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Magnetopolaron in a weakly elliptical InAsÕGaAs quantum dot
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We study theoretically the properties of a polaron formed in a shallow, weakly elliptical, disk-shaped
InAs/GaAs quantum dot in the presence of a magnetic field by using the Davydov’s canonical transformation.
Special attention is paid to the energy-level splitting due to the Fro¨hlich interaction of an electron in a quantum
dot with optical phonons near resonance. The polaron relaxation rates, including the anharmonicity induced
channel, are analyzed for various confinement energies and magnetic field magnitudes, taking into account
coherent polaronic effects.
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I. INTRODUCTION

Due to their availability and still growing understandin
of their properties, quantum dots~QD’s! are believed to be in
the center of the imminent technological revolution, e.g.,
laser technology1 or in quantum computing.2,3 In the latter
field, the scalability and integrability of semiconductor sy
tems, as well as the high precision of ultrafast opti
techniques,4 opens the perspective to set up a fully optica
driven quantum logic gate based on a QD system.3 Since the
electronic~or excitonic! states in a system of QD’s are d
signed to play the role of qubits which must be manipula
with great precision, exact knowledge of the energetic sp
trum of a QD is of major importance. Moreover, because
the necessary quantum coherence during quantum comp
processes, the interaction between the localized electron
the surrounding medium must be well understood.

The electronic properties of QD’s were widely analyze5

In particular, it has been confirmed that the two-dimensio
~2D! harmonic oscillator description for electron states is
relatively good approximation, e.g., in the case of se
assembled InAs/GaAs lens-shaped dots.6 Since QD’s are
usually manufactured from polar materials, the electro
longitudinal-optical-phonon interaction must be taken in
account in a reliable description. The theoretical investi
tion of this issue was performed by, e.g., the standard pe
bation techniques,7–9 by the variational Lee-Low-Pine
method,10 by numerical diagonalization,11,12 or by Green
function methods.13 The experimental data11 show, in par-
ticular, a large splitting width near the one-phonon and tw
phonon resonance in a InAs/GaAs QD. This was accoun
for by the theoretical model via a numerical diagonalizat
of the Fröhlich interaction.11 The required value of the Fro¨h-
lich constant seems to be much larger~by a factor of 2,11

although the most recent results suggest only up to a 2
increase14! than measured in bulk. Recently, it was noted t
upon the appropriate canonical transformation only a limi
number of dispersionless phonon modes~out of an arbitrary
number! couple to the electrons, which leads to a consid
able simplification of the problem and makes it possible
solve it more efficiently numerically.12

In the present paper we propose an entirely analyt
0163-1829/2003/67~3!/035303~13!/$20.00 67 0353
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nonperturbative technique for solving the electron-phon
eigenvalue problem in a QD in the presence of a magn
field. This method, based on modification of the Davyd
transformation15,16appropriate to the localized system, has
least two advantages. First, it may be applied to a sys
with arbitrary structure of electronic levels and yields e
plicit approximate formulas for the energetic spectrum
good quantitative agreement with the exact numerical res
and with experimental data for an anisotropic QD,11 both far
from and close to the resonances. Second, it employs
description of the system in terms of the well-defined qua
particles: polarons. The kinetics of the system~e.g., decay
rates17! may be then easily described including coherent
fects.

The paper is organized as follows. In Sec. II we define
model of the QD in a polar medium. Section III contains t
approximate analytical diagonalization of the system Ham
tonian by the Davydov method. In Sec. IV, two possib
channels of polaron relaxation are discussed. In Sec. V
compare the magnetopolaron spectrum obtained analytic
with the exact numerical results. The final section contain
discussion of the results.

II. MODEL

The system under investigation consists of electrons c
fined in a QD and phonons. Only 3D bulk GaAs phon
modes will be included in the present study. The theoret
analysis7 shows that for nonspherical dots surface phon
modes may contribute considerably to the shifts in the
laron spectrum. However, we will follow the interpretatio
proposed in Refs. 11 and 14 and attribute the measured
fects only to the bulk modes. The possible influence of ot
modes requires further clarification which is, however, b
yond the scope of this paper. Thus, we take into acco
longitudinal optical ~LO! and longitudinal and transversa
acoustical ~LA and TA! bulk branches of phonons. Th
electron-phonon interactions via the LO and LA channels
included as well as the anharmonic third-order LO-TA cha
nel of the phonon interaction~the most efficient phonon an
harmonicity in GaAs,18 the medium of the self-assemble
InAs/GaAs quantum dot!.
©2003 The American Physical Society03-1
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The system is described by the Hamiltonian

H5He~r!1\V(
k

bk
†bk1(

q,s
\vs~q!cqs

† cqs

2
1

AN
(

k

e

k
A2p\V

v ẽ
~bk1b2k

† !exp~ ik•r!

1
1

AN
(

q
sA \q

2MCl
~cql1c2ql

† !exp~ iq•r!

1 (
k1 ,k2 ,q

W~k1 ,k2 ,q!dk12q,k2
bk1

† bk2
~cqt1c2qt

† !, ~1!

where bk is the bosonic annihilation operator for LO
phonons with quasimomentumk and with the dispersionles
~for simplicity! frequencyV, cqs is the bosonic annihilation
operator for the acoustical phonon with quasimomentumq
and polarizations ~t, transversal; l, longitudinal! with fre-
quencyvs(q), Cl is the sound velocity for the longitudina
phonons,M is the mass of ions in the elementary cell,s is
the the deformation potential constant~for GaAs s
.6 eV), v is the volume of the elementary cell,N is the
number of cells in the crystal, andẽ5(1/e`21/e0)21 is the
effective dielectric constant.He(r) is the Hamiltonian for
electrons confined in the QD. The electron-LO phonon in
action is given by the Fro¨hlich term, and the electron
acoustical phonon interaction term includes only L
phonons; the last term describes the third-order anharm
LO-TA phonon interaction,W(k1 ,k2 ,q)5W* (k2 ,k1 ,2q).

