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Suprathreshold Stochastic Resonance in Multilevel Threshold Systems
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A new form of stochastic resonance (SR) that occurs in multilevel threshold signal detectors is reported.
In contrast to classical SR, which extends the dynamic range of threshold detectors to subthreshold signal
levels, this new form of SR extends the dynamic range to suprathreshold signal strengths. The effect is
most dominant, and can outperform networks based on standard engineering design, when all thresholds
adapt to the dc level of the signal. This has an interesting analogy to dc adaptation in neurons. The
possible connection between these two effects is discussed.

PACS numbers: 05.40.Ca, 02.50.Ey
The study of stochastic resonance (SR) in threshold
based systems has received considerable attention in recent
years [1–3]. However, the great majority of these studies
have focused on systems with a single threshold. In this
Letter a multilevel parallel network of threshold devices is
considered. Such networks are of considerable importance
in many signal processing applications. For example, they
are the basis on which Flash analog-to-digital converters
(ADCs) [4] work. Additionally, multilevel networks have
recently been used to model ensembles of sensory neurons
[5–7]. Consequently, the study of SR effects in these sys-
tems is of some importance.

Stochastic resonance is commonly understood to be
the enhancement, by noise, of the response of a system
to a weak signal. By weak, one normally means with
reference to an appropriate scale. This scale can be taken
either as the (internal/external) noise intensity or, in a
single threshold system such as a simple comparator,
as the threshold level. However, when determining
whether SR is in principle observable, it is the size of
the signal compared to the threshold level that is the
important quantity. Normally, SR is observed only if
the signal is smaller than the threshold level, i.e., it is
subthreshold. For large, suprathreshold signals, the SR
effect disappears [2,3]. This has led to the common
belief that SR type effects can be observed only for
predominantly subthreshold signals (although residual SR
effects are known to occur for marginally suprathreshold
signals [8]). However, as we will see, this is true only
for single threshold systems. It is demonstrated here
that multithreshold networks can display another form
of SR that occurs when the signal is predominantly
suprathreshold.

In this study a summing network of N threshold devices
(Fig. 1) is considered. Each threshold device is subject
to the same input signal x�t� but independent Gaussian
noise, hi�t�, with a common standard deviation, sh . The
devices are modeled as Heaviside functions, and the
individual outputs, yi�t�, are equal to unity if
x�t� 1 hi�t� . ui and zero otherwise. The ui are
the threshold levels and i � 1, 2, . . . , N . The response
0031-9007�00�84(11)�2310(4)$15.00
of the network is obtained by summing the individual
responses of each device. Consequently, the output y�t�
represents the number of devices that are triggered at any
instant of time.

The network is similar in spirit to those previously
studied in the context of neuronal ensembles [5–7].
However, two significant differences exist. First, each
threshold level is independently adjustable. This feature
is incorporated into the model primarily because it is well
known that the transmitted information can be signifi-
cantly improved if a distribution of thresholds is employed.
Second, simple nondynamical threshold elements are in-
corporated into the network instead of “excitable units”
such as the FitzHugh-Nagumo model. This simplification
helps to mitigate the increase in complexity caused by
having independently adjustable thresholds and makes the
model more amenable to theoretical analysis.

An information theoretic measure—the average mutual
information—will be used to quantify the amount of infor-
mation transmitted through the network. The average mu-
tual (or transmitted) information, I , for the network shown
in Fig. 1 can be written [9]

FIG. 1. A summing network of N threshold devices. Each
device is subject to the same signal but independent Gaussian
noise.
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H� y� is the information content (or entropy) of y�t� and
H� y j x� can be interpreted as the amount of encoded in-
formation lost in the transmission of the signal. Py�n�
is the probability that y�t� � n and P�n j x� is the condi-
tional probability given knowledge of the signal value, x.
The logarithms are taken to base 2 so I is measured in bits.

