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synthesized, stereospecifically labeled metal carbonyl 
substitution products of the types cis- (L ) (WO)-  
M(C0)445146 and cis- (L2)(13CO)M(CO)346 can afford 
unequivocal information about the sites of reactivity 
through studies of the degree of label retention during 
the course of their ligand-exchange reactions. The de- 
velopment and perfection of matrix-isolation tech- 
niques which involve cocondensation of a metal car- 
bonyl and an inert gas matrix material such as Ar have 
facilitated the study of species formed upon uv irra- 
diation. Many such species may resemble highly reac- 
tive intermediates formed through thermal reactions.27 
It is anticipated that theoretical calculations for such 
 intermediate^^^ will augment experimental observations 
of their relative stabilities, their geometries, and the 
orientations of their substituents. Such studies should 
provide useful insight into the nature of reaction in- 
termediates and paths of reaction. 

(45) C. L. Hyde and D. J Darensbourg, Inorg Chem , 12,1286 (1973). 
(46) M A Cohen and T L Brown, Inorg Chem , 15, 1417 (1976), D. J 

Darensbourg and G. R. Dobson, unpublished results. 
(47) A recent paper has descrlbed molecular orbital calculations for penta- 

coordinate metal carbonyls of square-pyramidal and trigonal-bipyramidal 
geometries: A R. Ross1 and R Hoffmann, Inorg Chem , 14,365 (1975). 

Other developments of a theoretical nature, partic- 
ularly, molecular orbital calculations of increasing so- 
phistication for series of derivatives, are expected to be 
tested employing reactivity data and physical data such 
as ir and uv-visible spectra. The increasing availability 
of 13C NMR instrumentation is affording a growing 
body of data which may eventually prove to be of use in 
this regard.48 

Future studies of these and other kinds should ulti- 
mately lead to detailed understanding of ligand-ex- 
change processes in octahedral metal carbonyls. 
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The transition-state theory1 of chemical kinetics has 
without doubt provided the most useful phenomenol- 
ogical framework for parameterizing rate constants for 
a wide variety of chemical reactions. R e ~ e n t l y , ~ - ~  how- 
ever, there has been interest in investigating the dy- 
namical basis of transition-state theory and trying to 
learn the extent to which it provides a quantitative 
description of rate constants for elementary bimolecular 
reactions. 

One of the practical motivations for this recent di- 
rection of research is the recognition that, for chemical 
reactions with significant activation energy, transi- 
tion-state theory describes the threshold region of the 
reactive cross section quite well, and this8 is the energy 
regime most important for determining the thermal rate 
constant. Since the threshold region is often described 
rather poorly by classical trajectory methodsg-which 
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are useful for describing many other aspects of the dy- 
namics of simple chemical reactions-transition-state 
theory is an important complement to trajectory 
methods. ( I t  is interesting that an analogous comple- 
mentarity also exists experimentally: the “modern” 
methods of chemical kinetics-e.g., crossed molecular 
beams, infrared chemiluminescence, various laser 
techniques, etc.-provide dynamical information about 
reactions which have little or no activation energy (or 
a t  energies significantly above any threshold), but it is 
difficult to extract information about the threshold 

(1) The development of transition-state theory is associated with the names 
of Wigner, Pelzer, Polanyi, Evans, and particularly Eyring; see, for example, 
the brief historical discussion ind  bibliography in K. J. Laidler, “Theories of 
Chemical Kinetics”, McGraw-Hill, New York, N.Y., 1969, pp 41-43. The classic 
textbook reference to traditional transition-state theory is S. Gladstone, K. J. 
Laidler, and H. Eyring, “Theory of Rate Processes”, McGraw-Hill, New York, 
N.Y., 1941. 

(2) R. A. Marcus, J. Chem. Phys., 45,2138,2630 (1966); 46,959 (1967). 
(3) J. C. Keck, Adu. Chem. Phys., 13,85 (1967); Adu. A t .  Mol. Phys., 8,39 

(4) K. Morokuma and M. Karplus, J. Chem. Phys., 55,63 (1971). 
( 5 )  G. W. Koeppl and M. Karplus, J .  Chem. Phys., 55,4667 (1971). 
(6) (a) P.  Pechukas and F. J. McLafferty, J.  Chem. Phys., 58,1622 (1973); 

(7) W. H. Miller, J .  Chem. Phys., 61,1823 (1974). 
( 8 )  See, for example, R. Wolfgang, Acc. Chem. Res.,  2,248 (1969). 
(9) For recent reviews, see D. L. Bunker, Methods Comput. Phys., 10,287 

(1972). 