A. Electron levels in a quantum dot

We will consider the simplified model for the sel
assembled, shallow, weakly anisotropic in-plane, InAs/Ga
QD.11 We will assume that the dot is strongly confined in t
z direction~the results do not depend on the actual poten
shape in this direction; we assume a strong parabolic c
finement!. The in-plane electron dynamics is governed by
effective anisotropic harmonic potentialV(x,y) with eigen-
frequencies v6

2 5v0
2(16l), l!1, i.e., V(x,y)

5 1
2 m* v0

2(x21y2)1l/2m* v0
2(x22y2). This lateral poten-

tial describes the weakly elliptical in-plane QD. The extern
magnetic field is assumed to be applied in thez direction and
described by the potential in the symmetric gauge. Thus,
single-electron Hamiltonian may be written in the cylindric
coordinatesr5(r' cosw,r' sinw,z) as

He~r!52
\2

2m* F 1

r'

]

]r'
S r'

]

]r'
D1

1

r'
2

]2

]w2
1

]2

]z2G
1

1

2
m* v2r'

2 1
\vc

2 S 2 i
]

]w D1U~z!1W~r'!,

where v25v0
21vc

2/4, vc5eB/(m* c), U(z)5 1
2 m* vzz

2,
andvz@v0. The last term, describing the anisotropy,
03530
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W~r'!5
l

2
m* v0

2r'
2 cos 2w,

may be treated as a perturbation.
Let us now consider the ground and lowest excited sta

for the single electron in the dot. For the unperturbed el
tron Hamiltonian@i.e., neglectingW(r')], we deal with the
cylindrical symmetry and thus with the usualnr andm quan-
tum numbers~the Fock-Darwin states!. We consider states
with nr50, m50,61. The energies and wave functions i
cluding the perturbation caused by the termW have the fol-
lowing form @we use indices 0,6, for perturbed states (0,0
and (0,61), respectively#:

e05\v, ~2a!

C0~r!5c0~r'!f~z!, ~2b!

e652\v6\Avc
21~lv0!2, ~2c!

C6~r!5@c1c61~r'!6c2c71~r'!#f~z!, ~2d!

where

c65
1

A2
F16

vc

A~lv0!21vc
2G 1/2

,

c0 and c61 stand for the wave functions for the two
dimensional isotropic harmonic potential,

cm~r'!5A nr!

~nr1umu!!
1

l BAp
S r'

l B
D umu

e2(r' / l B)2/2eimw,

wherem50,61, l B5A\/(m* v), andf(z) is the ground-
state harmonic oscillator wave function in thez direction~cf.
Appendix A!.

If we now introduce the second-quantization represen
tion in the electron HamiltonianHe(r), then the entire
Hamiltonian~1! can be rewritten as follows:

H5H01H1 , ~3a!

H05(
n

enan
†an1\V(

k
bk

†bk1(
q,s

\vs~q!cqs
† cqs

1
1

AN
(

n1 ,n2 ,k
Fn1n2

o ~k!an1

† an2
~bk1b2k

† !, ~3b!

and

H15
1

AN
(

n1 ,n2 ,q
Fn1n2

a ~q!an1

† an2
~cql1c2ql

† !

1 (
k1 ,k2 ,q

W~k1 ,k2 ,q!dk12q,k2
bk1

† bk2
~cqt1c2qt

† !,

~3c!

where
3-2
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Fn1n2

o ~k!5Fn2n1

o* ~2k!52
e

k
A2pV\

v ẽ
Fn1n2

~k! ~4!

and

Fn1n2

a 5sA \q

2MCl
Fn1n2

~k!,

with

Fn1n2
~k!5E d3rCn1

* ~r!exp~ ik•r!Cn2
~r! ~5!

~in the above formulasn comprises electron state indices,
our model casen50 or 6).

Note that in the definition ofFn1n2

o (k) it is customary

to rearrange the coefficients, namely,Fn1n2

o (k)

5@A4pa\V(1/AvQ0
3)Q0 /k#Fn1n2

(k), where Q0

5A2m* V/\ and a is the dimensionless Fro¨hlich constant
~cf. Appendix B!.

B. Coupling functions

The form factors~5! for the statesC0,6 given by Eqs.
~2b! and ~2d! are

Fnn85gnn8~k' ,w0!e2(k' l B/2)2e2(kzl z/2)2, ~6!

where l z5A\/(m* vz) is the confinement length in thez
direction and the functionsgnn8 are given by the formulas

g0051,

g0652g60* 5 i j~c1e6 iw06c2e7 iw0!,

g66512j2uc1eiw06c2e2 iw0u2,

g6752j2~ uc1u2e22iw01uc2u2e2iw0!

6~12j2!~c2* c12c1* c2!,

wherej5k'l B/2.

III. ELECTRON –LO-PHONON INTERACTION

A. General description

Due to the interaction between the electron localized
the QD and the LO phonons in the polar medium, the el
tron is dressed in a polarization cloud, forming a polaron—
superposition of electronic and phononic states. The sp
trum of the polaron may be found using the canonical tra
formation introduced by Davydov and Pestryakov.15

This transformation is defined by the unitary operatorU
5eS, whereS is an anti-Hermitian operator,

S~a,b!5 (
n1 ,n2 ,k

Fn1 ,n2
~k!an1

† an2
~bk2b2k

† !, ~7!

with the scalar function

Fn1 ,n2
~k!5Fn2 ,n1

* ~2k!
03530
n
-

a
c-
-

chosen suitably for the diagonalization demands. The Ham
tonianH0 @Eq. ~3b!# may be written as

H0~a,b!5U†@UH0U†#U5U†H0~a,b!U,

whereH0(a,b) is H0 Hamiltonian with the operatorsa, b
replaced by operatorsa5UaU†, b5UbU†, respectively
@note thatU(a,b)5U(a,b)].

The generatorS ~i.e., the functionF) may be chosen in
such a way thatU†H(a,b)U does not contain terms linear i
b. Indeed, neglecting residual multipolaron and multiphon
interaction terms15,16 ~these terms are of higher order in th
Fröhlich constant,a!1, and thus are small!,

e2SH0~a,b!eS

'(
n

Enan
†an1\V(

k
bk

†bk1(
q,s

\vs~q!cqs
† cqs

1 (
n1 ,n2 ,k

H F2Fn1n2
~k!~en2

2en1
1\V!

1
1

2 (
n3

@Fn1n3
~k!Dn3n2

2Fn3 ,n2
~k!Dn3n1

#

1
1

AN
Fn1n2

o ~k!Gan1

† an2
bk1H.c.J , ~8!

with

En5en2Dnn1 (
n3 ,k

Fnn3
~2k!Fn3n~k!~en3

2en1\V!

~9!

and

Dn1n2
5

1

AN
(
n3 ,k

@Fn1n3
~k!Fn3n2

o ~2k!

1Fn3n1
~k!Fn2n3

o ~2k!#. ~10!

