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Near-surface electrons and acoustic phonons: Energy and momentum relaxation
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We study energy and momentum relaxation of a two-dimensi(#l electron channel located at a finite
distance/” from a free crystal surface. The interaction with a complete set of bulklike, totally reflected, and
Rayleigh acoustic phonon modes is taken into account. In most cases of interest the relaxation rates have the
same temperature dependence as for 2D or bulk electrons interacting with bulk phonons. Numerical calcula-
tions demonstrate that the presence of a surface results in approximately a 10% modification of scattering rates
in the high-temperature region. In the opposite litBitoch-Grineisen regimg the contribution of the surface
phonons may dominate over that of bulklike modes. Oscillations of the relaxation rates as a function of the
distance/” between the electron channel and the surface are also predi8@i63-182807)01148-X

I. INTRODUCTION co-workers investigated the resonant transmission of acous-
tic wave packets in superlattices and double-barrier systems.
During the past decade much effort has been devoted tiochelap and Gisereri have modeled the localization of
the understanding of the influence of spatial quantization omcoustic modes due to electron-phonon interactions within a
the vibrational properties of semiconductor heterostructuresvo-dimensional electron gas. Acoustic wave confinement in
and superlattices. While optical-phonon confinement haspherical microcrystals embedded in an elastic matrix has
been analyzed in great detdilt is only recently that much been studied by means of low-frequency Raman
attention has been focused on the more subtle effects sfcattering:®*! Wendler and Grigoryan investigated the exis-
acoustic-phonon quantization in restricted geomefries. tence of interface acoustic modes in semiconductor sandwich
The procedure of spatial quantization of acoustic waves istructure$” and Nishiguchi studied in detail the modes sup-
inhomogeneous media is quite straightforward. First, theported by a buried cylindrical wir€ Finally, we note the
elasticity theory equations are solved in conjunction with therecent studies of elastic wave modes supported by cytoskel-
proper boundary conditions to obtain the spectrum and disetal filaments and microtubules immersed in a ligtfid.
placement pattern of the resulting acoustic modes. For most Very recently, Nishiguchi applied the standard quantiza-
geometries, the solutions of elastic wave equations are wetlon procedure to determine both the extended and localized
establisheti* and the studies focus on the modification of acoustic modes in a system of a GaAs wire embedded in an
elastic modes imd hocsystems. Next, thphononmodes are  AlAs matrix.!®> The resulting phonon modes were used to
defined by applying the second quantization formalism to aalculate electron-phonon scattering rates due to the defor-
complete orthonormal set of classical waveghe introduc- mation potential coupling. Calculations for a wire of radius
tion of a carrier-phonon interaction Hamiltonian facilitates 50 A demonstrated that the maximum contribution of con-
the study of phonon-limited mobility, power dissipation, andfined phonons to the scattering rate is two orders of magni-
other kinetic properties of confined electrons. tude smaller than that of the extended phonons. Since the
Depending on the system geometry, it is convenient tdnteraction with confined modes occurs only above the cutoff
distinguish between buried heterostructures and selfenergy of 76 meV, the modification of carrier kinetic coeffi-
supported structures. lburied waveguides and resonators, cients would be negligible. The virtual absence of phonon
the modification of propagating bulk phonon modes resultsonfinement effects in a buried GaAs/AlAs structures results
from the difference in elastic constarisound velocitiesof from the similarity in elastic constants of GaAs and AlAs, as
the materials forming a heterojunction. In narrow regions ofwell as the predominantly transverse nature of the confined
phonon frequencys and wave vectoq evanescent waves modes.
may be supported in one or both materials, giving rise to Since a large difference in the elastic properties of the
confined and interface modes localized in the vicinity of amedia at an interface is a conditi@me qua norfor strong
waveguideé® Thus confinement effects farcousticphonons — acoustic-phonon confinement, smself-supportedtructures
in buried structures are much weaker than for dispersionlessith (semjconductor-vacuum interfaces are ideal candidates
optical phonons, where confined modes always exist due téor the observation of confinement effects. In fact, recent
the difference in the optical-phonon frequencies of the twoadvances in material growth techniques have resulted in the
materials’? fabrication of free-standing nanostructufesand have
Early works on the acoustic wave properties of buriedopened the way to observation of acoustic-phonon confine-
heterostructures were devoted primarily to the study ofnent effects. Wybourne and co-workErkave presented ex-
acoustic mode folding in superlattickd.ater, Tamura and perimental evidence of the two-dimensional nature of
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acoustic-phonon modes in self-supported thin films. These 0
experimental findings motivated theoretical investigations by
Stroscio and collaborators on the role of acoustic-phonon
quantization in free-standing nanostructu¥&£? Results for
phonon spectra and electron-phonon scattering rates in self-
supported whisker®® dots!® and slab¥ convincingly 4
demonstrate the profound effect of different mechanical
boundary conditions on the kinetics of the electron-phonon
system.