Initially, the case similar to that studied in [5,7], where
all the threshold levels have the same value, will be stud-
ied. However, in addition to the subthreshold signal en-
hancements previously reported [5], we will see that, by
an appropriate choice of threshold level, noise can also
optimize the detection of suprathreshold signals. Figure 2
shows results for all thresholds set equal to the mean of the
signal and various N . In this situation the signal is strongly
suprathreshold, yet SR type behavior (i.e., a noise induced
maximum) is still observed for all N . 1. As N increases,
the maximum value attained by I also increases. In com-
plete contrast to classical SR, this effect is at its most pro-
nounced when the deterministic (signal induced) threshold
crossings are maximized; for this reason it will be termed
suprathreshold stochastic resonance (SSR). SSR effects do
not diminish with increasing signal magnitude—as long
as the noise is scaled accordingly. Consequently, SSR can
be observed with signals of any magnitude without hav-
ing to modify the threshold levels. It should be stressed
that the mechanism giving rise to SSR is quite different
from that of classical SR. In the absence of noise, all de-
vices switch in unison, and consequently the network acts
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FIG. 2. Transmitted information using a Gaussian signal
source with a standard deviation sx . s � sh�sx and all
ui � 0. The data points are the results of a digital simulation of
the network, and the solid lines were obtained by numerically
evaluating Eq. (2).
like a single bit ADC (I � 1). Finite noise results in a
distribution of thresholds that gives access to more bits of
information; effectively the noise is accessing more de-
grees of freedom (output states) of the system and hence
generating information. In addition to the improvement of
the transmitted information the noise also acts to linearize
the system response. This is a common effect and occurs
in nearly all nonlinear systems [10]. Indeed, the dynamics
of a similar network was interpreted in terms of a noise in-
duced linearization (NIL) mechanism [7]. However, while
NIL nearly always occurs with increasing noise, SR does
not. The advantage of using an information theoretic mea-
sure instead of a linear signal processing technique, such
as cross correlation, is that it is robust to a determinis-
tic nonlinear deformation of the signal. Consequently, it
is possible to quantify the dynamics of these networks,
and hence SR, largely independently of the linearity of the
response.

The existence of the SSR effect can be confirmed by
direct calculation of I . When all threshold values are equal
to u it is straightforward to show that
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h�, is the conditional probability of yi � 1

for a given x and similarly P0 j x � 1 2 P1 j x is the
probability of a zero given x. Erfc is the complimentary
error function. The integrals and summation in Eq. (2)
were calculated numerically (solid lines in Fig. 2). Good
agreement between simulation and theory is observed
confirming the existence of the SSR effect.

In practice, setting the threshold levels to a common
value seems like a rather inefficient use of N devices. In
general, it is standard engineering practice to employ a
distribution of thresholds to help maximize the transmit-
ted information. The most commonly used distribution is
regular uniform quantization. Flash ADCs are designed on
this principle, but, of course, it is also the principle behind
the operation of most ADCs. For this reason, the situ-
ation when the threshold levels are uniformly distributed
between the limits 61 with separation D � 2��N 1 1�
will be considered. In addition, a random uniformly dis-
tributed signal between limits 6L will be used instead of a
Gaussian source. This is because, in the absence of noise, a
uniform quantization scheme is optimal (i.e., I reaches its
theoretical maximum) for a uniformly distributed signal.
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Consequently, the network is at its most efficient when a
uniform signal is employed, and hence serves as a useful
benchmark for comparative studies. This network configu-
ration will be termed the ADC network.

Figure 3 shows the behavior of I against s for vari-
ous signal strengths and N � 64. Figure 3(a) shows re-
sults up to a signal strength L � 1 and Fig. 3(b) for signal
strengths L . 1. In Fig. 3(a), an SR effect is observed
when L � D�2. At this signal strength the signal falls
just between the middle two levels, and hence it is just
subthreshold. Therefore, adding noise results in the ob-
servation of a classical SR effect. This is the principle
behind dithering in ADCs. The effect of the dithering is
to improve the dynamic range of the system, allowing sig-
nals smaller than the quantization level to be detected. The
connection between dithering and SR has been pointed out
previously [11]. It can be seen that further increases in
L improve I —as one would expect—but the noise has
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FIG. 3. Plots of transmitted information against s � sh�sx
for N � 64 and various signal strengths L: (a) L # 1, and
(b) L $ 1. The data points are from digital simulation and
the solid lines are guides to the eye.
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only a detrimental effect. The results for L � 1 repre-
sent the maximum attainable performance for this system.
In the absence of noise, the maximum number of bits of
information achievable for an N level system is given by
log2�N 1 1�, which in this case gives I � 6.02. However,
in practice such a high information rate is rarely achieved.

Figure 3(b) illustrates what happens if L is increased
beyond unity. In this situation the signal is clipping and
consequently, at zero noise level, I falls off with increas-
ing L. However, for L $ 4, a noise induced maximum is
seen to occur— this coincides with the onset of the SSR
effect. Indeed, for all L . 4, the maximum I is always
attained at finite noise. In the limit L ! ` the system re-
duces to that considered in Fig. 2. These results help to
set the SSR effect in context. The ability of the network
to encode large, suprathreshold, signals is improved by the
addition of noise. In other words, the dynamic range of
the ADC network is improved for large signal amplitudes.
Therefore, SSR can be thought of as the large signal com-
plement of classical SR. Classical SR extends the dynamic
range of the system to subthreshold signal levels, whereas
SSR improves it at larger signal intensities.