(b) Chem. Phys. Lett., 27,511 (1974). 

(1971), and R. N. Porter, Annu. Reu. Phys. Chem., 25,317 (1974). 



Vol. 9, 1976 Quantum Mechanical Transition-State Theory 307 

behavior of the reactive cross section from such mea- 
surements. More traditional kinetics methodology-i.e., 
determination of the rate constant as a function of 
temperature-on the other hand provides a sensitive 
measure of the threshold region (but essentially only 
this) .) 

Although it is apparent from the physical assump- 
tions inherent in transition-state theory (vide infra) that 
it should describe the threshold region accurately, the 
most detailed comparisonslO of conventional transi- 
tion-state theory with “exact” results from quantum 
scattering calculations have shown it to be poor a t  
moderate and low temperatures. This disappointing 
result seems to be a consequence of the fact that an as- 
sumption of separability of motion along a reaction 
coordinate is inextricably bound up in the usual quan- 
tum mechanical version of transition-state theory, and 
separability has been seen in a variety of calculations 
to be a poor approximation in the threshold region. If 
transition-state theory is to provide a quantitative de- 
scription of the reactive cross section in the threshold 
region (and thus the rate constant), it must therefore 
be applied quantum mechanically, because quantum 
effects are important at  threshold, but without assum- 
ing the reaction dynamics to be separable. 

The weakness of the separability approximation in 
conventional transition-state theory was recognized 
quite clearly by Johnston and Rappl’ a number of years 
ago, and they proposed ways of trying to overcome it. 
While not rigorous or accurate quantitatively, these 
early attempts at  dealing with nonseparability in 
transition state theory were important in identifying 
this feature as a crucial weakness. 

This Account first reviews the dynamical basis of 
transition-state theory within the framework of clas- 
sical mechanics, emphasizing the “fundamental as- 
sumption” on which it is based. Examples are presented 
showing that in a classical world transition-state theory 
is an excellent approximation in the threshold region. 
I t  is then shown how a quantum mechanical version of 
transition-state theory can be constructed which es- 
capes the necessity of assuming separability. Results of 
calculations based on this theory are seen to be in good 
agreement with (exact) quantum mechanical scattering 
theory. 

Classical Transition-State Theory and the  
Fundamental Assumption 

As WigneP  emphasizes, transition-state theory is 
a model essentially based on classical mechanics. (The 
validity of classical mechanics to describe the nuclear 
dynamics is Wigner’s12 second assumption; his first 
assumption is use of the Born-Oppenheimer approxi- 
mation to separate electronic and nuclear motion and 
the assumption that only one potential-energy surface 
is involved in the reaction.) To  gain a feeling for the 
dynamical approximations inherent in transition-state 
theory it is therefore useful first to discuss classical 
transition-state theory before considering a quantum 
mechanical version of it. 

If the reactants are in a Boltzmann distribution of 
their internal states and relative translation, then the 

(10) D. G. Truhlar and A. Kuppermann, Chem Phys L e t t ,  9,269 (1971); 

(11) H. S. Johnston and D. Rapp, J Am. Chem Soc., 83,l (1961). 
(12) E. Wigner, Trans Faraday SOC , 34,29 (1938). 

J Chem Phys , 36,2232 (1972). 

classical rate constant is a Boltzmann average of the flux 
of reactive trajectories through a surface which divides 
reactants from products. More precisely, the expression 
for the exact rate constant in classical mechanics is13 

kb.-,(T) = Qa-lh-F dp s dq e--PH(pjq)6[f(q)] 

where 0 = (hT)-l, (p,q) = (p;,q;), i = 1,. . . , F a r e  the 
momenta and coordinates of the system with F degrees 
of freedom, Qa is the partition function per unit volume 
of the noninteracting reactants, H(p,q) is the total 
Hamiltonian for the system, and f(q) is a function of the 
coordinates which defines the dividing surface via eq 
2 

6 is the Dirac delta function (the factor S(f(q)) in eq 1 
converts the “volume” integral over all F coordinates 
into a “surface” integral over F - 1 coordinates), and 
Xbca(p,q) is the characteristic function for reaction. 
The definition of Xb-a(P,q) is that 

f(q) = 0 (2) 

Xb-a(P,q) = 1 (3) 
if the trajectory determined by the phase point (p,q) is 
reactive in the a (A + BC) - b (AB + C) direction, and 
is zero otherwise. 