In summary, buried heterosystems reveal negligible
acoustic confinement effects if the materials at the interface
possess similar elastic properti@sg., GaAs/AlAs pair. On
the other hand, in self-supported objects confinement effects
are strong; however, such structures remain rather exotic and FIG. 1. Two-dimensional electron channel of widthat dis-
are not easy to integrate into mainstream planar technologience/” from the free surface.

Yet there exists another configuration that combines the ad-

vantages of both buried and free-standing structures: a plani#e acoustic-phonon contribution is larger than or compa-
crystal surface. rable to that of optical phonons. Electrons can be assumed to

In this paper we explore the effects of phonon confineP€ degenerate for reasonable concentrations of the 2DEG.

ment at a crystal-vacuum interface and the interaction oPince at low temperature the carrier mobility is limited pre-
phonons with a near-surface two-dimensional electron gademinantly by static lattice imperfections, we calculate both
(2DEG). Such a system supports both extendesflected ~MmOmentum andnergyrelaxation rates. Kinetic coefficients
waves and Rayleigh waves that are localized in the vicinity2r® calculated within a dielectric formali$fn®* that fully

of the surface. The study of the interaction between nearl’€ats inelasticity of acoustic-phonon scattering and uses the
surface quantized electrons and phonons not only is impofull form of the phonon distribution function. _
tant from a fundamental perspective, but may also lead to the This paper is organized as follows. In Sec. Il we specify
introduction of a different type of channel coupling as well the model system and introduce the relaxation rates to be
as delay lines into the arsenal of planar nanotechnology. Ifalculated. Section Il presents the general expressions for
fact, properties of classical surface acoustic wa@sW's) the energy and momentum relaxa_tlon times and contains pa-
are well known and have numerous device applicatidns. rameters characterizing the quantized phonon modes and the
Recently, there have been a number of experim&ngaid electron-phonon interaction Hamiltonian. In Sec. IV we
theoretical® studies of the interaction between a classicalMake a qualitative, analytical comparison of the electron-
SAW and 2DEG. Measurements of SAW attenuation werd?honon interaction in cases of different dimensionalities of

found to be a sensitive probe in the study of the quantunfl€ctrons and phonons. Section V provides results of numeri-
Hall effect? cal calculations and conclusions are formulated in Sec. VI.

Our work extends the study of Ezavea al?>2" on the  Auxiliary formulas and expressions can be found in the Ap-

electron mobility in silicon metal-oxide-semiconductor field- Pendix.
effect transisters limited by the interaction of electrons with
bulk and surface acoustic-phonon modes. These authors used Il. MODEL AND DEFINITIONS

a soft-medium approximation for a Sdayer and assumed

a stress-free surface bounding a silicon half space. Efawa We consider the semiconductor-vacuum system of Fig. 1,

. Where the semiconductor occupies the half sEze8. In the
constructed a complete orthonormal set of elastic vibrations ; . ) L N

