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Magnetopolaron in a weakly elliptical InAs/GaAs quantum dot
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We study theoretically the properties of a polaron formed in a shallow, weakly elliptical, disk-shaped
InAs/GaAs quantum dot in the presence of a magnetic field by using the Davydov’s canonical transformation.
Special attention is paid to the energy-level splitting due to thélftointeraction of an electron in a quantum
dot with optical phonons near resonance. The polaron relaxation rates, including the anharmonicity induced
channel, are analyzed for various confinement energies and magnetic field magnitudes, taking into account
coherent polaronic effects.
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[. INTRODUCTION nonperturbative technique for solving the electron-phonon
eigenvalue problem in a QD in the presence of a magnetic
Due to their availability and still growing understanding field. This method, based on modification of the Davydov
of their properties, quantum dot®D’s) are believed to be in transformatiofr ' appropriate to the localized system, has at
the center of the imminent technological revolution, e.g., inleast two advantages. First, it may be applied to a system
laser technologyor in quantum computing® In the latter ~ With arbitrary structure of electronic levels and yields ex-
field, the scalability and integrability of semiconductor sys-Plicit approximate formulas for the energetic spectrum in
tems, as well as the high precision of ultrafast opticalgood quantitative agreement with the exact numerical results
technique, opens the perspective to set up a fully optically and with experimental data for an anisotropic Goth far
driven quantum logic gate based on a QD systeésimce the from and close to the resonances. Second, it employs the
e|ectronic(or excitonio states in a System of QD’S are de- deSCI’iption of the SyStem in terms of the well-defined quasi'
signed to play the role of qubits which must be manipulatedParticles: polarons. The kinetics of the systeeng., decay
with great precision, exact knowledge of the energetic spedates’) may be then easily described including coherent ef-
trum of a QD is of major importance. Moreover, because off€cts.
the necessary quantum coherence during quantum computing The paper is organized as follows. In Sec. Il we define the
processes, the interaction between the localized electron afgodel of the QD in a polar medium. Section III contains the
the Surrounding medium must be We” understood_ approximate analytical diagona“zation of the SyStem Hamil-
The electronic properties of QD’s were widely analyZed. tonian by the Davydov method. In Sec. IV, two possible
In particular, it has been confirmed that the two-dimensionafhannels of polaron relaxation are discussed. In Sec. V we
(2D) harmonic oscillator description for electron states is acompare the magnetopolaron spectrum obtained analytically
re|ative|y good approximation, e.g., in the case of Self-With the exact numerical results. The final section contains a
assembled InAs/GaAs lens-shaped doSince QD's are discussion of the results.
usually manufactured from polar materials, the electron—
longitudinal-optical-phonon interaction must be taken into Il. MODEL
account in a reliable description. The theoretical investiga- '
tion of this issue was performed by, e.g., the standard pertur- The system under investigation consists of electrons con-
bation technique§;® by the variational Lee-Low-Pines fined in a QD and phonons. Only 3D bulk GaAs phonon
method!® by numerical diagonalizatiot;*? or by Green modes will be included in the present study. The theoretical
function method$® The experimental dathshow, in par- analysié shows that for nonspherical dots surface phonon
ticular, a large splitting width near the one-phonon and two-modes may contribute considerably to the shifts in the po-
phonon resonance in a InAs/GaAs QD. This was accountelhron spectrum. However, we will follow the interpretation
for by the theoretical model via a numerical diagonalizationproposed in Refs. 11 and 14 and attribute the measured ef-
of the Fradnlich interaction! The required value of the Fne  fects only to the bulk modes. The possible influence of other
lich constant seems to be much lardby a factor of 22  modes requires further clarification which is, however, be-
although the most recent results suggest only up to a 25%ond the scope of this paper. Thus, we take into account
increas&’) than measured in bulk. Recently, it was noted thatongitudinal optical (LO) and longitudinal and transversal
upon the appropriate canonical transformation only a limitedacoustical (LA and TA) bulk branches of phonons. The
number of dispersionless phonon modest of an arbitrary  electron-phonon interactions via the LO and LA channels are
numbej couple to the electrons, which leads to a considerincluded as well as the anharmonic third-order LO-TA chan-
able simplification of the problem and makes it possible tonel of the phonon interactiotthe most efficient phonon an-
solve it more efficiently numericalft? harmonicity in GaAs® the medium of the self-assembled
In the present paper we propose an entirely analyticalnAs/GaAs quantum dat
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The system is described by the Hamiltonian A
W(r, )= =m* wir? cos 2p,

2
H= He(r)+hQE blbk+2 hws(q)cgscqs may be treated as a perturbation.
K as Let us now consider the ground and lowest excited states
1 e i for the single_eleptron in the_dot. For the unperturbed elec-
_ E | — (b + bT_k)exp(ik-r) tron Hamiltonian[i.e., neglecting/N/(r, )], we deal with the
N ve cylindrical symmetry and thus with the usuglandm quan-
tum numbers(the Fock-Darwin stateésWe consider states
+i 2 | hq (cq+cl )expign) with n,.=0, m=0,£1. The energies and wave functions in-
NG 7N 2m c, 4" a cluding the perturbation caused by the tewrhave the fol-

lowing form [we use indices @;, for perturbed states (0,0)

and (0£1), respectively.
+ q W( kl!kZIq) 5k1_q1k2bl1bk2(cqt+ th[)! (1)

1

=
X
N

Eozﬁw, (Za)

where b, is the bosonic annihilation operator for LO _
phonons with quasimomentuknand with the dispersionless Wo(r)=o(r)é(2), (20)
(for simplicity) frequency(}, cy is the bosonic annihilation ~ 5

operator for the acoustical phonon with quasimomentum €x=2hwthos+(Awy)?, (29
and polarizations (t, transversal; |, longitudinalwith fre-

quencyw(q), C, is the sound velocity for the longitudinal Vo(nN=[Ccypea(r)Ec o=1(r)]d(2), (2d)
phononsM is the mass of ions in the elementary cetljs

the the deformation potential constariffor GaAs o where

=6 eV), v is the volume of the elementary ceN is the 1 ® 1/2
number of cells in the crystal, and=(1/e.,— 1/e,) ! is the C.=— 1t—C2 )
effective dielectric constantd(r) is the Hamiltonian for V2 V(N o)™+ wg

electrons confined in the QD. The electron-LO phonon inter

action is given by the Fihdich term, and the electron-

acoustical phonon interaction term includes only LA

phonons; the last term describes the third-order anharmonic n 1 fr \Im

LO-TA phonon interactionW(k, ,k,,q) =W* (k,,k;, — Q). Y1) =\ /WT<I_¢) e (L /IB)2/2eim<p’
r gV B

A. Electron levels in a quantum dot wherem=0,%x1, Ig=Ji/(m* w), and ¢(z) is the ground-
¢ state harmonic oscillator wave function in thdirection(cf.