It is illustrative to write out eq 1 more explicitly for 
the simplest possible example, a collinear A + BC - AB 
+ C reaction. F = 2 in this case, and the two coordinates 
can be chosen to be r and R, which denote the relative 
B-C vibrational coordinate and the distance from A to 
the center of mass of BC, respectively; p and P are the 
momenta conjugate to r and R. The function f(r,R) 
which corresponds to choosing the dividing surface far 
out in the reactant region-surface SI in Figure l-is 

f(r,R) = Rma, - R (4) 
It is then not hard to see that eq 1 becomes 

kbca = Qa-lh+? 5 dr s dp  1: d P  
-m --m 

with R = Rma, and where p is the reduced mass for the 
A-BC translational motion. If R,,, is sufficiently large, 
the Hamiltonian is given by its asymptotic form 

P2 

2/1 
limR,, H(P,R,p,r) = - + h(p,r)  

where h(p,r) is the vibrational Hamiltonian for the 
isolated BC molecule; also, it is clear that trajectories 
beginning on this surface with P > 0 cannot be reactive 
in the a - b direction. Thus if the translational energy 
Et is introduced, 

eq 5 takes on its more conventional form 

(13) See, for example, ref 3 and 6a. 
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Figure 1. Sketch of a collinear potential energy surface for a sym- 
metric A + BC - AB + C reaction (Le., A = C). x and y are mass 
weighted, or “skewed” coordinates that diagonalize the kinetic energy: 
Y = R ( f i / M ) 1 / 2 ,  y = r ( m / M ) 1 / 2 ,  where R and r are the translational 
and vibrational coordinates, respectively, and fi  and m the corre- 
sponding reduced masses [rn = BC/(B t C), fi  = A(B + C)/(A t B + 
C)]. M is any arbitrary mass, and the classical kinetic energy is yJM(x 
-t 92). s and u are the linear combinations of x and y which diagonalize 
the potential energy at  the saddle point. SI, Sz ,  and SS indicate the 
“surfaces” which are referred to in the text. 

with R = R,,, and P = - ( 2 ~ . E ~ ) l / ~ .  Equation 6 is the 
standard expression for which a Monte-Carlo trajectory 
calculationg is often carried out: the variables r, p, and 
Et are chosen randomly from their appropriate distri- 
butions and trajectories run to  see whether 
XbCa(P,R,p,r) is 1 (a reactive trajectory) or 0 (a non- 
reactive trajectory). 

It is not necessary, however, to choose the dividing 
surface in the reactant region as was done above. 
Equation 1 is, in fact, rigorously independent of the 
particular choice of dividing surface: it is only necessary 
that the surface be one through which all reactive tra- 
jectories must pass. Figure 1 shows two other possible 
choices, surfaces Sa and S3. This independence of the 
choice of dividing surface is a consequence of the clas- 
sical continuity equation (i.e., Liouville’s theorem); this 
theorem states that if the surface defined by the equa- 
tion 

f(q) = 0 

is a closed surface and if the distribution function p(p, 
q)  is constant along a classical trajectory, then 

in words, eq 7 states that the steady-state flux through 
a closed surface is zero. Equation 1 corresponds to the 
distribution function 

p(P,q) = e-PH(P’q)Xb+a(p,d (8)  

conservation of total energy implies that H(p,q) is 

constant along a trajectory, and i t  is clear from the 
definition of Xbc-a(P,q) that it also is (if the trajectory 
determined by (p,q) is reactive a t  one time it obviously 
cannot be otherwise a t  another time), so that the dis- 
tribution function in eq 1, eq 8, satisfies the condition 
of the theorem. Furthermore, it is clear that  in Figure 
1 surfaces SI and S3, for example, can be made into one 
closed surface by joining them with segments a t  infinity. 
By the classical continuity equation, the flux through 
this closed surface is zero. Since no flux passes through 
the pieces of the surface a t  infinity, this means that the 
flux into the closed surface through SI must be equal 
to the flux out of the closed surface through S3, or 
equivalently, that the flux in the reactive direction 
through SI must be equal to the flux in the reactive di- 
rection through S3. This argument is clearly valid for 
any surface which divides reactant and product space 
and thus proves the assertion that eq 1 is independent 
of the particular dividing surface. 