The requirement that the coefficient at the term linear inb
should vanish leads to the equation forF,

Fn1n2
~k!5

1

AN

Fn1n2

o ~k!

en2
2en1

1\V

1

1
2 (

n3

@Fn1n3
~k!Dn3n2

2Fn3 ,n2
~k!Dn3n1

#

en2
2en1

1\V
.

~11!
3-3
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The solution of the above equation in a perturbative m
ner leads to the known perturbative formula for the pola
energy. Indeed, in the first approximation one has

Fn1n2

(0) ~k!5
1

AN

Fn1n2

o ~k!

en2
2en1

1\V
, ~12!

and from Eqs.~9! and ~10!, within this approximation,

En5en2
1

N (
n8

( k uFnn8
o

~k!u2

en82en1\V
. ~13!

This approximation breaks down in a wide range of the m
netic fields around the resonances.

To improve this solution we use the fact thatDnn8 de-
creases rapidly asun2n8u grows, and then

Fn1n2
~k!'

1

AN

Fn1n2

o ~k!

en2
2en1

1\V

1

1
2 Fn1n2

~k!~Dn2n2
2Dn1n1

!

en2
2en1

1\V
.

Using further the zeroth order approximationFn1n2

(0) (k) only

under the sum in Eq.~9! for En , we arrive at the following
solutions:

En5en2
1

2
Dnn ~14!

and, instead of Eq.~12!,

Fn1n2
~k!5

1

AN

Fn1n2

o ~k!

En2
2En1

1\V
. ~15!

Taking into account the formula forDnn , Eq. ~14! resolves
finally into

En5en2(
n8

Jn8n

En82En1\V
, ~16!

where

Jn8n5
1

N (
k

uFn8n
o

~k!u2.

The above equation~16! is the self-consistent nonperturb
tive equation for the energyEn of the polaron, originally
applied for bulk semiconductor by Davydov and Pestryak

Note also that in our case of the electron confined in
QD, similarly as for an unconfined electron,16 the polaron
states are highly distinct from the original electron stat
while the phonon states are almost not modified by cohe
effects. This follows from the formulas
03530
-
n

-

.
e

,
nt

an
†u0&.an

†u0&2
1

2 (
n1 ,n2 ,k

Fn1n~k!Fn2n1
~2k!an2

u0&

2 (
n1 ,k

Fn1n~2k!bk
†an1

† u0&

and

bk
†u0&.bk

†u0&

~the vacuum stateu0& is defined by formulas:C05a0
†u0& and

anC05bkC05cq,sC050 for all k, q andnÞ0).
Let us denote for future convenience

En
(1)5en2

1

\V
Jnn . ~17!

These entities are the Huang-Rhys approximations to the
laron energy levels,19 but they are insensitive to polaron
phonon resonances~cf. Fig. 1!.

The factorsJnn8 in the harmonic approximation are

Jnn85 j nn8

Ap

2
a\2VAvV, ~18!

FIG. 1. Polaron resonances in a weakly elliptical quantum do
the presence of a magnetic field for~a! a50.07 and~b! a50.15
~the other system parameters are given in the Sec. III A!. The
shifted polaron levelsEn

(1)(B)2E0
(1)(B), Eq. ~17! ~dashed lines!,

branches of polaron levels split in the vicinity of resonanc
En(B)2E0(B) ~solid lines!, and the experimental data after Ref. 1
~dots!.
3-4
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where the values of the coefficientsj nn8 for the weakly el-
liptical quantum dot in a magnetic field are given as

n 0 1 2

0 1 1
4

1
4

1
1
4

11
16 1

3
8 uc1c2u2 3

162
5
8 uc1c2u2

2 1
4

3
162

5
8 uc1c2u2 11

161
3
8 uc1c2u2

For the InAs/GaAs dot, with \V.36 meV, \v0
.58 meV, anda;0.1 we have

Jnn8

~\V!2
!1,

which highly simplifies the further analysis.
First, let us consider the nonresonant situation, i.e.,

En
(1)2En8

(1)
2\V;\V.

In this case the eigenvaluesEn differ only slightly fromEn
(1)

and one can replace the former with the latter in the deno
nator of Eq. ~16!. Thus, outside the resonance region
have

En'En
(1)1 (

n8Þn

Jnn8

En
(1)2En8

(1)
2\V

.

We will now proceed to the examination of Eq.~16! near
the one-phonon resonance between the levelsn1 and n2 ,
En1

(1)2En2

(1)2\V50, i.e., in the case of

en1
2en2

2\V;AJn1n2
!\V. ~19!

Let us introduce the following notation for the energ
level shifts: DEn5En2En

(1) , DEn1n2
5DEn1

2DEn2
, and

En1n2
5 1

2 (DEn1
1DEn2

). Then we find from the self-
consistent equation~16!

DEn1n2
5

Jn1n2

DEn1n2
1 f n1n2

2
Jn1n2

2DEn1n2
1 f n2n1

1 (
n8Þn1 ,n2

S Jn1n8

DEn1n81 f n1n8

2
Jn2n8

DEn2n81 f n2n8
D ,

where f n1n2
5En1

(1)2En2

(1)2\V. As u f n2n1
u.2\V@AJn1n2

,

u f n1n2
u.0 ~near the resonance! and u f n1n8u;u f n2n8u;\V

@AJn1,2n8, then

DEn1n2
.

Jn1n2

DEn1n2
1 f n1n2

.

The above equation has the simple solution

DEn1n2

6 52 f n1n2
/26A~ f n1n2

/2!21Jn1n2
03530
i-

@at the resonance point, given by Eq.~19!, f n1n2
50]. The6

pair of the solutions corresponds to the usual splitting of
polaron energy near the resonance. In order to findEn1

and

En2
it is necessary to find alsoEn1n2

via solution of the
equation

En1n2
5

1

2 S Jn1n2

DEn1n2
1 f n1n2

1
Jn1n2

2DEn1n2
1 f n2n1

D
1

1

2 (
n8Þn1 ,n2

S Jn1n8

DEn1n81 f n1n8

1
Jn2n8

DEn2n81 f n2n8
D .

From this equation one finds

En1n2
.

1

2
DEn1n2

1DEn1n2

Jn1n2

~2\V!2
1

Jn1n2

2\V

1 (
n8Þn1 ,n2

Jn2n8

DEn2n81 f n2n8

.

The splittings for both states are

DEn1

1 2DEn1

2 52A~ f n1n2
/2!21Jn1n2

~20a!

and

DEn2

1 2DEn2

2 52
Jn1n2

~2\V!2A~ f n1n2
/2!21Jn1n2

. ~20b!