Yo and .4 stand for the wave functions for the two-
dimensional isotropic harmonic potential,

We will consider the simplified model for the sel )
assembled, shallow, weakly anisotropic in-plane, InAs/GaAd PPENdiX A). o
QD We will assume that the dot is strongly confined in the . !f We now introduce the second-quantization representa-
z direction (the results do not depend on the actual potentiafion In the electron HamiltoniarH(r), then the entire
shape in this direction; we assume a strong parabolic corii@Mmiltonian(1) can be rewritten as follows:
finemenj. The in-plane electron dynamics is governed by the

effective anisotropic harmonic potentidl(x,y) with eigen- H=Ho+H,, (33
frequencies w2=w3(1=\), A<1, e, V(Xy)
— 1m* w2(x2+y?) + N2m* w3(x2—y?). This lateral poten- Ho= ; enaran+ hQEk biby+ qZS fiws(0)ClCas

tial describes the weakly elliptical in-plane QD. The external
magnetic field is assumed to be applied in trtdrection and 1
d_escribed by the pot'entigl in the symmetric.gauge. Thus_;, the 4+ E Fo . (k)aﬁ a, (b + bjk)’ (3b)
single-electron Hamiltonian may be written in the cylindrical N nim, ko M2 12

coordinateg = (r, cose,r, sing,2) as

and
H ﬁzla( a)laz 92 1 . ) )
r=-— — |, — |t —+— -
e( ) om* |, ary igrL ri &(,02 972 Hy \/N nl%,q Fnlnz(Q)anlanz(qu"'qul)
1 hw J
2,2 el
oMl 4 (—|£ +U(z)+W(r)), +k1,2k2,q WKy, Kz, @) 8, qi,bk Pry( Gt €L ),
where 0?= w3+ 02/4, w.=eB/(m*c), U(2)=3im*w,z? (39
and w,> wq. The last term, describing the anisotropy, where
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27TQh chosen suitably for the diagonalization demands. The Hamil-
Fon,(K=Fnn (—k)=— —E nn(K) (4 tonianHg [Eq. (3b)] may be written as
1%

and Ho(a,b)=U'UH,U'U=U"H(a,B)U
a hq . I .
Fon,=0 anlnz(k), whereH(a,B) is H, Hamiltonian with the operatora, b
' replaced by operatorsr=UaU’, B=UbU", respectively
with [note thatU(a,b)=U(a,B)].
The generatoS (i.e., the functiond®) may be chosen in
k)_J A3t (r)exp(lk Nw, (1) (5) such a way that/"H(«, 8)U does not contain terms linear in
Fran B. Indeed, neglecting residual multipolaron and multiphonon
16
(in the above formulas comprises electron state indices, in interaction term&° (these terms are of higher order in the
our model cas@=0 or +). Frohlich constante<1, and thus are sma|l
Note that in the definition oFﬁlnz(k) it is customary
to rearrange the coefficients, namelyFy (k) e SHy(a,B)e’
=[V4mah Q(1/\v Qog)QO/k]}'nan(k), where Qo . ) )
=\2m*Q/% and « is the dimensionless Fintich constant ”En: Enanan+ﬁﬂ§k: ﬁkﬁk“L% fw(Q)CqsCas
(cf. Appendix B. '
B. Coupling functions +n12nz’k P n,(K)(€n,— €, +702)
The form factors(5) for the states¥,. given by Egs. L
2b) and (2d) are
( ) ( d) , , t5 E [q)n1n3(k)Dn3n2_(I)ns,nz(k)Dnsnl]
For =0nm (K., @o)e” (Kile2) (/27 (6)
where |,= JA/(m* w,) is the confinement length in the 4+ ! N (k)lan an B+ H. c] (8)
direction and the functiong,,, are given by the formulas \/N 2 v
=1
Goo= % with
o+ =—g%o=ié(c e ¥oxc_eF'%),
gi::1_§2|C+ei%ic—e7i‘po|zv Enzen_Dnn+2 q)nns(_k)q)nsn(k)(en3_6n+hQ)
ng.k
g 5= &(|c,|Pe 90+ |c_|?e%%0) ©
whereé=Kk, /2.
Ill. ELECTRON —LO-PHONON INTERACTION Do, = Z [®n,( ),:n3n2(
A. General description
Due to the interaction between the electron localized in +‘I’n3n1(k) n2n3( K)]. (10

the QD and the LO phonons in the polar medium, the elec-
tron is dressed in a polarization cloud, forming a polaron— %he requirement that the coefficient at the term lineagBin
superposition of electronic and phononic states. The SP€&hould vanish leads to the equation fbr
trum of the polaron may be found using the canonical trans-
formation introduced by Davydov and Pestryakov.
Ehis transformation is defined by the unitary operdtor 1 nln (k)
e, whereS is an anti-Hermitian operator, @y n,(K)= \/N ey en +0)

S(ab)= X @, . (Kaha,(b—bly, (@

ni.ny.k % ; [(I)nln3(k)Dn3n2_q)n3,n2(k)Dn3n1]
with the scalar function + 2 c e 170
Nz =My
n1 n2( k) CI)n2 nl( - k) (1]_)
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The solution of the above equation in a perturbative man- a)

ner leads to the known perturbative formula for the polaron 100__
energy. Indeed, in the first approximation one has 80
Fo  (k Z 0.
00, (= = 0 (12 £
12 \/N €n,~ En1+ﬁQ o 40
|
and from Eqgs(9) and (10), within this approximation, = 20__
0
g 2 |Fon (02 .
En=e,— — _— (13
" " N n’ En1_6n+ﬁQ
b) 100

This approximation breaks down in a wide range of the mag-
netic fields around the resonances.

