refs. 6 and 8
where a three-dimensional Gaussian charge density was as-
sumed.

Using Eqs.s12d ands14d, as well as the DQD geometry of
Fig. 2, we get

nsvd = gphvE
0

p/2

du sinu expS−
v2a2

s2 sin2 uD
3 F1 − J0Svd

s
sinuDG . s15d

It is instructive to inspect the asymptotic limits of this equa-
tion. At low frequencies,nsv→0d<gphd

2v3/6s2; thus, the
phonon bath is superohmic. At high frequencies,

nsv → `d <
gphs

2

a2v
fSd

a
D , s16d

where

fSd

a
D =E

0

`

dx xe−x2F1 − J0Sd

a
xDG . s17d

Notice that the spectral function does not have the exponen-
tial decay familiar from the spin-boson model, but rather
falls off much more slowly:nsv→`d~v−1. This should be
contrasted with the phenomenological expressions used in
Ref. 7.

The characteristic frequency of the maximum innsvd is
tc

−1=s/a. For typical experimental setups,a<50 nm while
s<53103 m/s for GaAs, yielding tc<10 ps stc

−1

<65 meVd. Thus, the Markovian approximation can be jus-
tified for time scalest.tc and if all pulse operations are kept
adiabatic on the scale oftc.

III. DECAY OF CHARGE OSCILLATIONS

One can operate this charge qubit in two different ways:
sid by pulsing the tunneling amplitudevstd keeping« con-

stant, or sii d by changing the energy level difference«std
keepingv constantsbias pulsingd. Tunnel pulsing seems ad-
vantageous as it implies fewer decoherence channels and less
leakage. However, a recent experiment used a bias pulsing
scheme.11

Our system’s Hilbert space is two dimensional by con-
struction fsee Eq.s2dg, hence there is no leakage to states
outside the computational basis. We can, therefore, use
square pulses instead of smooth, adiabatic ones. This not
only allows us to analytically solve for the time evolution of
the reduced density matrix, Eq.s8d, but also renders our re-
sults applicable to both tunnel and bias pulsing. Indeed, in
both regimes one has«std=0 andvstd=vm for t.0, taking
that the pulse starts att=0. Let us assume that the excess
electron is initially in the left dot:r11s0d=1 andr12s0d=0. In
this case, since the coefficients on the right-hand side ofs8d
are all constants att.0, we can solve the Redfield equation
exactlyssee the Appendix for detailsd. As rstd has only three
real independent components, the solution is

r11std =
1

2
+

1

2
e−sg1/2dtScosvt +

g1

2v
sinvtD , s18d

Rer12std = −
1

2
s1 − e−g1tdtanh

vm

T
, s19d

Im r12std =
2vm + g2

2v
e−sg1/2dt sinvt, s20d

where

v = F4vmSvm +
g2

2
D −

g1
2

4
G1/2

, s21d

g1 =
p

2
ns2vmdcoth

vm

T
, s22d

g2 = −
W

0

` dy

y2 − 1
ns2vmydcoth

vmy

T
. s23d

Note that g1,2!vm. We extract the customary energy and
phase relaxation times,T1 andT2, by rotating to the energy
eigenbasishu2l,u1lj:

r−−std = 1
2 − Rer12std, s24d

r−+std = − 1
2 + r11std + i Im r12std. s25d

Then, the damping of the oscillations in the diagonal matrix
elements is the signature of energy relaxation, while the
phonon-induced decoherence is seen in the exponential de-
cay of the off-diagonal elements. For the DQD, we findT1
=g1

−1 andT2=2g1
−1 for the decoherence time.

The quality factor of the charge oscillations in Eq.s18d is
Q=v /pg1. Using Eqs.s21d, s22d, ands15d, we find that
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Q <
4 tanhsvm/Td

p2gph
HE

0

1 dx
Î1 − x

e−svm/vad2x

3F1 − J0Sd

a

vm

va

ÎxDGJ−1

, s26d

whereva=s/2a. TheQ factor depends on the tunneling am-
plitude vm, lattice temperatureT, dot radiusa, and interdot
distanced.