. . isotropic elastic continuum approximation, the material is
supported by the system and quantized them in an “in-plane

phase velocity” representation. The mobility of electrons OC_charactenzed by Iongltudl_nal ar!d bulk sound velocitles
cupying six equivalenX valleys was calculated in a quasi- ands; and by the lattice dielectric constasy. .
elastic relaxation time approximation. Since the temperature Electrons oceupy the Io west subband of a square or trian-
was considered to be in the range 200-300 K, electrons wer%mar well at a d|s_tance/ from thg su.rfaf:e. _For aqtqure
treated as nondegenerate and an equipartition distributiofi-2ntum We'/' of W'?'thd’ the dens_lty Q|strlbut|0|1|)((z)| IS
was taken for the phonon population. Electrons occupied thBONZero for/<z</+d, where it is given by

lowest subband of a triangular potential well located at the (2= /)
Si/SiO, interface. Numerical calculations showed that the |X(Z)|2:(2/d)3in2T' (18
modification of the phonon modes due to the presence of the

boundary can lead to a change of up to 15% in the mobility; 3 triangular well, the electron distribution foz>/" is
depending on the ratio of the two deformation potential conyaken in the Stern-Howard approximation specified by a

stants=, /Eq. _ _ = variational parametel:
In this paper we study in detail both mobility and power
loss in a 2DEG located in a square or triangular well at a |x(2)|2=(b%2) (z—/)%e P, (1b)
finite distance/” from the surface of a GaAs-like semicon-
ductor with a conduction-band minimum at thepoint. We Electrons interact with an equilibrium phonon system

focus on interaction of electrons with surface and bulkmaintained at a lattice temperatufg. Due to an applied
acousticphonons and consider the temperature range wherelectric fieldE or to an initial excitation, the electron system
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acquires a finite average velocityand, in an effective tem- To avoid a cumbersome numerical solution of the Boltz-
perature approximation, electron temperatdte different ~mann kinetic equation for the electron-phonon system, we
from the lattice temperature,. use a two-parameter shifted equilibrium distribution function

Electron—acoustic-phonon scattering causes a change far the 2DEG:
the average momentum per electron and energy per electron

(p) and(e), respectively. For an electron subsystem not far — h? K— m |2 6
from equilibrium, linearization of collision terms in or K™ 'Tel 2m Pk ©®
T.— T, facilitates the definition of thenomentunandenergy
(more precisely, temperatyreelaxation timesr,, and r, : where fr(€)={1+exd(e—~w)/T]}"* is the Fermi-Dirac dis-
tribution. Unlike the relaxation time approximation, such a
a(p) mu model accounts well for the inelasticity in scattering and
(7 T 2 becomes exact in the limit of strong electron-electron
coll m interaction>®
The inverse momentum and energy relaxation times, de-
(@) __ Te—To 3) fined by Eqs(2) and(3), can be expressed in terms of inte-
at | Te gr%ls over the transferred momentdigq and the energyi w

as
wherem is the electron effective mass.

If the electrons are driven out of equilibrium by an ap- 1/Tm] 1 f@cdw P T/2m
— | 4®dq [ ]
0 w? fo

plied electric fieldE, the substitution of collision termg) 1r

2142
and (3) into the balance equations gives /g

€ ’772 n,

e " Im 7 @,) 1M 7e(w,q)| | howl2T 2. @
= E |1+ Aee(,0)/e(,q)|2| SINRW/2T)
2 Here the dielectric function of the 2DE@,,, is related to
T T4 S mTe 2 its polarization functionr,,
e 0 m
. . . 2 firqfi
The rest of this paper deals with the calculation of energy Te(w,Q)= 3 2 ho—er. Teti0’ €)]
and momentum relaxation ratesrl/and 1k, for a 2DEG k kg™ Tk
interacting with the full set of phonon modes in a semi-
bounded system. Since we are interested in a sufficiently
low-temperature range where the acoustic phonon contribu- Aeo(@,0)=0cou(q) el @,), 9)