To improve this solution we use the fact that,,, de-
creases rapidly ds—n’| grows, and then

1 Fan K

1n2

(I)nan( K) \/N m

E-E,[meV]

N % CDnlnz( k)(Dnznz_ Dnlnl) 0 i T T T T T i T
. 0 10 20 30 40
€n,~ €n, T A B (T]
Using further the zeroth order approximatidlﬁ)nz(k) only FIG. 1. Polaron resonances in a weakly elliptical quantum dot in
under the sum in Eq9) for E,,, we arrive at the following the presence of a magnetic field f@ «=0.07 and(b) «=0.15
solutions: (the other system parameters are given in the Sec.)llIThe
shifted polaron level€{Y(B)—E{(B), Eq. (17) (dashed lines
1 branches of polaron levels split in the vicinity of resonances
En=€e,— =Dpnn (14) En(B)—Eq(B) (solid lineg, and the experimental data after Ref. 11
2 (dots.
and, instead of Eq12), 1
t t
ay|0)=a;|0)— = b, (k)P —k)a,.|0
1 Fglnz(k) n| > n| > 2 nl,Enz,k nln( ) nznl( ) n2| >

@y n,(K)= N m (15

=2 @yn(— Kby [0)
Taking into account the formula fdd,,,, Eq. (14) resolves v
finally into and

Jo Hoy=h{|0
n’'n (16) Bk| > k| >
(the vacuum stat) is defined by formulas¥,=a}|0) and
where a,Vo=bWo=cysVo=0 for all k, g andn+0).
Let us denote for future convenience

1
Jomn=v 2 |Fo, (K)|2. 1
=y 2 [Fan(o) E(= €= 75 nn- 7

The above equatiofil6) is the self-consistent nonperturba- . L
tive equation for the energ§, of the polaron, originally These entities are ”;e Huang-Rhys approximations to the po-
laron energy levelt? but they are insensitive to polaron-

applied for bulk semiconductor by Davydov and Pestryakov. h ——
Note also that in our case of the electron confined in the® 9|_T10nf reforsnce(_s .th 'gh ). . imati

QD, similarly as for an unconfined electréhthe polaron € 1actorsdy In the harmonic approximation are

states are highly distinct from the original electron states, =

while the phonon states are almost not modified by coherent _ NT 26O

effects. This follows from the formulas Jon' =Jnn 2 ah” el (18)
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where the values of the coefficients, for the weakly el-
liptical quantum dot in a magnetic field are given as

n 0 + -
0 1 7 7
1 3 5 2
+ 3 2+ 3c,c|? 16~ 8/C+C-|
1 3 5 2 ll 3 2
- i 16— 8lC+C-| 16+ glcic|
For the InAs/GaAs dot, with7iQ=36 meV, fw,

=58 meV, anda~0.1 we have

Jnnr <
(hQ)2

which highly simplifies the further analysis.
First, let us consider the nonresonant situation, i.e.,
1
EP-EL-10~#10Q.

In this case the eigenvalu&s, differ only slightly from E("

and one can replace the former with the latter in the denomi-
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[at the resonance point, given by Eq9), fn1n2=0]. The =

pair of the solutions corresponds to the usual splitting of the
polaron energy near the resonance. In order to Enldand

E,, it is necessary to find als&, ,, via solution of the

equation

c 1 Jnin, J
== +

M2 2 AE p,+f —AE

NNy

2oy ( e

n’'#nq,n, AEnln’+ fnln'

NNy
+f
NNy

NNz

Jn.n
+ 2 .
AEq it T

From this equation one finds

1 Jn1n2 Jnln2
E”l“zzzAE“1n2+ AE”l”z (Zﬁﬂ)z 21O
Jn.n
N n,n

n’#ny,n, AEnzn"" fnzn’

nator of Eq.(16). Thus, outside the resonance region we

have

Jnm
E~EQ+ Y ——— o ——.
v EV-EL 70

n"#n

We will now proceed to the examination of Ed.6) near
the one-phonon resonance between the lemglsand n,,
Eﬁ,ll)—Eglz)—hQ:O, i.e., in the case of

€n,~ €n,~ 10~ \Jp o, < Q). (19

Let us introduce the following notation for the energy

level shifts: AE,=E,~E{", AE,,,=AE, —AE,, and
Enlnz—z(AEnlJrAEnz). Then we find from the self-
consistent equatiofiL6)
AE ‘]“1“2 ‘]“1”2
Ny~ AEp n,* o, _AEn1n2+fn2n1
\]n ’ \]n !
n 2 1n 2N
n #nl r'|2 AEnlnr+fn n’ AEn2n7+fn2nr

where f \ =EW—ED-#Q. As [, [=2605 3,0,
|fan,|=0 (near the resonangeand [f, /[~|fy 0 |~7%Q

>‘/Jn1’2n,, then

Jn n
1'"'2
ABnn,~ AEnn,*fopn,’

The above equation has the simple solution

12 \(f1.n,/2)%+ 3n n,

A Er?an -

f”l“z

The splittings for both states are

AE;l—AEglzz (fn1n2/2)2+Jnln2 (203
and
+ - ‘]”1”2
AE, —AE =2—‘/(fn1n2/2)7+\]n1n2. (20b)

"2 T (240)2

We see that only the upper staiee., n;, sinceE, >E; )

splits. The splitting of the lower one has to be neglected due
to the small factod, n, /(2% Q).