Several experimental realizations of DQD systems re-
cently appeared in the literature.11,12,18,19 In principle, all
these setups could be driven by tunnel pulsing to manipulate
charge and perform single-qubit operations. To understand
how theQ factor depends on the tunneling amplitudevm in
realistic conditions, let us consider the DQD setup of Jeong
and co-workers.18 In their device, each dot holds about 40
electrons and has a lithographic diameter of 180 nm. The
effective radiusa is estimated to be around 60 nm based on
the device electron density. Therefore,d/a<3. The lattice
base temperature is 15 mK. Introducing these parameters
into Eq. s26d, one can plotQ factor as a function ofvm or,
equivalently, as a function of the period of the charge oscil-
lationsP=2p /v<p /vm. This is shown in Fig. 3.

To stay in the tunnel regimevm should be smaller than the
mean level spacing of each QD, approximately 400meV in
the experiment.18 Therefore, in Fig. 3 we only show the
curve forvm up to 100meV. One has to recall that at these
values the Markov approximation used in the Redfield for-
mulation is not accuratessee end of Sec. IId, and so our
results are only an estimate forQ. For strong tunneling am-
plitudes, when 25meV,vm,100 meV, the largest value we
find for Q is close to 100. For weak tunneling withvm
,25 meV, the situation is more favorable and larger quality
factors sthus relatively less decoherenced can be achieved.
Nevertheless, the one-qubit operation time, which is propor-
tional to the period, grows linearly withQ in the region of

vm→0, as shown in the inset of Fig. 3. Therefore, at a certain
point other decoherence mechanisms are going to impose an
upper bound onQ.

The minimum ofQ in Fig. 3 occurs whenvm coincides
with the frequency at which the phonon spectral density is
maximum. It corresponds to the energy splitting between
bonding and antibonding states of the DQD, 2vm, being ap-
proximately equal to the frequency of the strongest phonon
modes/a: vm.va.

From Fig. 3, it is evident that one can reach certain values
for the Q factor ssay,Q=100d at both weaksvm.4.6 meV
.53 mKd and strong svm.93 meV.1.1 Kd tunneling.
However, these two regimes are not equally convenient.
From Eq.s26d, it is clear that the temperature dependence of
the Q factor is fully determined by the bonding–antibonding
splitting energy 2vm: QsTd=Qs0dtanhsvm/Td. We notice that
QsTd<Qs0d if T!vm; therefore, theQ factor is less suscep-
tible to temperature variations for strong tunnelingsFig. 4d.
Another parameter that influences theQ factor is the dot
radius, which controls the frequency of the strongest phonon
mode,s/a. In the strong tunneling regimesdashed curve in
the inset to Fig. 4d, one has to increase the QD size to im-
prove theQ factor. This would reduce the energy level spac-
ing, hence only moderate improvement inQ factor is pos-
sible. In contrast, in the weak tunneling regimessolid curve
in the inset to Fig. 4d one has to reduce the QD size. This can
lead to a significantsup to one order of magnituded Q factor
improvement.

IV. BIAS PULSING

In a recent experiment,11 Hayashi and co-workers studied
charge oscillations in a bias-pulsed DQD. In this regime the
energy difference between the left and right-dot single-
particle energy levels is a function of time:«std=«0ustd. A
typical profile used for pulsing is

ustd = 1 −
1

2
Stanh

t + W/2

2t
− tanh

t − W/2

2t
D , s27d

whereW represents the pulse width andt controls the rise
and drop times. During bias pulsing, the tunneling amplitude

FIG. 3. The charge oscillationQ factor as a function of the
tunneling amplitudevm slower scaled and of the oscillation periodP
supper scaled for a GaAs double quantum dot system. The lattice
temperature is 15 mK and the dot radius and interdot distance are
60 and 180 nm, respectively. The inset shows the relation between
P andQ at small tunneling amplitudesslarge periodsd.