The stage is now set to introduce the “fundamental 
assumption” of transition-state theory (Wigner’sl2 third 
assumption). The goal is to  eliminate the characteristic 
function Xb+a(P,q) from eq 1, and therefore the need to 
determine the complete classical dynamics of the system 
(i.e., to compute classical trajectories), and this is done 
in the following way. The “fundamental assumption’’ 
is that, if the dividing surface is chosen in the appro- 
priate place, then any trajectory which crosses i t  in the 
reactive direction is indeed a reactive trajectory, i.e., 
that  it does not subsequently recross the surface and 
become nonreactive. Put  another way, it is the as- 
sumption that the dividing surface is one which no 
trajectory crosses more than once. Whenever this as- 
sumption is true, transition-state theory is exact (within 
the world of classical mechanics presently being con- 
sidered).6a 

To frame it more quantitatively, suppose surface S3 
in Figure 1 is chosen as the one through which one as- 
sumes no trajectory passes more than once. (It is clear 
that  surfaces SI and SZ would be poor candidates for 
such a surface.) I t  is then convenient to choose the two 
coordinates to be s and u as depicted in Figure 1, and 
the dividing surface S3 then corresponds to the following 
function f(s,u), 

f(s,u) = s (9) 

i.e., s = 0 defines surface S3. Equation 1 for the exact 
classical rate constant then reads 

hb+a = Qa-1h-2 
- m  

with s = 0. The “fundamental assumption” of transi- 
tion-state theory corresponds to the replacement 

where h ( x )  is the step-function: 
h ( x )  = l , x  > o  

0,x < o  
i.e., it is assumed that if the trajectory has positive 
momentum in the reactive direction a t  the dividing 
surface, then it is indeed reactive in the a - b direction. 
Since the total Hamiltonian is of the form 
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P u 2  H(p,,s,p,,u) = + - + V(s,u) (12) 2m, 2mu 
where V(s,u) is the potential-energy surface, eq 10 be- 
comes 

(13) , ,  

where Vo = V(0,O) and Q* is the classical partition 
function of the “activated complex”, the system with 
one degree of freedom removed: 

Q* = h-I 1: dp, du 

x e-P[(pu2/2mu)+V(0,u)-V(0,0)1 (14) 

By invoking eq 11, the “fundamental assumption” of 
transition-state theory, all explicit reference to classical 
dynamics (Le., to the characteristic function Xb-a) is 
therefore eliminated, and one recognizes eq 13 as the 
usual expression for the rate constant in transition-state 
theory.lJ4 

In concluding this discussion of classical transition- 
state theory it is interesting to note how different this 
dynamical view of transition-state theory h la Wigner12 
is from other presentations which refer to the following 
“mechanism” 

(15) 
to derive eq 13. It is often implied that some sort of 
equilibrium between reactants and “activated com- 
plexes” is responsible for the ratio of partition functions 
that appear in eq 13. This in turn suggests that transi- 
tion-state theory should perhaps be most applicable if 
A and BC form a collision complex that lives for many 
vibrational periods. (Recall the desire in the early days 
of transition-state theory for the H + H2 potential 
surface to have a well a t  the top of the barrier.) The 
discussion in the above paragraphs shows, on the con- 
trary, that the fundamental assumption of transition- 
state theory is that the mechanism is “direct”, that  all 
trajectories move right across the dividing surface and 
do not return. This assumption of “straight-through” 
dynamics is essentially the opposite to that  of a long- 
lived collision complex, for the latter would result in 
trajectories which recross the dividing surface many 
times and thus invalidate the “fundamental assump- 
tion”. 

Accuracy of Classical Transition-State Theory 
Before considering quantum mechanical transition- 

state theory, it is useful to look at the accuracy of clas- 
sical transition-state theory, i.e., the validity of the 
“fundamental assumption” that no trajectories cross 
the dividing surface more than once, that the reaction 
dynamics is “direct”. Thus consider a simple collinear 
reaction such as H + H2 - HP + H with the dividing 
surface chosen as the symmetric line (surface SS in 

A + BC F! (ABC)* -+AB + C 

(14) A lucid derivation of the classical transition-state-theory rate expression, 
eq 13, has also been given by Mahan [B. H. Mahan, J.  Chem. Educ., 51,709 
(1974)] using essentially these same physical ideas. 