B. Application to the dot model and comparison
with experiment

We are going to study in more detail the polaronic reso-
nances in a model of a weakly elliptical dot as described in
Sec. Il A(in analogy to the dot examined experimentHily
A quantum dot is a strongly inhomogeneous system: both
electronic and phononic parameters of InAs differ from those
of GaAs. Moreover, a real quantum dot is a complex system,
where the electronic spectrum, primarily defined by the spa-
tial confinement, is affected by shape irregularity, inhomoge-
neous InAs-GaAs compositi6h or strain-induced band
shifts and effective mass modificatiéh??

On the other hand, within the presented description, the
electronic properties of the dot enter the electron-phonon
coupling only via the form factord, (k) [Eq. (5)], which
depend on the wave function shape. In particular, it has been
verified’ that modification of the confinement potential
shape does not influence significantly the polaron spectrum
and the relaxation rates. Therefore, it seems reasonable to
simplify the analysis by using the effective model with the
simplest, harmonic-oscillator approximation for the wave
functions, which results in only one parametkrcalization
width | 5 or potential strengtln) to be adjusted based on the
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experiment. The resulting incompatibility between the cou- TABLE I. The values of the magnetic fields and the correspond-
pling strength and the confined electron eigenenergies magg values of the resonance energy splitting for two parameter sets
be accounted for by choosing a modified, effective value oPf the model InAs/GaAs dot.

the Frdnlich constantr. It has been reported receriththat
the necessary correction does not exceed 25%. a 0.07 0.15

The presence of strain-induced, self-assembled InAs dot (iwg=57.5 meV, (hwo=57.8 meV,
in the GaAs crystal modifies its phonon spectrum and may A=0.122) A=0.169)
lead to the appearance of localized or surface phonon statgs 3UT 36T
of the strained InAs nanocrystal. Not much is known aboutge 10 meV 15 meV
the properties of these modes for a realistic dot shape. Hows 21T 20T
ever, experimentally measured polaron spéttfsshow only 5; 9 mev 13 meV
strong resonances related to the bulk GaAs LO phonong i 14T 12T
which suggests that the GaAs surrounding medium phonon(?fz)E 1 meV 2 meV
are dominant and rather weakly affected by dot nanocrystal "

structure. Therefore, in the following, we take into account
only the bulk GaAs phonon modes with frequengy) (cf. Table ).

=36 meV (dispersion is neglected except for phonon- Apart from the spliting of the " state due to one-
phonon coupling constant estimation in the next segtibn phonon resonance with the—" state, there should be an-
the present paper we use the model with harmonic latergliher effect, related to two-phonon resonance with the
confinement, treating the confinement strength as a phenorgyoynd state, occurring around the intersection of the zero-
enological, effective parameter. It was verifiédhat other hononE. energy level and th&,+ 240 energy corre-
confinement models do not lead to a considerable mOdiﬁcas',ponding +to the ground electron gtate with two phorfdns.
tion of the _resullt_s. . . . Actually, one should not expect an exact result here, since
In the simplified, harmonic approximation, the electron gome fwo-phonon terms were neglected in the derivation of
spectrum is determined by the valuesfab, and\ which g4 (16). Nevertheless, the presented analytical method al-
may be found by fitting the energy levels. andE _ to their |5\ for an approximate determination of this resonance.

values atB=0 measured in the_experiméﬁtlt is known \within the zeroth order approximation for this second-order
that the electron effective mass in a strained InAs/GaAs dofesonance we can write

becomes close to the GaAs masaVe will use the GaAs

mass in our calculation. We use two alternative values of the AE,o=AE,—AEy=AE,_+AE_,,
Frohlich constant: the bulk one=0.07 and the increased

value suggested in Ref. 1k=0.15. This increased value and then

may be explained in phenomenological, semiclassical terms

and it may actually account for effects which are not explic- AE. 1= — fetfo [V, 2743,
itly included in our model Hamiltonian, like piezoelectricity 0 2 - A A
or nonadiabaticitycf. Appendix B. 5

Fitting to the experimental results of Ref. 11 leads to the EN(F02)7+J 0]

potential parameter8wo=>57.8, A=0.122 andhwo=57.5, |t we consider only splitting of the %" state [i.e., the
A=0.169 fora=0.07 anda=0.15, respectively. EM(B) energy the first term in the above formula has to
Let us first focus on the resonance condition vanish, i.e.f, +f_o=E®(Bs) — E{(By)— 2hQ =0 (itis
g _ Egl)_ﬁﬂzo_ interesting that t_h_is condition is the same as the _two_-phonon
- resonance condition for thet” and “0” states). Taking into
The corresponding magnetic figk] may be found using the account this last condition we find the smallest ga@at
definition (17) and the values for thd,, factors given by
Eq. (18). The separation between the branches of the split- 8P E ~2|\(f, 122+, _—(f _/2?+J_¢|,
ting at the resonance point is, according to Ef), (cf. Table )

The spectrum of the system for the two sets of parameters
is depicted in Fig. 1 and compared with the experimental

SE_=AET-AE_=\J_,

(the corresponding values are collected in the Taple | results™* The agreement for thE_ level is very good. The
Another possible resonance takes place when theoretical curve foE , differs from the experiment at high
magnetic field which suggests that the theoretical result for
EV-E®-n0=0. the resonance at 20 T is slightly shifted with respect to its

. R _ o actual position(recently determined experimentéfly. The
The corresponding magnetic fie8, is found in a similar  estimated value of the small splitting at the second-order
way as previously and the separation between the branches@konancgshown only in Fig. 13)] is also comparable to the

the resonance point is experimental value. However, the value obtained for
. B =0.07 is twice as small as the experimental ¢a® could be
OE,=AE;—AE =VJ,_ expected from the zeroth-order approximation
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IV. POLARON DECAY RATES wherex (y) == and “+” corresponds to emission and
" to absorption of an opticalacoustical phonon, respec-

t|vely, andn,=1, n_=0 (Ny, number of LO phonons in
Hwek state;vqs, number of acoustical phonons in the state
I(ftnd polarizatiors).