We see that only the upper state~i.e., n1, sinceEn1
.En2

)
splits. The splitting of the lower one has to be neglected d
to the small factorJn1n2

/(2\V)2.

B. Application to the dot model and comparison
with experiment

We are going to study in more detail the polaronic res
nances in a model of a weakly elliptical dot as described
Sec. II A ~in analogy to the dot examined experimentally11!.
A quantum dot is a strongly inhomogeneous system: b
electronic and phononic parameters of InAs differ from tho
of GaAs. Moreover, a real quantum dot is a complex syste
where the electronic spectrum, primarily defined by the s
tial confinement, is affected by shape irregularity, inhomo
neous InAs-GaAs composition20 or strain-induced band
shifts and effective mass modification.21,22

On the other hand, within the presented description,
electronic properties of the dot enter the electron-phon
coupling only via the form factorsFnn8(k) @Eq. ~5!#, which
depend on the wave function shape. In particular, it has b
verified17 that modification of the confinement potenti
shape does not influence significantly the polaron spect
and the relaxation rates. Therefore, it seems reasonab
simplify the analysis by using the effective model with th
simplest, harmonic-oscillator approximation for the wa
functions, which results in only one parameter~localization
width l B or potential strengthv0) to be adjusted based on th
3-5
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experiment. The resulting incompatibility between the co
pling strength and the confined electron eigenenergies
be accounted for by choosing a modified, effective value
the Fröhlich constanta. It has been reported recently14 that
the necessary correction does not exceed 25%.

The presence of strain-induced, self-assembled InAs
in the GaAs crystal modifies its phonon spectrum and m
lead to the appearance of localized or surface phonon s
of the strained InAs nanocrystal. Not much is known ab
the properties of these modes for a realistic dot shape. H
ever, experimentally measured polaron spectra11,14show only
strong resonances related to the bulk GaAs LO phon
which suggests that the GaAs surrounding medium phon
are dominant and rather weakly affected by dot nanocry
structure. Therefore, in the following, we take into accou
only the bulk GaAs phonon modes with frequency\V
536 meV ~dispersion is neglected except for phono
phonon coupling constant estimation in the next section!. In
the present paper we use the model with harmonic lat
confinement, treating the confinement strength as a phen
enological, effective parameter. It was verified17 that other
confinement models do not lead to a considerable modifi
tion of the results.

In the simplified, harmonic approximation, the electr
spectrum is determined by the values of\v0 and l which
may be found by fitting the energy levelsE1 andE2 to their
values atB50 measured in the experiment.11 It is known
that the electron effective mass in a strained InAs/GaAs
becomes close to the GaAs mass.21 We will use the GaAs
mass in our calculation. We use two alternative values of
Fröhlich constant: the bulk onea50.07 and the increase
value suggested in Ref. 11,a50.15. This increased valu
may be explained in phenomenological, semiclassical te
and it may actually account for effects which are not exp
itly included in our model Hamiltonian, like piezoelectricit
or nonadiabaticity~cf. Appendix B!.

Fitting to the experimental results of Ref. 11 leads to
potential parameters\v0557.8, l50.122 and\v0557.5,
l50.169 fora50.07 anda50.15, respectively.

Let us first focus on the resonance condition

E2
(1)2E0

(1)2\V50.

The corresponding magnetic fieldB1 may be found using the
definition ~17! and the values for theJnn8 factors given by
Eq. ~18!. The separation between the branches of the s
ting at the resonance point is, according to Eq.~20!,

dE25DE2
12DE2

25AJ20

~the corresponding values are collected in the Table I!.
Another possible resonance takes place when

E1
(1)2E2

(1)2\V50.

The corresponding magnetic fieldB2 is found in a similar
way as previously and the separation between the branch
the resonance point is

dE15DE1
12DE1

25AJ12
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~cf. Table I!.
Apart from the splitting of the ‘‘1’’ state due to one-

phonon resonance with the ‘‘2 ’’ state, there should be an
other effect, related to two-phonon resonance with
ground state, occurring around the intersection of the ze
phononE1 energy level and theE012\V energy corre-
sponding to the ground electron state with two phonon11

Actually, one should not expect an exact result here, si
some two-phonon terms were neglected in the derivation
Eq. ~16!. Nevertheless, the presented analytical method
lows for an approximate determination of this resonan
Within the zeroth order approximation for this second-ord
resonance we can write

DE105DE12DE05DE121DE20 ,

and then

DE1052
f 121 f 20

2
6@A~ f 12/2!21J12

6A~ f 20/2!21J20#.

If we consider only splitting of the ‘‘1 ’’ state @i.e., the
E1

(1)(B) energy# the first term in the above formula has
vanish, i.e.,f 121 f 205E1

(1)(B3)2E0
(1)(B3)22\V50 ~it is

interesting that this condition is the same as the two-pho
resonance condition for the ‘‘1 ’’ and ‘‘0’’ states!. Taking into
account this last condition we find the smallest gap atB3:

d (2)E1;2uA~ f 12/2!21J122A~ f 12/2!21J20u,

~cf. Table I!.
The spectrum of the system for the two sets of parame

is depicted in Fig. 1 and compared with the experimen
results.11 The agreement for theE2 level is very good. The
theoretical curve forE1 differs from the experiment at high
magnetic field which suggests that the theoretical result
the resonance at 20 T is slightly shifted with respect to
actual position~recently determined experimentally14!. The
estimated value of the small splitting at the second-or
resonance@shown only in Fig. 1~a!# is also comparable to the
experimental value. However, the value obtained fora
50.07 is twice as small as the experimental one~as could be
expected from the zeroth-order approximation!.

TABLE I. The values of the magnetic fields and the correspo
ing values of the resonance energy splitting for two parameter
of the model InAs/GaAs dot.

a 0.07
(\v0557.5 meV,

l50.122)

0.15
(\v0557.8 meV,

l50.169)

B1 34 T 36 T
dE2 10 meV 15 meV
B2 21 T 20 T
dE1 9 meV 13 meV
B3 14 T 12 T
d (2)E1 1 meV 2 meV
3-6
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IV. POLARON DECAY RATES

Apart from the system spectrum, the Davydov transf
mation allows also for a convenient description of the rel
ation processes, including the coherent polaronic effects
this section we discuss two channels of polaron relaxa
and calculate the relaxation rates for a polaron in a dot in
presence of magnetic field.