tion is at least comparable with that of optical phonons, the

2DEG is assumed to be degenerate, i.e., wheres is the area of the system ang,,(q) is the Fourier
transform of the two-dimension&2D) Coulomb potential
T<F=#2k2/2m, (4
— 2
wherekg= y2mn, is the Fermi wave vector of a 2DEG and vcoul @) =2me 0. (19
n, is an electron sheet density. In addition, we assume thathe explicit expression for the polarization function of the
the sound speed is much smaller than the Fermi velogity — degenerate 2DEG is provided in Appendix A.
The total polarization function of the system in the ab-
S| t<vp=hKg/m. (5)  sence of electrons

lll. BASIC EQUATIONS 75(©,9) =vcou(d)/es(@,0) (11

In Sec. 11l A we present the general expressions for elec&nd its phonon part, are obtained by weighting the linear-
tron relaxation times; then in Sec. Il B we specify the set off€SPonse functions with the electron density functions:
phonon modes. Finally, in Sec. IlIC we introduce the
electron-phonon interaction Hamiltonian.

P Ws,ph(wlq):f dz|x(2)|?

A. Dielectric formalism

’ "2 '
We now describe the kinetics of the interacting electron- Xj dz'|x(z")| s, pi(@,0,2,2). (12

phonon system within the dielectric formali$m®? based on _ _ _
the dielectric functiongpolarization operators, noninteract- Here the linear-response functiomgw,q,2,z") specify the

ing Green functions, etcof the electron and phonon sub- Fourier component of the potentid(z) induced by the elec-
systems. The use of the dielectric formalism is equivalent tgron distributionp(z’),

the Fermi golden rule and the random-phase approximation,
but it is particularly convenient for the description of screen-

ing and dissipation in an inhomogeneous dielectric medium. V(w,q,z):f dz'm(0,q,2,2')p(w,q,2"). (13
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(19

Explicit formulas for functionses(w,q) and mp,(w,q) are b5(1,2) b5(2)) e
l//’J(l’,Z)} [ ]

derived in Appendix B and Sec. Ill C from E@L3). s(2) ﬁ
J

The rest of this subsection specifies the remaining three
The free phonon modes in an elastic medium can be chaacoustic modes: incident longitudingl= L), incident trans-

acterized by the set of quantum numbérs(q,2,j), where  verse (=T), and Rayleigh (= R) waves®® Note that even

qd=(dx,dy) is an in-plane wave vectoK) is the phonon a pure longitudinal or transverse wave acquires a mixed

frequency;” andj=H,L,T,R specifies the different types of character after reflection from the surface.

elastic modes as discussed below. In the second quantization

representation, the phonon displacement operator takes the 1. Incident longitudinal wave

form

B. Phonon modes

The incident longitudinal wavej & L) exists over a con-
tinuous range of frequenci€3>s,q and is specified by the

N fi R .
O(r,z,t)=2>, \/ZP—Q [uy(r.2) bye @'+ H.c], (14)  scalar potentials
J

wherer=(x,y) andb is a phonon annihilation operator at by (2)= [e Tkiz—A k7],
time t=0. The classical acoustic wave displacemantzre V2mQk
taken as plane waves in thxey directions,
B .
. (L) - - ikz 20)
gia Yo (2) el (
u(r2)=0y(2) = (15 Vamitk
S Here
and must obey the orthonormality conditions
(?—1)>—4rT
@ ()% , AN T)= (21
f dz uj5(2) U0 ((2)=8a.a 81 8(Q Q). (7"=1)+4N7
. L an
Here a=x,y or z. Dirac’s delta function is replaced by the
Kronecker functi.oné(Q—Q’)—>5Q,Qy if either Q or Q' ANT(2—1)
belongs to the discrete part of spectrum. B(\,7)= — (22
The classical displacement vectarsand the wave spec- (7°=1)"+4NT

trum are found from the solution of the elastic wave equatio
with the stress-free boundary condition,,=0 imposed on
the strain tensows at z=0.* Such a solution can be obtained
as a linear combination of bulk plane waves eki{z) and . ) o
exp(+ik2), wherek; andk, correspond to the normal com- This type_ of_wave exists for frequencies in the range
ponents of bulk longitudinal and transverse waves with in{}>$d and is given by

plane wave vectory and frequency):

(M) -
k= (78 ) 2= . (16) b= ok

In isotropic media, we can direct the wave vedajoalong
thex axis. Then the displacement in thialirection is decou- ://(B(z)z
pled from the other components, defining therizontal a V2 QK
shearmode (=H) with

Nwheren=k, /q and 7=k, /q; furthermore A2+ B2=1.