At sufficiently low temperatureffor GaAs practically at
<11 K (Ref. 18], the phonon occupation numbers are neg-
ligible and the only contribution is from the process of the
polaron transition with simultaneous emission of two
thonons; the corresponding probabilityvi/ﬁﬂz(q,k). The
relaxation probability for this process is given by the sum

Apart from the system spectrum, the Davydov transfor
mation allows also for a convenient description of the relax-
ation processes, including the coherent polaronic effects. |
this section we discuss two channels of polaron relaxatio
and calculate the relaxation rates for a polaron in a dot in thei_
presence of magnetic field.

Let us study the second term in the Hamilton{8a), i.e.,
H, [Eq. (30)], responsible for the electron—LA-phonon inter-
action and for the anharmonic phonon decay. Upon the ¢
nonical transformatiore the two terms ofH, attain the
following form:

1 (aK).

Wnlﬂ n2 2 W nin,

> Fhn(@ah an,(Cigtel o
\/—nlnzq Firany(@tn, o, (Cr* C1g The dependence of the amplitud&(k,,k,,q) on the
wave vectors may be established by a general arguffient.
+ E W(ky,Ks,q )5k1 k2+q,311,3k2(0tq+ CI,q) Namely, the long-wavelength acoustic phonons correspond

k1 .k2.d to sound waves, whose elastic energy is expressed in terms
of the strain tensor elements, i.e., to the spatial derivatives of

+ Z WS (g K)al ap, ﬂk(qu+Cl Y+ H.c., the deformation. This dependence leads, in the second-
mnyaks L2 1 ' 4 quantization picture, to the linear dependence on the acoustic

(21) phonon wave vectors. Hence, the corresponding part of the
Hamiltonian, i.e., the probability for a third-order phonon-
wheres=1,t denotes polarization, as previously, and phonon process with one long-wavelength acoustical phonon
involved, must be proportional to the phonon wave number.
N2 (k+@W(k+a,k,q) As an approximation, we extend this dependence over the

nlnz(q k)= \/ﬁ En,~ En1+hQ . (22 whole range ofj and write
’)/2
P 2 Fining(K) Fogn, () W(k+a,k g)|*=d
ULRACH En,—En,+ 100
where we also assume that weakly depends on the LO
Fo n, (k)Fa . (q) phonon wave vectok.
3 13 . - .
- m . (23 Thus, the relaxation probability via the LO-TA channel
N —ng may be written as
The first term in the transformed Hamiltoni&h, Eq. (21), )
describes the polaron—LA-phonon interactiorote that it v 2 Jnyn, Y AW 04
has the same coupling energy as it was for electron—LA- Wi —n, = - ﬁACtS ' (24)

phonon interaction and the second term describes anhar-
monic interaction of LO phonon&@lmost unaffected by the whereC, is the sound velocity for the transversal phonons
canonical transformatiorwith TA phonons(again with the andq[=(En1—En2—hQ)/hC[ (limited by the maximum fre-
same energy as without the coherent effeatdereas thelast quency for TA phonons
term describes the relaxation of the polaron. The LO-TA et us now estimate the polaron relaxation rate for this
anharmonicity-induced relaxation channel corresponds t@nharmonicity-induced LO-TA channel. We restrict ourselves
Eq. (22)while the LO-LA channel to Eq(23). Note that in  to the polaron relaxation from the-*" state to the ground
the former cas¢Eq. (22)], the coupllnann,(k+ g) selects state “0.” For the LO-TA process at low temperatures only
processes with opposite wave vectérand q [cf. Egs.(4) phonon emission is possible. Energy conservation restricts
and(6)]. this process to a certain energy range, related to the maxi-
Both these channels lead to a change of the polaron stataum energy of the TA phonon; 8 meV (indicated by the
accompanied by the creation or annihilation of a pair ofdotted lines in Fig. 2 Thus, this channel of polaron relax-
phonons: the optical and one acoustical. There are four postion is ineffective for magnetic field8<25 T and B
sibilities for this process with probabilitiggiccording to the <33 T for «=0.07 anda=0.15, respectively. This situation

Fermi golden rulg is characteristic of a dot with the confinement enefigy,
exceeding the phonon energy¥) by several meV. For com-
WS _cr 2(N+ parison, the same two branches of the first excited state at
Wi, (G K) = |V\/S(n1n2,(x VR (Nict 70 B=0 for various dot confinements are shown in the inset in

Fig. 2. The relaxation channel by the EOJA phonon emis-

X (vsqt 1y) 8(En, — Bn, = XA —yhosg), sion from the physically important, stable polaronic branch is
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FIG. 3. Polaron relaxation time from the-"" level with respect
FIG. 2. Two branches of thE_ — E, polaron energy difference to the LO-LA emission T=0) for «=0.07 (solid line§ and «
compared with the energy sector where the LO-TA polaron relax—=0.15 (dashed lines Inset: relaxation times with respect to the
ation is possibléshown by dotted linegT=0) for «=0.07 (solid LO-TA anharmonicity induced channel and to the LO-LA channel
lines) and a=0.15 (dashed lines(see Sec. Il B for other system for various dots aB=0. For strong confinements the LO-TA chan-
parameters Inset: the same two branchesBat 0 for various con-  nel is forbidden by energy conservation.
finement energies w,.
(Ref. 24]. The probability of relaxation has the forfretain-
allowed only if #wy<40 meV. Similarly, the process with ing only the largest terms iﬁ\/Llnz(q,k)]:
TA phonon absorption at nonzero temperatures is also pos-
sible only in a relatively narrow sector of confinement ener- o230
gies. Wg)—»n = —12Jn o (25)
For a quantitative estimation of the corresponding relax- %2 AzeniClqlsy Tt
ation rate the value of the anharmonic phonon-phonon cou- - .
pling constant is needed: it can be fitted using the experimenYNere ai=(En, —En,—Q)/AC; (limited by the maximum
tal data for GaAs bulk® In this estimation, the exact form of frequency for LA phononsand
the phonon dispersion curves, including the LO phonon dis-
persionQ(k), i; essential. For GaAs, .th.e domi_n(_mt anhar- jnln2:léf d3Q|-7:n2n2(OI)—fnlnl(Q)|25(q—Q|)-
monic process involves TA phonons wittin the vicinity of
the L point in the Brillouin zone® At low temperatures, for
GaAs bulk, we find for the LO phonon lifetime