Figure 1). It also simplifies matters to consider the mi- 
crocanonical version of transition-state theory, which 
corresponds to a fixed total energy E rather than a fixed 
temperature T. The dimensionless function N ( E )  is 
defined by 

in terms of which it is easy to see that the rate constant 
in eq 1 is given by 

The transition-state approximation to N ( E )  corre- 
sponds to replacing X b c a  in eq 16 by the approxima- 
tion in eq 11. 

N ( E )  is clearly 0 for E < VO, VO being the position of 
the saddle point in the potential-energy surface, for no 
classical trajectory can be reactive unless it has enough 
energy to go over the barrier. For total energies E only 
slightly above the barrier it is not hard to conclude that 
the transition-state approximation for N ( E )  will be 
exact ,6a Le., there will be no trajectories which cross the 
dividing surface more than once. To see this, imagine 
beginning a trajectory on the symmetric line with a total 
energy only slightly above the saddle point; the trajec- 
tory will begin slowly, pick up speed as it runs down the 
hill toward products, and clearly not return. At suffi- 
ciently high energy, on the other hand, it is clear that 
there will be trajectories which rebound back across the 
symmetric line and thus invalidate the “fundamental 
assumption”. 

Since the transition-state approximation to N ( E )  
begins correctly at the classical threshold Vo, the pri- 
mary question in classical transition-state theory is how 
high above Vo can E be increased and it still be true that 
there are no recrossing trajectories. Pechukas and 
McLaffertyGa have made an ingenious contribution to 
answering this question by discovering a simple geo- 
metrical criterion for finding a critical energy below 
which the transition-state approximation to N ( E )  is 
exact. Another approach to investigating this question 
is the “experimental” one of simply comparing the exact 
N ( E )  function, determined by carrying out classical 
trajectory calculations, with the transition-state ap- 
proximation to N ( E ) .  

Figure 2 shows such a c~mparison’~J~ of the exact and 
the transition-state approximation for N ( E )  as a 
function of total energy for the collinear H + H2 reac- 
tion. As expected, a t  low energy-up to about 0.3 eV 
above the barrier height in this case-the transition- 
state approximation is essentially exact, i.e., there are 
no trajectories a t  these energies that recross the sym- 
metric line. At higher energies, however, there do exist 
trajectories that rebound back across so that the tran- 
sition-state approximation to N ( E )  is too large. 

Figure 3 shows a similar comparison15J6 for the 

(15) S. Chapman, S. M. Hornstein, and W. H. Miller, J. Am. Chem. SOC., 97, 
892 (1975). 

(16) The functions actually plotted in Figures 2 and 3 are the ratio of N ( E ) ,  
the reactive flux, to the incident flux (or flux per unit area for the three-di- 
mensional case). These ratios have the more physically meaningful interpre- 
tation of an average reaction probability in the collinear case (Figure 2) and an 
average reaction cross section in *e three-dimensional case (Figure 3). 
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Figure 2. Reaction probability for the collinear H + Hz reaction on 
the Porter-Karplus potential surface from a microcanonical classical 
trajectory calculation (CL DYN) and microcanonical classical tran- 
sition-state theory (CL TST), as a function of total energy above the 
barrier height (1 eV = 23.06 kcal/mol). 

three-dimensional H + H2 reaction, the exact N ( E )  
being evaluated by Monte-Carlo trajectory calculations. 
Again one sees that transition-state theory is essentially 
exact for energies up to about 0.3 eV above the barrier, 
and even when it begins to fail it is in much less error 
than in the collinear case; a t  1 eV above the barrier the 
transition-state approximation to N ( E )  is only 10% too 
large. 

The above relation between the collinear and three- 
dimensional H + H2 reaction (both with the same 
Porter-Karpl~sl~ potential-energy surface) illustrates 
a feature which one expects to be general, namely that, 
other things being equal, the fundamental assumption 
of transition-state theory is better the higher the di- 
mensionality of the system. This is understood quali- 
tatively in that fewer trajectories, having departed from 
the dividing surface toward products, are able to find 
their way back in the higher dimensional phase space; 
i.e., they are more likely to get “lost” and not return. 