Let us study the second term in the Hamiltonian~3a!, i.e.,
H1 @Eq. ~3c!#, responsible for the electron–LA-phonon inte
action and for the anharmonic phonon decay. Upon the
nonical transformationeS the two terms ofH1 attain the
following form:

H15
1

AN
(

n1n2 ,q
Fn1n2

a ~q!an1

† an2
~cl,q1cl,2q

† !

1 (
k1 ,k2 ,q

W~k1 ,k2 ,q!dk1 ,k21qbk1

† bk2
~ct,q1ct,2q

† !

1 (
n1n2 ,q,k,s

W̃n1n2

s ~q,k!an1

† an2
bk~cs,q1cs,q

† !1H.c.,

~21!

wheres5 l, t denotes polarization, as previously, and

W̃n1n2

t ~q,k!52
1

AN

Fn1n2

o ~k1q!W~k1q,k,q!

En2
2En1

1\V
, ~22!

W̃n1n2

l ~q,k!52
1

N (
n3

FFn1n3

o ~k!Fn3n2

a ~q!

En3
2En1

1\V

2
Fn3n2

o ~k!Fn1n3

a ~q!

En2
2En3

1\V G . ~23!

The first term in the transformed HamiltonianH1, Eq. ~21!,
describes the polaron–LA-phonon interaction~note that it
has the same coupling energy as it was for electron–
phonon interaction!, and the second term describes anh
monic interaction of LO phonons~almost unaffected by the
canonical transformation! with TA phonons~again with the
same energy as without the coherent effects!, whereas thelas
term describes the relaxation of the polaron. The LO-
anharmonicity-induced relaxation channel corresponds
Eq. ~22!while the LO-LA channel to Eq.~23!. Note that in
the former case@Eq. ~22!#, the couplingFnn8

o (k1q) selects
processes with opposite wave vectorsk and q @cf. Eqs. ~4!
and ~6!#.

Both these channels lead to a change of the polaron s
accompanied by the creation or annihilation of a pair
phonons: the optical and one acoustical. There are four
sibilities for this process with probabilities~according to the
Fermi golden rule!

wn1n2

x,y;s~q,k!5
2p

\
uW̃s~n1n2 ,~x•y!q,k!u2~Nk1hx!

3~ns,q1hy!d~En1
2En2

2x\V2y\vs,q!,
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where x ~y! 56 and ‘‘1 ’’ corresponds to emission an
‘‘ 2 ’’ to absorption of an optical~acoustical! phonon, respec-
tively, andh151, h250 (Nk , number of LO phonons in
thek state;nq,s , number of acoustical phonons in the stateq
and polarizations).

At sufficiently low temperatures@for GaAs practically at
T,11 K ~Ref. 18!#, the phonon occupation numbers are ne
ligible and the only contribution is from the process of t
polaron transition with simultaneous emission of tw
phonons; the corresponding probability iswn1,n2

11 (q,k). The
relaxation probability for this process is given by the sum

wn1→n2
5(

k,q
wn1n2

11 ~q,k!.

The dependence of the amplitudeW(k1 ,k2 ,q) on the
wave vectors may be established by a general argume23

Namely, the long-wavelength acoustic phonons corresp
to sound waves, whose elastic energy is expressed in te
of the strain tensor elements, i.e., to the spatial derivative
the deformation. This dependence leads, in the seco
quantization picture, to the linear dependence on the acou
phonon wave vectors. Hence, the corresponding part of
Hamiltonian, i.e., the probability for a third-order phono
phonon process with one long-wavelength acoustical pho
involved, must be proportional to the phonon wave numb
As an approximation, we extend this dependence over
whole range ofq and write

uW~k1q,k,q!u25
g2

N
q,

where we also assume thatg weakly depends on the LO
phonon wave vectork.

Thus, the relaxation probability via the LO-TA chann
may be written as

wn1→n2

(t) 5
2

p

Jn1n2
g2qtv

\4Ct
3

, ~24!

whereCt is the sound velocity for the transversal phono
andqt5(En1

2En2
2\V)/\Ct ~limited by the maximum fre-

quency for TA phonons!.
Let us now estimate the polaron relaxation rate for t

anharmonicity-induced LO-TA channel. We restrict ourselv
to the polaron relaxation from the ‘‘2 ’’ state to the ground
state ‘‘0.’’ For the LO-TA process at low temperatures on
phonon emission is possible. Energy conservation restr
this process to a certain energy range, related to the m
mum energy of the TA phonon,;8 meV ~indicated by the
dotted lines in Fig. 2!. Thus, this channel of polaron relax
ation is ineffective for magnetic fieldsB,25 T and B
,33 T for a50.07 anda50.15, respectively. This situation
is characteristic of a dot with the confinement energy\v0
exceeding the phonon energy\V by several meV. For com-
parison, the same two branches of the first excited stat
B50 for various dot confinements are shown in the inse
Fig. 2. The relaxation channel by the LO1TA phonon emis-
sion from the physically important, stable polaronic branch
3-7
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allowed only if \v0,40 meV. Similarly, the process with
TA phonon absorption at nonzero temperatures is also
sible only in a relatively narrow sector of confinement en
gies.

For a quantitative estimation of the corresponding rel
ation rate the value of the anharmonic phonon-phonon c
pling constant is needed; it can be fitted using the experim
tal data for GaAs bulk.18 In this estimation, the exact form o
the phonon dispersion curves, including the LO phonon d
persionV(k), is essential. For GaAs, the dominant anh
monic process involves TA phonons withq in the vicinity of
the L point in the Brillouin zone.18 At low temperatures, for
GaAs bulk, we find for the LO phonon lifetime

tLO5w215
p\2c̃

g2vq0
3m

,

where the factorm accounts for anisotropy effects andq0
corresponds to the vicinity of theL point. From the experi-
mental data for phonon dispersions in GaAs,24 one can notice
that the energy conservation needed for the considered c
nel of LO phonon decay is satisfied along theL-W line on
the hexagonal zone wall but it is violated towards theS line.
It therefore seems reasonable to assume thatm'0.4. From
the phonon dispersion curves it also results that on theG-L
line near theL point one has the group velocity of longitu
dinal phononsc̃'0.6Ct . Using the lifetimetLO59.2 ps at
T56 K reported in Ref. 18, one can thus estimate theg
factor. Using this value, the lifetime for the polaron in
GaAs self-assembled quantum dot with respect to the LO
relaxation channel can be estimated@at T50 K, according to
Eq. ~24!#. The polaron relaxation times obtained in this w
are of order of 10 ps but for a dot with\v'60 meV the
process is allowed only in the region of very high magne
fields ~cf. Fig. 2!.