For the initial state “=" and the final state “0” one has

5 (a1lg)®
h7% To=(142]c,c [Pyt

Foomw e 15
Lo= = '

Yo qou

M 32 - 2021 e @, e
where the factoru accounts for anisotropy effects arg 2" 2

corresponds to the vicini_ty of thb p(_)int. From the expt_eri- whereM is the degenerated hypergeometric funcéidn.
mental data for phonon dispersions in G&Asne can notice The polaron relaxation time with respect to the LO-LA
that the energy conservation needed for the considered chagnannel for various magnetic fields and dot sizes is plotted in

nel of LO phonon decay is satisfied along théV line on g 3. |t is clear that for the self-assembled dot discussed
the hexagonal zone wall but it is violated towardsthéne.  pere, with# wy=58 meV, the initial state is very long living

It therefore seems reasonable to assume #a0.4. From  for any practically attainable magnetic field. This is due to
the phonon dispersion curves it also results that onftie  the well-known bottleneck mechanithwhere the emission
line near thel. point one has the group velocity of longitu- of short-wavelength phonons is strongly suppressed in a con-
dinal phononsc~0.6C;. Using the lifetimer o=9.2 ps at fined system. It is essential to note that, unlike the bare elec-
T=6 K reported in Ref. 18, one can thus estimate the tronic levels, the polaronic energy levels never approach the
factor. Using this value, the lifetime for the polaron in aresonant LO phonon enerdgnticrossing effe¢t The com-
GaAs self-assembled quantum dot with respect to the LO-TAined LO-LA phonon emission and absorption is therefore
relaxation channel can be estimafetiT=0 K, accordingto less probable than that obtained by the perturbation theory
Eq. (24)]. The polaron relaxation times obtained in this way method$”?® and the polaron lifetimes are long at realistic
are of order of 10 ps but for a dot witho~60 meV the magnetic fieldgcf. Fig. 3. A rather unexpected effect is also
process is allowed only in the region of very high magneticrelated to the fact that increasing the electron-phonon cou-
fields (cf. Fig. 2. pling (the Frdilich constant broadens the anticrossing and
The LO-LA channel may be responsible for polaron re-thus strengthens the bottleneck mecharidoe to the expo-
laxation in a wider range of magnetic fields due to the muchential factor in Eq(26)]. The efficiency of the bottleneck
higher energies of the LA phonons in GalAg to 24 meV  mechanism crucially depends, however, on the dot Giee
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its confinement energy The lifetime becomes very short 0(0)/ O E. = 0(0)/ [300)
when the confinement energy is close to the resonance with e o
LO phonong(cf. inset in Fig. 3. Only when the confinement ~

Fo=FO/\00,, Fu=F) a0,

becomes strongéapproximately: wy>40 meV; cf. Fig. 2,
insed is the LO-TA channel excluded by energy conservation
and the LO-LA channel is strongly suppressed due to the F,=FoO 09, Fo=rF3 2,

geometrical confinement effectsee Fig. 3, inset 0(0) ) _

Finally, let us qualitatively describe the influence of realwhere the formulas foF ;" andJ; " (corresponding to the
LO phonon dispersion on the results derived above. As wagnperturbed basisare obtained from Eqg4)—(6) and (18),
noticed above, the form factors governing the anharmonicityespectively, by formally setting =0, i.e.,c,=1, c_=0.
induced LO-TA process enforceg= —k (this is similar to ~ With these definitions we have
the bulk cas¥). Due to the decreasinkjdependence of the
LO phonon the total energy) (k) + wa(—Kk) varies in a 1 SR (K)2=1
very small range. Therefore the relaxation window for N IFi(k[*=1.

LO-TA emission actually becomes more narrow. On the

other hand, the energy difference between the LO and TAext, applying the SZC method to our three-level case, we
phonon varies in much wider range now; hence the procesgefine the annihilation operators

involving LO emission and TA absorptiofat nonzero tem-

peraturesis allowed in a wider range than estimated using

i i A=— >, Fi(k)by.
the dispersionless model. N 2 1(K) by
V. NUMERICAL VERIFICATION OF THE DAVYDOV The commutation relations for the new operators are
METHOD ACCURACY

- T oatq
In this section we compare the spectrum found by the [ALA =0 [ALA;]=0,

canonical transformation method with that obtained via exact
numerical diagonalization of the Hilich interaction. It is

Tt = = =*
now convenient to write the relevant electron and LO pho- [ALAR]= N 2,( FitkF (k).
non terms of the Hamiltonian in the unperturbed, isotropic
harmonic oscillator basis Using the explicit formulas foF, for the parabolic dot one

finds that the latter is non-zero only fbe1’, when it equals
H= > e@ala,+W.(ala_+a'a,)+£0> bib, 1 by normalization, and fot=5, I’=0. Hence, the SZC
n=0,x1 k orthonormalization is needed only for this pair of operators.
The orthonormalized set of operators is given by

+— > F (kala, (b+bly), (27)
nn’k AO—O'A5
. 80:—21 B|:A|, |:1,...,5,
where we restricted the problem to the three lowest states, as Vi-o
in the previous sections, anl-. is defined in Eq(Al) in h
Appendix A. where
As pointed out by Stauber, Zimmermann, and Castella (0) ©)
(SZO), the Frdilich Hamiltonian (27) couples electronic o=[A AT]—J —Joi 3
- 5170

states only with a very limited number of effective phononic [7(0)4(0 5

modes. The symmetry of form factote.g., F{%, =7, Fodl V11

reduces the number of these modes to 6. In order to simplifythe final value uses the explicit form of the factdrg, for
the further notation, we define the normalized coupling functhe parabolic dot According to the general theoty,the
tions Hamiltonian may now be written as