FIG. 4. The charge oscillationQ factor as a function of the
lattice temperature. Inset: as a function of the dot radius for a fixed
ratio d/a=3. The solidsdashedd line corresponds to the weakvm

.53 mK sstrong vm.1.1 Kd tunneling regime. Other parameter
values are equal to those in Fig. 3.
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is kept constant. In Ref. 11, the difference in energy levels
was induced by applying a bias voltage between left and
right leadssand not by gating the dots separatelyd. For their
setup, the maximum level splitting amplitude was«0
<30 meV andt<15 ps, corresponding to an effective ramp-
ing time of about 100 ps.20 The tunneling amplitude was
kept constant and estimated asv<5 meV, which amounts to
charge oscillations with periodP<1 ns. The lattice tempera-
ture was 20 mK. Each quantum dot contained about 25 elec-
trons and the effective dot radius is estimated to be around
50 nm based on the device electron density. From the elec-
tron micrograph of the device one findsd<225 nm, hence
d/a<4.5. When substituting these values into Eq.s26d, one
finds Q<54.

However, from the experimental data one observesQ
<3. Low Q factors were also obtained by Petta and co-
workers in an experiment where coherent charge oscillations
in a DQD were detected upon exciting the system with mi-
crowave radiation.12 Other mechanisms of decoherence do
exist in these systems, such as background charge
fluctuations21 and electromagnetic noise emerging from the
gate voltages. Our results combined with the recent experi-
ments indicate that these other mechanisms are more rel-
evant than phonons.

We now turn to yet another possible source of decoher-
ence: Leakage to the leads when the pulse is on.22 To illus-
trate this alternative source of damping of charge oscilla-
tions, we simulate the bias-pulsing experiment of Ref. 11 by
implementing a rate equation formalism similar to that used
in Ref. 23. The formalism is based on a transport theory put
forward for the strongly biased limit.24,25 First, we find the
stationary currentI0 through the DQD structure when the
pulse is offsthat is, the bias is appliedd:25

I0 = e
GLGR

GL + GR

v2

v2 +
GLGR

4
+

«0
2GLGR

sGL + GRd2

, s28d

wheree is the elementary charge.GLsRd is the partial width of
the energy level in the leftsrightd dot due to coupling to the
left srightd lead swhen the bias is appliedd; in the
experiment,11 GL,R<30 meV. On the other hand, when the
pulse is on, the stationary current is zero. We now apply the
pulse«std and measure the currentIstd. In the experiments,
the level widthsGL,R decrease upon biasing the system. To
include that effect here, we also pulse them:GLstd=gL+sGL

−gLdustd and analogously forGR, wheregLsRd is the residual
leakage to the leftsrightd lead when the pulse is on. We use
gL,R=0.3 meV, even though the real leakage in the experi-
ment was likely much smaller. To obtain the response current
one subtracts the stationary component:I respstd= Istd− I0ustd.

Figure 5sad shows the response current for a pulse of
width W=4 ns andt=30 ps. The latter is approximately
twice as large as in the experiment and is chosen to enhance
the effect. In Ref. 11, pulses were applied at a frequencyf
=100 MHz. The average number of electrons transfered
from the left to the right lead per cycle minus that in the
stationary regime is23

n =E
0

1/f

dt Irespstd/e. s29d

sIn the simulations there is no need to apply a sequence of
pulses.d Notice thatn oscillates as a function of the pulse
width W fsee Fig. 5sbdg as observed in the experiment. Two
main conclusions can be drawn from our simulation. First,
the larger t, the smaller the visibility of the charge
oscillations.23 Second, the larger the leakage ratesgL,R when
the pulse is on, the stronger the damping of the oscillations.
While the damping due to leakage is presumably too weak
an effect to discern in the data presented in Ref. 11, the loss
of visibility due to finitet is likely one of the causes of the
small amplitude seen experimentally.

V. CONCLUSIONS

The main conclusion of the paper is that, under realistic
conditions, phonon decoherence is one to two orders of mag-
nitude weaker than expected.6–8 The analytical expression
for theQ factor given in Eq.s26d was found using an expres-
sion for the phonon spectral density, Eq.s15d, which takes
into account important information concerning the geometry
of the double quantum dot system. In a previous work7

an approximate, phenomenological expression,nsvd
~v exps−v /vcd, was utilized in the treatment of charge qu-
bits. There is a striking difference between these two expres-
sions in both the high- and low-frequency limits. Moreover,
an arbitrary coupling constant was adopted in Ref. 7 to
model the electron–phonon interaction while our treatment
uses a value known to describe the most relevant phonon
coupling in GaAs. On the other hand, other previous work6,8

assumed a spherically symmetric excess charge distribution
in the dot while we have assumed a two-dimensional pan-
cake form. These differences account for most of the discrep-
ancy between the present and previous results.