The LO-LA channel may be responsible for polaron
laxation in a wider range of magnetic fields due to the mu
higher energies of the LA phonons in GaAs@up to 24 meV

FIG. 2. Two branches of theE22E0 polaron energy difference
compared with the energy sector where the LO-TA polaron re
ation is possible~shown by dotted lines! (T50) for a50.07 ~solid
lines! and a50.15 ~dashed lines! ~see Sec. III B for other system
parameters!. Inset: the same two branches atB50 for various con-
finement energies\v0.
03530
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~Ref. 24!#. The probability of relaxation has the form@retain-
ing only the largest terms inW̃n1n2

l (q,k)]:

wn1→n2

(l) 5
s2Jn1n2

4p%\3Cl
4qll B

2
Jn1n2

, ~25!

whereql5(En1
2En2

2\V)/\Cl ~limited by the maximum
frequency for LA phonons! and

Jn1n2
5 l B

2E d3quFn2n2
~q!2Fn1n1

~q!u2d~q2ql!.

For the initial state ‘‘2 ’’ and the final state ‘‘0’’ one has

J205~112uc1c2u2!
~qll B!6

15

3M S 3,
7

2
,2

1

2
~ l B

22 l z
2!ql

2De2(qll z)
2/2, ~26!

whereM is the degenerated hypergeometric function.25

The polaron relaxation time with respect to the LO-L
channel for various magnetic fields and dot sizes is plotte
Fig. 3. It is clear that for the self-assembled dot discus
here, with\v0.58 meV, the initial state is very long living
for any practically attainable magnetic field. This is due
the well-known bottleneck mechanism,26 where the emission
of short-wavelength phonons is strongly suppressed in a c
fined system. It is essential to note that, unlike the bare e
tronic levels, the polaronic energy levels never approach
resonant LO phonon energy~anticrossing effect!. The com-
bined LO-LA phonon emission and absorption is therefo
less probable than that obtained by the perturbation the
methods27,28 and the polaron lifetimes are long at realist
magnetic fields~cf. Fig. 3!. A rather unexpected effect is als
related to the fact that increasing the electron-phonon c
pling ~the Fröhlich constant! broadens the anticrossing an
thus strengthens the bottleneck mechanism@due to the expo-
nential factor in Eq.~26!#. The efficiency of the bottleneck
mechanism crucially depends, however, on the dot size~i.e.,

-

FIG. 3. Polaron relaxation time from the ‘‘2 ’’ level with respect
to the LO-LA emission (T50) for a50.07 ~solid lines! and a
50.15 ~dashed lines!. Inset: relaxation times with respect to th
LO-TA anharmonicity induced channel and to the LO-LA chann
for various dots atB50. For strong confinements the LO-TA chan
nel is forbidden by energy conservation.
3-8



rt
w
t

io
th

a
wa
ci

o
h
T
e

ng

th
a

o
pi

s,

la

ic

li
nc

we

rs.
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its confinement energy!. The lifetime becomes very sho
when the confinement energy is close to the resonance
LO phonons~cf. inset in Fig. 3!. Only when the confinemen
becomes stronger~approximately\v0.40 meV; cf. Fig. 2,
inset! is the LO-TA channel excluded by energy conservat
and the LO-LA channel is strongly suppressed due to
geometrical confinement effects~see Fig. 3, inset!.

Finally, let us qualitatively describe the influence of re
LO phonon dispersion on the results derived above. As
noticed above, the form factors governing the anharmoni
induced LO-TA process enforcesq'2k ~this is similar to
the bulk case18!. Due to the decreasingk dependence of the
LO phonon the total energy,V(k)1vTA(2k) varies in a
very small range. Therefore the relaxation window f
LO-TA emission actually becomes more narrow. On t
other hand, the energy difference between the LO and
phonon varies in much wider range now; hence the proc
involving LO emission and TA absorption~at nonzero tem-
peratures! is allowed in a wider range than estimated usi
the dispersionless model.

V. NUMERICAL VERIFICATION OF THE DAVYDOV
METHOD ACCURACY

In this section we compare the spectrum found by
canonical transformation method with that obtained via ex
numerical diagonalization of the Fro¨hlich interaction. It is
now convenient to write the relevant electron and LO ph
non terms of the Hamiltonian in the unperturbed, isotro
harmonic oscillator basis

H5 (
n50,61

en
(0)an

†an1W6~a1
† a21a2

† a1!1\V(
k

bk
†bk

1
1

AN
(
nn8k

Fnn8
(o)

~k!an
†an8~bk1b2k

† !, ~27!

where we restricted the problem to the three lowest state
in the previous sections, andW6 is defined in Eq.~A1! in
Appendix A.

As pointed out by Stauber, Zimmermann, and Castel12

~SZC!, the Fröhlich Hamiltonian ~27! couples electronic
states only with a very limited number of effective phonon
modes. The symmetry of form factors~e.g.,F 011

(0) 5F 210
(0) )

reduces the number of these modes to 6. In order to simp
the further notation, we define the normalized coupling fu
tions
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F̃05F11
o(0)/AJ11

(0), F̃15F01
o(0)/AJ01

(0),

F̃25F021
o(0) /AJ021

(0) , F̃35F121
o(0) /AJ121

(0) ,

F̃45F211
o(0)/AJ211

(0) , F̃55F00
o(0)/AJ00

(0),

where the formulas forFnn8
o(0) andJnn8

(0) ~corresponding to the
unperturbed basis! are obtained from Eqs.~4!–~6! and ~18!,
respectively, by formally settingl50, i.e., c151, c250.
With these definitions we have

1

N (
l

uF̃ l~k!u251.

Next, applying the SZC method to our three-level case,
define the annihilation operators

Al5
1

AN
(

k
F̃ l~k!bk .

The commutation relations for the new operators are

@Al ,Al 8#50, @Al
† ,Al 8

†
#50,

@Al ,Al 8
†

#5
1

N (
k

F̃ l~k!F̃ l 8
* ~k!.

Using the explicit formulas forF̃ l for the parabolic dot one
finds that the latter is non-zero only forl 5 l 8, when it equals
1 by normalization, and forl 55, l 850. Hence, the SZC
orthonormalization is needed only for this pair of operato
The orthonormalized set of operators is given by

B05
A02sA5

A12s2
, Bl5Al , l 51, . . . ,5,

where

s5@A5 ,A0
†#5

J00
(0)2J01

(0)

AJ00
(0)J01

(0)
5

3

A11

~the final value uses the explicit form of the factorsJnn8 for
the parabolic dot!. According to the general theory,12 the
Hamiltonian may now be written as
H5 (
n50,61

en
(0)an

†an1W6~a1
† a21a2

† a1!1\V(
l 50

5

Bl
†Bl1@AJ00a0

†a0B51AJ11~a1
†a11a21

† a21!~s8B01sB5!