Toward a Quantum Transition-State Theory 
The previous sections have shown that within the 

realm of classical mechanics transition-state theory 
describes the threshold region of the reactive cross 
section quite accurately. This success of classical 
transition-state theory is somewhat hollow, however, 
because quantum effects are important in the threshold 
region, particularly so if the reactive dynamics involves 
light atoms (i.e., H atom transfer). The task, then, is to 
implement the “fundamental assumption” of transi- 
tion-state theory in a fully quantum mechanical 
framework. 

There are several reasons for believing that the as- 
sumption of “direct dynamics” through the saddle point 
region is valid for the threshold region also in a quantum 
mechanical theory. The streamlines of flux computed 
by Kuppermann et  a1.18 for the H + H2 reaction, for 
example, show “straight-through” dynamics at  low 
energy, even in the tunneling regime below the classical 

(17) R. N. Porter and M. Karplus, J Chern. Phys., 40,1105 (1964). 
(18) A. Kuppermann, J. T. Adams, and D. G. Truhlar, in “Electronic and 

Atomic Collisions”, Abstracts, VI11 ICPEAC, B. C. Cobic and M. V. Kurepa, 
Ed., Institute of Physics, Belgrade, Yugoslavia, 1973, pp 149-150. 
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Figure 3. Same as in Figure 1, except that u ( E )  is the microcanonical 
reactive cross section for the three-dimensional H + Hz reaction. 

threshold. (At higher energies, though, the streamlines 
develop “whirlpool effects”, corresponding to recrossing 
classical trajectories.) Similarly, the semiclassical cal- 
culations of George and Millerlg show complex-valued 
classical trajectories which tunnel “straight through” 
the saddle point region. 

The first step in constructing a quantum version of 
transition-state theory is to write the exact quantum 
mechanical expression for the rate constant (assuming 
a Boltzmann distribution of reactants). This can be 
expressed in a number of ways, but the form most useful 
for present purposes is one7 which is the direct analog 
of the classical expression in eq 1, 

where t r  means a quantum mechanical trace, the 
quantum analog of a classical phase space average; H ,  
f(q), and p all have the same meanings as in eq 1 except 
that they are now quantum mechanical operators. The 
projection operator P is the quantum analog of the 
characteristic function X b c a  in eq 1, and it is given ex- 
plicitly by7 

P = limt--, e i H t l h h ( - P ) e - i H t l h  (19) 
P being the momentum operator conjugate to R. The 
appearance of the quantum mechanical evolution op- 
erator, e-iHtlh, in P shows that it is the factor which 
contains all the quantum scattering dynamics, analo- 
gous to the dynamical content of the classical function 
Xb-a. In words, P projects onto all states that  have 
evolved in the infinite past from reactants. 

As in the classical case, one can show7 that the exact 
quantum rate constant in eq 18 is independent of the 
specific choice of the dividing surface. Quantum tran- 
sition-state theory is thus defined in a manner analo- 
gous to the classical case: a specific choice is made for 
the dividing surface (e.g., surface SS in Figure I), and 
then the “dynamical factor” P is approximated by in- 
voking the fundamental assumption of transition-state 
theory. Analogous to eq 11, one makes the replacement 

this approximate projection operator projects onto all 
states that have positive momentum in the s direction, 
(19) T. F. George and W. H. Miller, J .  Chem. Phys., 56,5722; 57,2458 (1972). 
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and it is the “fundamental assumption” that positive 
momentum in the s direction a t  the dividing surface 
implies evolution from reactants in the infinite past. 

This approach7 to  quantum mechanical transition- 
state theory thus gives the rate constant as 

r 

If one does introduce the assumption that the Hamil- 
tonian is separable in s and u coordinates, 

H = h, + h, + Vo (21) 

then it is easy to show7 that the conventional expression 
for the rate constant results 

where Q* is the quantum mechanical partition function 
of the “activated complex” 

Q* = tr,(e-phU) (23) 
and is a one-dimensional tunneling coefficient, 

I? = 27rhip tr, e-PhsS(s) h(p,) ] (24) [ 771.S 

The assumption of separability of the Hamiltonian, 
however, one knows to be a poor approximation in the 
threshold region where quantum effects are important. 
One manifestation of this is the “corner-cutting,’ effect 
that has been seen in a number of different kinds of 
calculations for the H + H2 reaction:la20 at  low energies 
in the threshold region the tunneling from reactants to 
products “cuts the corner”, going through the side of the 
barrier rather than directly under the saddle point itself. 
Other evidence for the breakdown of the separability 
approximation is the gross departure from vibrationally 
adiabatic behavior in the saddle-point region seen in the 
study of Bowman et a1.,21 as well as the poor agreement 
that eq 22 gives with the exact quantum scattering 
calculations of Truhlar and Kuppermann.lo 

To make a fair test of the “fundamental assumption” 
of transition-state theory in the quantum mechanical 
case one thus needs to evaluate eq 20 without incorpo- 
rating any, kind of assumption of separability. This is 
a considerably more difficult task, however, because the 
Boltzmann operator e-PH does not now factor into 
separate one-dimensional operators. 