This can be illustrated more generally. The integrals in
Eq. (2) can be solved explicitly in the case s � 1 from
which it can be determined that I scales for large N as
1�2 log2�N�. Given that the maximum is reasonably ap-
proximated by the I�s � 1� value, then the maximum I
attainable for a given L can be obtained and is shown
in Fig. 4. The solid line represents the theoretical per-
formance of the ADC network in the absence of noise.
The dashed lines indicate situations, at small and large
L, where noise enhances the transmission of information.
For L between D�2 and 4 the maximum I is attained at

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

1

2

3

4

5

6

7

log(L)

I (
bi

ts
)

I 1/2 log(N)

I=log(N+1)

supra-SR enhancement

∼

conventional-SR
enhancement

FIG. 4. Plot of transmitted information against log10�L� for
N � 64. The solid line is the theoretical I calculated in the
absence of noise. The dashed lines indicate the maximum value
of I that can be obtained when an optimal amount of noise is
added to the system.
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zero noise intensity. For L , D�2, classical SR can be
used to improve I, while for larger values (L . 4) SSR
can be employed. In the SSR regime a value of s can
always be found, regardless of the size of L, such that
I � 1�2 log2�N� (while in the absence of noise I ! 1 as
L ! `). This implies that the dynamic range of the ADC
network can be enhanced up to arbitrarily large L.

The results of Fig. 3 show that the transmitted infor-
mation is generally higher in the absence of noise. This
is hardly a surprising result. However, noise forms an ir-
reducible part of any signal detection system— it is this
that often imposes a fundamental lower limit on the size
of signal that the system can detect. In this regime the
results presented yield some interesting conclusions. Con-
sider again Figs. 3(a) and 3(b) when s � 1. It can be seen
from Fig. 3(b) that at this noise level optimal signal trans-
mission occurs provided L . 1. Whereas when L , 1, as
considered in Fig. 3(a), the performance of the network is
reduced. These results therefore demonstrate that no bene-
fit is to be gained by employing a distribution of threshold
levels when trying to detect signals similar in magnitude
to the internal noise. It is simpler to set all threshold lev-
els to coincide with the dc component of the signal (this
normally maximizes the deterministic threshold crossings
for an even functioned signal distribution) and rely on the
SSR effect to enhance I . Indeed, if one adopts the standard
engineering practice of setting L , 1 the network does not
achieve the same level of performance.

Additionally, it should be borne in mind that the perfor-
mance of the ADC networks never achieve that displayed
by the L � 1 curve. This is due, in part, to the fact that
setting the dynamic range of the ADC with such precision
requires a priori knowledge of the signal distribution. In
practice the distribution is not usually known with great
accuracy. For example, the dynamic range of an ADC is
normally set to allow for possible large excursions in the
signal and, hence, system performance much closer to the
L � 0.25 curve in Fig. 3(a) is typical. If this is the case
there is still an argument for designing the system using
the SSR effect if s . 0.1. This is the noise intensity at
which the performance of the system falls below 3 bits
which, in turn, is the number of bits of information that
can be obtained using the SSR effect. This implies that,
for the N � 64 case studied here, SSR is probably useful
for signal detection when the signal-to-(internal)noise ra-
tio (SNR) of the system is less than 20 dB.

In most signal detection/encoding systems SNRs are
usually well in excess of 20 dB. However, one application
where this is not the case is sensory neurons. In a recent
set of papers the basic characteristics of sensory neurons
were summarized [12]. One of the most remarkable fea-
tures of sensory neurons seems to be that they have only a
SNR of order unity (0 dB). This therefore leads to the fol-
lowing question: Could SSR be employed in neuronal en-
sembles to enhance the transmitted information? Indeed,
evidence does exist to suggest that this may be a possibil-
ity. The dc adaptive capabilities of sensory neurons is well
established. One well known example is in light and dark
adaptation of the human eye [13]. The threshold levels
adapt, via chemical changes in the cones and rods, to the
ambient mean light level. This enables the eye to operate
over a wide range of light intensities covering a 109 fold
change in energy flux. While the network studied in this
Letter is obviously a very crude model of a real biological
network, neurons are still predominantly threshold based
systems. Consequently, the question as to how they should
distribute their threshold levels to maximize information
flow still applies. The summed response of these networks
is largely governed by the statistics of the “firing” of all
the devices rather than the exact shape or dynamics of each
firing event. Therefore, the results presented for the simple
threshold network should have some applicability to real
neuronal ensembles. Given that sensory neurons have an
SNR of order 0 dB, the above results suggest that adapting
all thresholds to the dc signal component should give bet-
ter information flow than trying to redistribute their levels
to accommodate changes in the signal. Additionally, this
strategy also simplifies the mechanism required to achieve
the adaptation process. Consequently, SSR does seem to
offer a possible explanation for dc adaptation in sensory
neurons.
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