1AJ01~a0
†a11a21

† a0!B11AJ01~a0
†a211a1

†a0!B21AJ211a1
†a21B31AJ211a21

† a1B41H.c.#,

wheres85A12s2.
The number of modes may be further reduced by one by defining the transformed modes

B585aB51bB0 , B085b̄B52āB0 ,
3-9
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where

b5
AJ00

(0)/J11
(0)2s

s8
, uau21ubu251.

The simplest choice isa5A2/3, b5A1/3. Upon this transformation, the phononic modeB58 is coupled only to the electron
number operator which commutes with the Hamiltonian and is constant in our restricted one-electron case. Hence, t
may be suppressed and the reduced Fro¨hlich Hamiltonian reads~using the explicit values of coefficients!

H5 (
n50,61

en
(0)an

†an1W6~a1
† a21a2

† a1!1\V(
l 50

4

Bl
†Bl1AJ00

(0)H 1

A3
Fa0

†a01
1

4
~a1

†a11a21
† a21!GB01

1

2
~a0

†a11a21
† a0!B1

1
1

2
~a0

†a211a1
†a0!B21

A3

4
a1

†a21B31
A3

4
a21

† a1B41H.c.J ,
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The diagonalization of this Hamiltonian was perform
numerically for the phononic occupation numbers limited
0, . . . ,3. Wehave checked that allowing higher occupati
numbers does not affect the obtained spectrum within
interesting energy range. The results, after deleting pu
phononic modes~recognized by their weak dependence
the magnetic field11!, are shown in Fig. 4.

We find out that the exact numerical diagonalization co
firms the essential elements of the picture found by
Davydov method. For the lower resonance~between the ‘‘0’’
and ‘‘2 ’’ states! the coincidence between the two treatme

FIG. 4. Polaron spectrum in a weakly elliptical quantum dot
the presence of a magnetic field for~a! a50.07 and~b! a50.15. In
both cases the approximate analytical results~solid lines! are com-
pared to the exact numerical ones~dashed lines!.
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is excellent, while for the other resonances, the exact beh
ior is reproduced with satisfactory accuracy, slightly d
creased by the approximate methods of analytical solutio
the Davydov equation~16!.

The structure of the second-order resonance~at ;12 T)
turns out to be more complicated. The resulting doub
anticrossing structure is due to the overlap of the two re
nances: the ground state with two phonons crosses the1’’
state but also the ‘‘2 ’’ state with one phonon. The detaile
structure of these resonances cannot be quantitatively
counted for by the analytical method because of the o
phonon approximations made in its derivation.

VI. CONCLUSIONS

The model of a weakly elliptical InAs/GaAs quantum d
was considered including coupling of electrons to bu
phonons in the presence of a magnetic field. The resul
magnetopolarons were analyzed in detail by application
the approximate Davydov diagonalization method. The ac
racy of this method was further verified by exact numeri
diagonalization of the relevant Fro¨hlich Hamiltonian. The
obtained results are consistent with the experimental dat
the magnetic field range where the latter are available.

Within the model three-level system, three polaron re
nances were found, corresponding to the single- and t
phonon electron–LO-phonon interaction. Due to the an
crossing of electron levels in the vicinity of the LO phono
energy, the energy of polaronic states always differs from
LO phonon energy by a few meV. For a self-assembled
with the electron excitation energy\v0'58 meV, only the
second-order resonance lies within the range of easily ac
sible magnetic fields, although the most recent experimen14

show also the existence of the first-order resonance
;20 T.

The polaron spectra obtained here are consistent with
earlier results for GaAs-GaAlAs dots, both isotropic9 and
anisotropic29,30 in plane. Astonishingly, including only 3D
bulk modes results in being sufficient for reproducing t
experimental data, contrary to the theoretical prediction7

This problem certainly deserves further study.
3-10
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Another point of interest may be the dependence of
Huang-Rhys parameterJnn /(\V)2 on the dot size. In our
model this parameter is proportional tov1/2, i.e., to the in-
verse electron localization length@Eqs. ~17! and ~18!#. This
constitutes an essential difference between the interac
with bulk phonons and with the confined phonons, as in
case of semiconductor nanospheres in glass.31 In the latter
case, no size dependence was observed which was attrib
to the confinement of the vibrational wave functions. In fa
in the Ref. 31 excitonic polarons were analyzed, while
present study focuses on a single excess electron. Neve
less, we do not expect a much different size dependenc
the excitonic case.32

Two channels of polaron relaxation by phonon emiss
~at low temperatures! were studied. The first one results fro
the direct electron–LA-phonon coupling via the deformati
potential. As the single-LA-phonon transition in a typic
InAs/GaAs dot is forbidden by energy conservation, the o
relevant process is the resulting two-phonon LO-LA em
sion. This process involves the electron–LA-phonon inter
tion and is therefore affected by the bottleneck effect, si
larly as in the single-phonon case. In a 60 meV dot, t
process is practically totally suppressed for reasonable m
netic fields. Although it might play some role in the case o
weaker lateral confinement, due to wide anticrossing of l
els at the resonances, the corresponding relaxation time
always longer than a picosecond.

The second relaxation channel is due to the phonon
harmonicity, which leads to the decay of a LO phonon in
another LO phonon and a TA phonons. This also leads
two-phonon process, involving the LO and TA phonon.
this case, however, the resulting amplitudedoes notinvolve
the electron–TA-phonon coupling and therefore is not
fected by the bottleneck mechanism. In fact, unlike in
previous case, the relaxation time with respect to this proc
decreases with increasing energy gap. This is essentially
to different dependence of the relaxation probabilities~24!
and~25! on the acoustical phonon wave vectorq for various
channels. On the other hand, the energies of the TA phon
in GaAs are limited to a relatively narrow band and th
relaxation channel is likely to be forbidden in a se
assembled dot by energy conservation, even for realistic
persion of LO phonons. In a model with realistic phon
dispersion curves this restriction is stronger for TA phon
emission while it is released for TA phonon absorption~pos-
sible at higher temperatures!,