A first step toward evaluating eq 20 without assuming 
separability has been made22323 by introducing a semi- 
classical approximation for the Boltzmann operator and 
evaluating the trace within the semiclassical limit; no 
assumptions involving separability, however, are in- 
troduced. In addition to simplifying the calculation, the 
semiclassical limit of eq 20 leads to a very interesting 
physical picture of the nonseparable tunneling dy- 
namics. 

Briefly, the semiclassical approximation to eq 20 gives 
an expression for the rate constant which is similar in 

(20) See also E. M. Mortensen and K. S. Pitzer, Chem. SOC., Spec. Publ., No. 
16,67 (1962); R. A. Marcus, J .  Chem. Phys., 45,4493 (1966); E. A. McCullough 
and R. E. Wyatt, ibid., 54,3578 (1971). 

(21) J. M. Bowman, A. Kuppermann, J. T. Adams, and D. G. Truhlar, Chem. 
Phys. Lett . ,  20,229 (1973). 

(22) W. H. Miller, J.  Chem. Phys., 62,1899 (1975). 
(23) S. Chapman, B. C. Garrett, and W. H. Miller, J .  Chem. Phys., 63,2710 

(1975). 

~~~:~~ NON-SEP TST l 1 
10-6 

I 0-7 
0 0.05 0.10 0.15 0.20 0.25 

~~~~~~~1 

SEP TST 

I 0-7 
0 0.05 0.10 0.15 0.20 0.25 

E, ( e V )  

Figure 4. The function N ( E ) ,  defined by eq 16, for the collinear H + Hz - Hz i- H reaction, as a function of total energy Eo above the 
ground state of Hz. (In this energy regime N ( E )  is simply the 
ground-state to ground-state reaction probability.) QM SCAT denotes 
the (exact) result of quantum scattering theory (ref 24), and SEP TST 
is that of conventional (i.e., separable) transition-state theory with 
a one-dimensional tunneling c o r r e c t i ~ n . ~ ~ ~ ~ ~  NON-SEP TST is the 
result based on a semiclassical evaluation of eq 20,23 the generalized 
transition-state theory that takes account of nonseparability. 

form to the usual separable quantum mechanical ex- 
pression, eq 22, but with some fundamental differences. 
First, the tunneling probability P ,  from which F is 
computed, has the usual semiclassical form 

P = (1 + e20)-1 

8 = classical action integral (25) 
but where the action integral 8 is computed along a 
particular classical trajectory that is determined by the 
full (nonseparable) dynamics in the saddle-point region 
and which is in general a different path for different 
energies. (Specifically, the “tunneling trajectory” is a 
periodic orbit on the upside-down potential-energy 
surface!) Thus the region where tunneling takes place 
changes with energy and in the same way as the “cor- 
ner-cutting effect” lg20 mentioned above, i.e., the lower 
the energy the more the tunneling trajectory “cuts the 
corner”. Second, the energy levels of the “activated 
complex” are also energy dependent. In ordinary tran- 
sition-state theory the energy levels from which Q* is 
computed are given (within a harmonic approximation) 
by 

en = hw*(n + 3’2) (26) 
where o* is the frequency of the stable vibration at the 
saddle point, and the semiclassical analysis replaces this 
by 

en = hw(E)(n + 1/2) (27) 
Fur high energies the energy-dependent frequency w(E) 
approaches o*, but for low energies in the tunneling 
region w(E)  increases with decreasing energy and for 
very low energies actually approaches the vibrational 
frequency of the free H2 molecule. (In the semiclassical 
theory w(E)  emerges as the stability frequency of the 
periodic orbit along which tunneling occurs.) The reader 
more interested in this semiclassical approximation to 
eq 20 should see the original  paper^.^^^^^ 