2. Incident transverse wave

eik|z, (23)

[efiklz_ A eik[Z]_

In the subinterval ofs;q>()>s,q the longitudinal compo-

0 nent of the wave becomes evanescent and analytical continu-
(H) — (B = (H)(7) = 2 ationk,;=i|k| is used
uy'=u; =0, u,"(2) > cogk.z), (17) I [ .

TS Kt

3. Rayleigh wave
and frequency()>s,q. These purely transverse modes do

not contribute to the deformation potential coupling consid- 1he Rayleigh wave is localized in the vicinity of the sur-
ered in our subsequent analysis. face and possesses a discretefixedq) frequency() =sgq.

To describe the remaining elastic modes, it is convenienf "€ Surface wave velocitgg can be obtained from the
to introduce the scalar potentiafsand . In the case where €duatio
gllx, the displacement vector components can be written as

u(r2)=Ve+vxly(r.2) e, (18 Both the longitudinal and transverse components of the
where ¢ and ¢ satisfy wave equations with propagation displacement vectors are evanescent in zhdirection and
speedss, ands;, respectively. One can also define compo-the continuationsk,—i|k| and k;—i|k;| should be em-
nents¢(z) and #(z) in a way similar to Eq(15): ployed. The scalar potentials are given by

(2= 1)2+4N7=0. (24)
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R _ R ke Taking the phonon displacement operaioto be Eq.(14)
ba0.= Vg & @9 and using the identityV2¢= ¢/s?=—(w?/s?) ¢, we find
the interaction operator

R —2i]l
GR == e lkiz, . 0?2 h
W Na 1442 Vrzh=-22 —\553
J

sf

where the constant,
X[bypsg(z) €@+ Hel. (30
R =2A| [#2/(N = )N~ | +2]A] [7?) (20 [Bsse(2) I (0
depends only on the Poisson ratio of the material. Since the According to the Kubo theorer?ﬁ,the dissipative part of
characteristic equatiof24) also specifies the poles of func- the Imear-response f“”Ct'fmph IS pl’OpOI’tIOI-’IEiU to the anti-
tions A andB in Egs.(21) and(22), the constanR is pro-  Symmetric part of correlation of the potentials

portional to the residue in the complé€k plane

1 (= . .

1 — 2pqi(ot—q-r)
A7) Im 7(,0,2,2')= o f_xdtfd re V(t,r,2)
R = Res o

. (27)
Q=spq xV(00,2') - V(00,2 )V(t,r,2)).

C. Electron-phonon coupling (3D

In this subsection we derive the dissipative part of the ~Substituting expressiof80) into Eq.(31) and performing
phonon polarization functionr,, defined by Eq.(13). We  the necessary commutations, we find
start from the electron-phonon interaction Hamiltonian in the

. =203
Heisenberg form . mEQ ,
J Im mon(©,0,2,2) = ——— > jqa(Dblya(2)
2pS| j,.Q
R < nt - -
Flop(t)=2; 8 q(Da(t) V(). (28) K [Sw-0)-SwtQ)]. (32
wherea (a') is the electron annihilatiofcreation operator. We found a general expression for the polarization func-
In this paper we consider the deformation potential intertion of phonons coupled to electrons by the deformation po-
action specified by a constagt: tential in a system, which is inhomogeneous in théirec-
. . tion. Using the scalar phonon potentiglsn Egs.(20), (23),
V(r,z,t)=E div U(r,z,t). (29 and(25), we obtainy, for phonons in a half space:

1 A(N,7)
Xcos)\q(z—z’)— N cosAq(z+2') at w>s(
E? o LN ,
Im 7o ,9,2,2') = — X{ ——— e Maz*2) ot 5q>w>sq (33
ph( q 2pS|4 q 2|)\| | St
—[Ma(z+2") — ~
| K(o) e o 8(w—Sgq) at w=~sgg.