5
H= > €eYala,+W.(ala_+a'a,)+#0> B/B+[VIgajasBs+ VIi(ala;+al a_1)(o'By+oBs)
n=0,+1 =0
+Jg(alas+at 1a0)B,+ VIoi(ala_+alag)B,+ VI jjala By +I_atja,B,+ H.cl,
whereo’ = \1- 2.
The number of modes may be further reduced by one by defining the transformed modes

Bi=aBs+ BBy, By=pBs—aB,
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where

S
B=—7 lal’+|pI=1.
The simplest choice i&=+/2/3, B=+/1/3. Upon this transformation, the phononic mdgieis coupled only to the electron
number operator which commutes with the Hamiltonian and is constant in our restricted one-electron case. Hence, this mode
may be suppressed and the reducechlich Hamiltonian readsising the explicit values of coefficients

t 1 t t 1 t t
agagt+ Z(ala1+ a_ja_q)|Bot E(aoapL a_j;a9)B;

4
1
H= > eﬁo)aﬁanJrW:(ala_+aT_a+)+ﬁQ|§O B|TB|+\/JO(%5[—

n=0,+1 \/§

l T T _3 T _3 t
+ 2(a0a,1+a1a0)82+ 2 a;,a_1B3+ 2 a_;a,;B;+H.c.,

The diagonalization of this Hamiltonian was performedis excellent, while for the other resonances, the exact behav-
numerically for the phononic occupation numbers limited toior is reproduced with satisfactory accuracy, slightly de-
0, ...,3. Wehave checked that allowing higher occupationcreased by the approximate methods of analytical solution of
numbers does not affect the obtained spectrum within théhe Davydov equatiofl6).
interesting energy range. The results, after deleting purely The structure of the second-order resonatate-12 T)
phononic modesrecognized by their weak dependence onturns out to be more complicated. The resulting double-
the magnetic fielth, are shown in Fig. 4. anticrossing structure is due to the overlap of the two reso-

We find out that the exact numerical diagonalization con-nances: the ground state with two phonons crosses tHe
firms the essential elements of the picture found by thestate but also the +" state with one phonon. The detailed
Davydov method. For the lower resonaribetween the “0”  structure of these resonances cannot be quantitatively ac-
and “—" stateg the coincidence between the two treatmentscounted for by the analytical method because of the one-

phonon approximations made in its derivation.

a) 100

VI. CONCLUSIONS

The model of a weakly elliptical InAs/GaAs quantum dot
was considered including coupling of electrons to bulk
phonons in the presence of a magnetic field. The resulting
magnetopolarons were analyzed in detail by application of
the approximate Davydov diagonalization method. The accu-
racy of this method was further verified by exact numerical
diagonalization of the relevant Hitich Hamiltonian. The
40 ' obtained results are consistent with the experimental data in
B [T] the magnetic field range where the latter are available.

Within the model three-level system, three polaron reso-
nances were found, corresponding to the single- and two-
phonon electron—LO-phonon interaction. Due to the anti-
crossing of electron levels in the vicinity of the LO phonon

> energy, the energy of polaronic states always differs from the
E 6o LO phonon energy by a few meV. For a self-assembled dot
::If ‘\ with the electron excitation enerdgywy~58 meV, only the
iy second-order resonance lies within the range of easily acces-
40 sible magnetic fields, although the most recent experinients
T TTTTTTTTTTT— show also the existence of the first-order resonance at
20 — T ~20T.
0 10 21(;) - 30 40 The polaron spectra obtained here are consistent with the

earlier results for GaAs-GaAlAs dots, both isotropand

FIG. 4. Polaron spectrum in a weakly elliptical quantum dot in anisotropié>*® in plane. Astonishingly, including only 3D
the presence of a magnetic field f@) «=0.07 andb) «=0.15. In  bulk modes results in being sufficient for reproducing the
both cases the approximate analytical res(dadid line9 are com- ~ experimental data, contrary to the theoretical predictions.
pared to the exact numerical on@sshed lines This problem certainly deserves further study.
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with bulk phonons and with the confined phonons, as in the

case of s§m|conductor nanospheres in g?és’..s.the Iatter. APPENDIX A: ELECTRON EIGENSTATES IN THE

case, no size dependence _vvas.observed Wh|ch_was attributed WEAKLY ELLIPTICAL DOT

to the confinement of the vibrational wave functions. In fact,

in the Ref. 31 excitonic polarons were analyzed, while the The first excited state is distant from the ground state in
present study focuses on a single excess electron. Neverth@e quantum dot withk wo not small; hence the correction to
less, we do not expect a much different size dependence ffe energy, due to th#/ term, may be calculated in the first

the excitonic cas#®? order of the perturbation. For the ground state we have
Two channels of polaron relaxation by phonon emission
(at low temperaturgsvere studied. The first one results from Aeo:f dzh|¢o(fl)|2W(fl)=0

the direct electron—LA-phonon coupling via the deformation
potential. As the single-LA-phonon transition in a typical and the wave function may be taken in the zeroth order. In
InAs/GaAs dot is forbidden by energy conservation, the onlyorder to take into account the closeness of the levels
relevant process is the resulting two-phonon LO-LA emis-= *=1 (degenerated & =0 and\ =0), we perform the di-
sion. This process involves the electron—LA-phonon interacagonalization in the corresponding two-dimensional sub-
tion and is therefore affected by the bottleneck effect, simi-space. The coefficients in Eq2d) and the energy eigenval-
larly as in the single-phonon case. In a 60 meV dot, thisies(2¢) are found from the equation

process is practically totally suppressed for reasonable mag- )

netic fields. Although it might play some role in the case of a e1tWii—e W - ( Cl) -0
weaker lateral confinement, due to wide anticrossing of lev- W_ eO+w__—e/lcy)

els at the resonances, the corresponding relaxation times are 0) N ,
always longer than a picosecond. whereel | =2h v+ 5w, are the unperturbed energies of the