Figure 4 shows the comparison of the “exact” func- 
tion N ( E ) ,  obtained from quantum scattering calcula- 
t i o n ~ , ~ ~  to  that obtained by this semiclassical evalua- 

(24) D. G. Truhlar, A. Kuppermann, and J. T. Adams, J Chem. Phys., 59, 
395 (1973). 
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Figure 5. Rate constant as a function of temperature for the collinear 
H + Hz - Hz + H reaction; the labels have the same meaning as in 
Figure 4. These results were calculated by eq 17 with the N ( E )  func- 
tions in Figure 4. The units of k ( T )  are cm/s (velocity times reaction 
probability) because the three atoms are all required to move along 
a line; if they were allowed to move in a plane or in three-dimensional 
space, then the units would be cm’h (velocity times length) or cm3/s 
(velocity times area, or cross section), respectively. 

t i ~ n ~ ~  of eq 20, again for the collinear H + H2 reaction. 
Also shown is the result for N ( E )  given by conventional 
(i.e., separable) transition-state theory with a one- 
dimensional tunneling c o r r e ~ t i o n . ~ ~ ~ ~ ~  The comparison 
of the corresponding rate constants as a function of 
temperature, obtained from the functions N ( E )  via eq 
17, is shown in Figure 5 .  

The results in Figures 4 and 5 show quite clearly the 
degree to which the separability approximation fails in 
the threshold region. They also show that once non- 
separability is properly taken into account, quantum 
mechanical transition-state theory provides a good 
description of the threshold region and thus the rate 
constant. 

Conclusions and Prognosis 
Although one should be wary of drawing too many 

conclusions from only one example, a few seem safe. For 
the threshold region of a simple chemical reaction i t  
does seem that the “fundamental assumption” of 
transition-state theory is accurate quantum mechani- 
cally, as it is classically, provided the separability ap- 
proximation is not introduced to simplify the quantum 
calculation. Since the effects of nonseparability, and 
quantum effects in general, are probably more promi- 
nent in the collinear H + H2 reaction discussed in the 
previous sections than in any real chemical reaction, it 

(25) There are a variety of prescriptions considered in ref 10 for how to cal- 
culate the one-dimensional tunneling coefficient r in the conventional quantum 
mechanical version of transition state theory. That plotted in Figure 5 is the 
“vibrationally adiabatic zero curvature” model which is perhaps most justifiable 
theoretically. Other prescriptions tried in ref 10 give no better results. 

indeed provides a severe test. Thus the generalized 
definition of quantum mechanical transition-state 
theory is seen to be a useful and accurate one (although 
there are some subtle ambiguities7 not discussed here). 

For the future one needs to explore other ways of 
evaluating eq 20 and to investigate the effects that 
nonseparability might have for real chemical reactions; 
e.g., are they negligible except perhaps for H-atom 
transfer reactions? Even more interesting is the ques- 
tion of how one can define transition-state models for 
chemical reactions which do not have a single saddle 
point separating reactants and products. Suppose, for 
example, the triatomic molecule A-B-C has a stable 
potential well with two different saddle-point regions 
leading to either AB + C or A + BC. The A + BC colli- 
sion would then likely lead to a collision complex (if the 
reaction is not too endo- or exothermic) which would 
invalidate the simple version of the “fundamental as- 
sumption” of transition-state theory. By considering 
two dividing surfaces, however, drawn through the two 
saddle-point regions, it is possible to develop a transi- 
tion-state model by assuming the flux through each of 
the two surfaces individually is direct. Recently,26 in 
fact, it has been possible to define a more general sta- 
tistical theory which includes both the limit of “direct” 
dynamics that is described correctly by simple transi- 
tion-state theory and also this opposite limit, a long- 
lived collision complex, which is described correctly by 
the “phase space model” of Light.27 It may thus be 
possible to employ transition-state-like approximations 
to a much wider class of chemical reactions than only 
those for which simple transition state theory is ap- 
propriate. 

Another recent and very interesting direction28 is use 
of the fundamental assumption of transition-state 
theory to simplify quantum mechanical scattering cal- 
culations by imposing boundary conditions on the 
scattering equations that take advantage of the “direct” 
nature of the dynamics in the saddle-point region. Also 
of importance is the extent to which transition-state 
models can be developed for describing nonadiabatic 
reacti0ns,2~ i.e., chemical reactions involving more than 
one potential-energy surface. 
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