Based on these findings we conclude that phonon deco-
herence is too weak to explain the damping of the charge
oscillations seen in recent experiments.11,12 Charge leakage
to the leads during bias pulsing is an additional source of

FIG. 5. sad The response currentI respstd /e in ns−1 as a function
of time for a pulse withW=4 ns andt=30 ps.sbd Number of elec-
trons transferred between left and right leads, as defined in Eq.s29d,
as a function of the pulse widthW.
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damping, as shown in Fig. 5sbd; however, for realistic
parameters,11,23 it turns out to be a weak effect as well.
Hence, other decoherence mechanisms, such as background
charge fluctuations or noise in the gate voltages, play the
dominant role.21

There are two distinct ways to operate a double quantum
dot charge qubit:sid by tunnel pulsing orsii d by bias pulsing.
Tunnel pulsing seems advantageous due to the smaller num-
ber of possible decoherence channels. In addition, the bias
pulsing scheme, in contrast to tunnel pulsing, introduces sig-
nificant loss of visibility in the charge oscillations.

In this work we did not attempt to study leakage or loss of
fidelity due to nonadiabatic pulsing, which are both impor-
tant issues forspin-based quantum dot qubits.26 Moreover,
we have not attempted to go beyond the Markov approxima-
tion when deriving an equation of motion for the reduced
density matrix. Both of these restrictions in our treatment
impose some limitations on the accuracy of our results, es-
pecially for large tunneling amplitudes.

Finally, it is worth mentioning that some extra insight
would be gained by measuring theQ factor as a function of
the tunneling amplitudevm experimentally. Such a measure-
ment would allow one to map the spectral density of the
boson modes responsible for the decoherence. This would
provide very valuable information about the leading decoher-
ence mechanisms in double quantum dot systems.
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APPENDIX: DERIVATION OF EQS. (18)–(20)

For t.0, Eq. s2d is time-independent:HS=vmsx. Since
theK matrix is also time-independentfEq. s7dg, the matrixL

defined by Eq.s9d is time-independent as well. After some
straightforward operator algebra, we find that

L =
1

2
E

0

`

dt Bstde−itvmsxsze
itvmsx sA1d

=
1

2
E

0

`

dt Bstdfsz coss2vmtd − sy sins2vmtdg. sA2d

One can rewrite Eq.sA2d as follows:

L = 1
2sg1 + ig3dsz − 1

2sg2 + ig4dsy, sA3d

wherehgij’s are real coefficients:

Hg1 + ig3

g2 + ig4
J =E

0

`

dt BstdHcoss2vmtd
sins2vmtd J . sA4d

The density matrixrstd is a 232 Hermitian matrix with
unit trace. Hence, it has three real independent components
and can be written as follows:

r = 1
2 + sx Rer12 − sy Im r12 + szsr11 − 1

2d . sA5d

Let us substitute Eqs.sA5d andsA3d into the Redfield equa-
tion fEq. s8dg and use thatHS=vmsx and K= 1

2sz. A simple
algebraic manipulation leads to three differential equations,

Reṙ12 = − g1 Rer12 +
g4

2
, sA6d

ṙ11 = − 2vm Im r12, sA7d

Im ṙ12 = s2vm + g2dsr11 − 1
2d − g1 Im r12. sA8d

The initial conditions arer11s0d=1 and r12s0d=0. Eqation
sA6d decouples from Eqs.sA7d and sA8d. Its solution is
given by Eq. s19d, where we used the following identity:
g4/g1=−tanhsvm/Td. EquationssA7d andsA8d form a closed
system. Their solution is given by Eqs.s18d and s20d.

The coefficientsg1 and g2 fEqs. s22d and s23d, respec-
tivelyg are calculated using Eqs.sA4d and s10d.
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