The second relaxation channel is due to the phonon arf'= =1 states andlV;; are the matrix elements of the pertur-

harmonicity, which leads to the decay of a LO phonon intobat'on'

another LO phonon and a TA phonons. This also leads to a

two-phonon process, involving the LO and TA phonon. In Wii=f d2rL|z//i1(rl)|2W(rl)=0
this case, however, the resulting amplituttges notinvolve

the electron—TA-phonon coupling and therefore is not af-and

fected by the bottleneck mechanism. In fact, unlike in the

previous case, the relaxation time with respect to this proces _ 2k

decreases with increasing energy gap. This is essentially dusewii_f a7 Ly (r)W(r) (1)

to different dependence of the relaxation probabiliti24)

and(25) on the acoustical phonon wave vectpfor various A 5 [27 w29 L (7 2
channels. On the other hand, the energies of the TA phonons - Em* “’OJO dé cos 2ge ZBFJO rdrrfe” (e
in GaAs are limited to a relatively narrow band and this B

relaxation channel is likely to be forbidden in a self- NRCTIEY

assembled dot by energy conservation, even for realistic dis- = Eﬁ o Eﬁwo, (A1)

persion of LO phonons. In a model with realistic phonon

dispersion curves this restriction is stronger for TA phononwhere the final approximation is valid fes.< wg.

emission while it is released for TA phonon absorptipos-

sible at higher temperatungs APPENDIX B: FROHLICH CONSTANT FOR ELECTRONS
Thus, the bottleneck effect and the energy conservation CONFINED IN THE QUANTUM DOT

open windows of inefficiency of relaxation processes. As the ) ) .

relaxation times can be treated as the upper limit for the The dimensionless parameter, called thehkoh con-

overall decoherence timé&3 these inefficiency windows Stant, is defined as follows:

may be useful for semiconductor-based quantum information

processing purposes. This conclusion is also confirmed by e’ m*

recent experimental data, showing nanosecond dephasing B f 2430

times in GaAs quantum dots However, some further inves-

tigation is still needed, involving, e.g., the analysis ofthe ref we take (as for bulk GaAy ¢,=12.9, €,=10.9, m*

laxation at finite temperatures and the rate of pure dephasing 0.067,, and 2 =36 meV, thena=0.071, and this

processeswhich seems to be of a comparable order as thealue has been verified experimentally in bulk G&Aslow-

relaxation raté). ever, for electrons confined on the nanometer scale, as in the

(B1)
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InAs/GaAs self-assembled dot with a radius of the order otthe localization scalégiven byd, the diameter of the dptlt
10 nm, the recent experimental data on far-infrareds clear thaty=1 whend—oe and =0 whend attains
attenuatioft' indicated thain~0.15. dimensions of atoms, i.e., wheh-a (a, the diameter of a
The enhancement of the electron—LO-phonon interactiomnit cell). Therefore, within the linear approximation with
for QD’s manifests itself also via a significant increase of therespect to the small parametetd (or, equivalently, linear
Huang-Rhys factd? for satellite LO-phonon-assisted photo- with respect to the quasiclassical velocity of the confined
luminescence  features in IlI-V  quantum dots electron, n=(d—a)/d. Hence for the confined electron we
(InAs/GaAs,****" as well as in spherical nanocrystals have P'(r)=D/(47¢'), where 1&'=(1—ald)/e,— lle

II-VI. *2 This phenomenon concerns the exciton—-LO-phonon, 5/, This formula leads to the renormalized Rfich con-
interaction and the geometrical separatioredf charges in  gtant in the form

localized exciton states turns out to be insufficiéft to

explain it. Some effects beyoredh charges separation were 5
invoked, for spherical 1I-VI dots, the nonadiabaticttyand o=
for pyramid-shaped I11-V, InAs/GaAs dots, piezoelectricity. e’

In view of the FIR experimental dafasuggesting an in-
crease of the Fidich constanta, one can attempt to inter- For QD withd~25 nm, as was reported in Ref. 11, we have
pret this effect in phenomenological terms using descriptiori=40a (for GaAs, a=0.56 nm), which yields the desired
by inertial and noninertial parts of local crystal Vvalue the of the Fiialich constantia’~0.15. The formula
polarization'® For the electron—LO-phonon interaction im- (B2) would also be helpful for understanding of the enhance-
portant is only arinertial part of the local polarization. The ment of the Huang-Rhys paramet&f***'which scales as
noninertial part, accompanying the moving electrons, is in-a (some further corrections result from the differenttich
cluded into the crystal field which defined both the electronconstants for electrons and holes due to the distinct effective
and phonon states. Therefore, thertial polarization of the mas$. For dots of diameter o 5-9 nm, as reported in Ref.
crystal acting on the free lattice electrons equie) 39, the corresponding’~0.4-0.3, and for dots with diam-
=Py(r)—P.(r), where Py=[(e,—1)/4mey]D and P,  eter~15-19 nm(cf. Ref. 4], o' ~0.25-0.18. In the former
=[(e,—1)/4me,]D (D is the electrical inductionare the case it gives the factor of 6-5 and in the latter 43 for the
static and the high-frequendgf atomic-scalgpolarizations, Huang-Rhys parameter, which coincide well with experi-
respectively. This formula leads, in a standard manner, to thenental data®*

Frohlich constant given by EqB1).16 An additional small renormalization of the Friech con-

For the localized electron in a QD, thertial part of the  stant can also be connected with a change of the effective
polarization is greater in comparison with the free-movingmass due to localization and strain effects in InAs/GaAs dot.
lattice electron since the quasiclassical velocity of the conit was theoretically estimatédthat for the strain-induced
fined electron %/m*d) is greater than the velocity of the InAs/GaAs QD, similar in size as discussed above, the effec-
conducting band electroriespecially near th€ point). The tive mass=0.05m,. However, this correction does not cause
inertial part of polarization acting on electron quickly mov- any significant change ia as the shift from the bulk value,
ing within the dot can thus be written in the forRi(r)  =0.08m,, is rather small. Additionallyao m*, resulting
=Py(r) — »P..(r), with some factor & =<1, depending on in renormalization factor of-0.9.

m*
2430

(B2)
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