Thus, the bottleneck effect and the energy conserva
open windows of inefficiency of relaxation processes. As
relaxation times can be treated as the upper limit for
overall decoherence times,33,34 these inefficiency windows
may be useful for semiconductor-based quantum informa
processing purposes. This conclusion is also confirmed
recent experimental data, showing nanosecond depha
times in GaAs quantum dots.35 However, some further inves
tigation is still needed, involving, e.g., the analysis ofthe
laxation at finite temperatures and the rate of pure depha
processes~which seems to be of a comparable order as
relaxation rate36!.
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APPENDIX A: ELECTRON EIGENSTATES IN THE
WEAKLY ELLIPTICAL DOT

The first excited state is distant from the ground state
the quantum dot with\v0 not small; hence the correction t
the energy, due to theW term, may be calculated in the firs
order of the perturbation. For the ground state we have

De05E d2r'uc0~r'!u2W~r'!50

and the wave function may be taken in the zeroth order
order to take into account the closeness of the levelsm
561 ~degenerated atB50 andl50), we perform the di-
agonalization in the corresponding two-dimensional s
space. The coefficients in Eqs.~2d! and the energy eigenval
ues~2c! are found from the equation

S e11
(0)1W112e W12

W21 e21
(0)1W222e

D S c1

c2
D 50,

wheree61
(0)52\v7 1

2 \vc are the unperturbed energies of th
m561 states andWi j are the matrix elements of the pertu
bation,

W665E d2r'uc61~r'!u2W~r'!50

and

W675E d2r'c61* ~r'!W~r'!c71~r'!

5
l

2
m* v0

2E
0

2p

du cos 2ue72u
1

p l B
4E0

`

rdrr 4e2(r / l B)2

5
l

2
\

v0
2

v
'

l

2
\v0 , ~A1!

where the final approximation is valid forvc!v0.

APPENDIX B: FRÖ HLICH CONSTANT FOR ELECTRONS
CONFINED IN THE QUANTUM DOT

The dimensionless parameter, called the Fro¨hlich con-
stant, is defined as follows:

a5
e2

ẽ
A m*

2\3V
. ~B1!

If we take ~as for bulk GaAs! e0512.9, e`510.9, m*
50.067me , and \V536 meV, thena50.071, and this
value has been verified experimentally in bulk GaAs.37 How-
ever, for electrons confined on the nanometer scale, as in
3-11
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InAs/GaAs self-assembled dot with a radius of the order
10 nm, the recent experimental data on far-infrar
attenuation11 indicated thata'0.15.

The enhancement of the electron–LO-phonon interac
for QD’s manifests itself also via a significant increase of
Huang-Rhys factor38 for satellite LO-phonon-assisted phot
luminescence features in III-V quantum do
~InAs/GaAs!,39–41 as well as in spherical nanocrysta
II-VI. 42 This phenomenon concerns the exciton–LO-phon
interaction and the geometrical separation ofe-h charges in
localized exciton states turns out to be insufficient39,41 to
explain it. Some effects beyonde-h charges separation wer
invoked, for spherical II-VI dots, the nonadiabaticity,42 and
for pyramid-shaped III-V, InAs/GaAs dots, piezoelectricity41

In view of the FIR experimental data11 suggesting an in-
crease of the Fro¨hlich constanta, one can attempt to inter
pret this effect in phenomenological terms using descript
by inertial and noninertial parts of local crystal
polarization.16 For the electron–LO-phonon interaction im
portant is only aninertial part of the local polarization. The
noninertial part, accompanying the moving electrons, is
cluded into the crystal field which defined both the electr
and phonon states. Therefore, theinertial polarization of the
crystal acting on the free lattice electrons equalsP(r )
5P0(r )2P`(r ), where P05@(e021)/4pe0#D and P`

5@(e`21)/4pe`#D (D is the electrical induction! are the
static and the high-frequency~of atomic-scale! polarizations,
respectively. This formula leads, in a standard manner, to
Fröhlich constant given by Eq.~B1!.16

For the localized electron in a QD, theinertial part of the
polarization is greater in comparison with the free-movi
lattice electron since the quasiclassical velocity of the c
fined electron (;\/m* d) is greater than the velocity of th
conducting band electrons~especially near theG point!. The
inertial part of polarization acting on electron quickly mo
ing within the dot can thus be written in the formP8(r )
5P0(r )2hP`(r ), with some factor 0<h<1, depending on
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6A. Wójs, P. Hawrylak, S. Fafard, and L. Jacak, Phys. Rev. B54,
5604 ~1996!.

7M. H. Degani and G. A. Farias, Phys. Rev. B42, 11 950~1990!.
8K. D. Zhu and S. W. Gu, Phys. Lett. A163, 435 ~1992!.
9L. Wendler, A. V. Chaplik, R. Haupt, and O. Hipo´lito, J. Phys.:

Condens. Matter5, 8031~1993!.
10A. Chatterjee and S. Mukhopadhyay, Acta Phys. Pol. B32, 473
03530
f
d

n
e

n

n

-
n

e

-

the localization scale~given byd, the diameter of the dot!. It
is clear thath51 when d→` and h50 when d attains
dimensions of atoms, i.e., whend;a (a, the diameter of a
unit cell!. Therefore, within the linear approximation wit
respect to the small parametera/d ~or, equivalently, linear
with respect to the quasiclassical velocity of the confin
electron!, h5(d2a)/d. Hence for the confined electron w
have P8(r )5D/(4pẽ8), where 1/ẽ85(12a/d)/e`21/e0
1a/d. This formula leads to the renormalized Fro¨hlich con-
stant in the form

a85
e2

ẽ8
A m*

2\3V
. ~B2!

For QD withd'25 nm, as was reported in Ref. 11, we ha
d'40a ~for GaAs, a.0.56 nm), which yields the desire
value the of the Fro¨hlich constant:a8'0.15. The formula
~B2! would also be helpful for understanding of the enhan
ment of the Huang-Rhys parameter,39,40,42,41which scales as
a ~some further corrections result from the different Fro¨hlich
constants for electrons and holes due to the distinct effec
mass!. For dots of diameter of;5 –9 nm, as reported in Ref
39, the correspondinga8;0.4–0.3, and for dots with diam
eter;15–19 nm~cf. Ref. 41!, a8;0.25–0.18. In the former
case it gives the factor of 6–5 and in the latter 4–3 for
Huang-Rhys parameter, which coincide well with expe
mental data.39,41

An additional small renormalization of the Fro¨hlich con-
stant can also be connected with a change of the effec
mass due to localization and strain effects in InAs/GaAs d
It was theoretically estimated43 that for the strain-induced
InAs/GaAs QD, similar in size as discussed above, the ef
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in renormalization factor of;0.9.
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