For comparison, we present the polarization function ofgq.(12) and using the definitions of form factoZsand Z in

acoustic phonons in an unbounded medium Appendix C, we obtain
52 2 Im mp(@,d) = 1M 7Tpu(@,q) + 1M Ty cor @,9)
Im 7y ®,9,2,2' )= —cos\((z—2z') atw>sq.
bu{ 4 2pS|4 AQ q ' + 1M 7y e @,9) + ImM 77'Rayleigl'(waQ)-
(34 (35

Examination of Eqs(33) and (34) shows that the phonon Here the first term in Eq(35) coincides with the contribution
polarization function in a half space is equal to the sum ofof the bulk phonons

the bulk part depending ofz—z'| and the image part de- =2 2
pending onz+z'. IMm 7o @,0)= —— — ZpudAG) Ow—Sq).
Finally, we weight the functionr,(w,q,z,z") with the oukl . 2ps; M oukA ) 6 R

electron density functiohy(z)|?. Substituting Eq{(33) into (36)
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The image part of the polarization function accounts forqere the conditiongy=<2k=2mink:,k;) and o<qv are
modifications due to the free boundaryzat0 and is given  due to the factor Imre(w,q) in the expressions for the

by the sum of the expression8 (s a step function relaxation times; see also Eq#1) and (A2). The former
inequality limits the momentum transfer to the effective di-
22 w? A\,7) ameter of the electron distribution function, while the latter
IM oy corl @,4) = — PYP I Zimagd N Q) is a result of the momentum and energy conservation &ws.
P> Similarly, the condition w<T/A stems from the factor
X 0(w—5,), (37 [(Aw/2T)/sinhGw/2T)]? in Egs. (7) and (D1) and, for de-

generate electrons, limits the energy transfer to a narrow re-
gion of widthT near the Fermi surface. Finally, the condition

=2 2 ; 2
2% o [B(A[.7)] Omax< @max/S implies that only the electrons with a phase

IM 7o re( @, ) =

2ps,4 q 2|\ velocity exceeding the speed of sound may interact with the
phonons(Cherenkov effegt
X Zimagd |\ @) 0(519~ 0) 6(0 = 5,9), Spatial confinement of the electron system leads to two

(38)  additional cutoffs forq and w. Prior to the introduction of
these conditions we note that for electrons to occupy the

=2 2 lowest quantization subband, the following inequality must
IM Traveia( @,4)= —— — wRZ A be obeyed:
Raylelgr{ q) 2pS|4 q Z|mag(,(| |CI)
ke=1M, (43
X wS(w—Srq). (39

) ) n o . whered is the effective transverse width of electron channel
Equations(37)—(39) may be identified withi) corrections to  and the relatiork-~ 1/d corresponds to the maximum occu-
the bulk phonon modes due to the presence of the surfaggancy of the lowest subband.

and contributions ofii) totally reflected modes as well as ~ Ejectron confinement in the direction breaks the mo-

(iii) Rayleigh phonons. mentum conservation law fay,, replacing it by a weaker
inequality g,=<1/d. Taking into account the relation
IV. QUALITATIVE ANALYSIS w~sS\g+ qZ2 and Eq.(43), we find a condition augmenting

It is possible to provide analytical order-of-magnitude es-Eq' (42) for a spatially confined electron system:

timates of the relaxation rates in E) in order to obtain the w=<s/d (44)
dependence of the scattering rates on temperature, electron |

concentration, and other parameters of the problem. To gain Finally, the surface corrections to the phonon spectrum

an understanding of the effects of phonon quantization on thg,eaxen ‘with the increasing distangebetween the surface

relaxation of the 2DEG, we consider both the case@f 5nq the 2DEG. The following inequality arises from the form
unmodified, bulk phonongsee Eq.(36)] and (b) the com- factorsZ. in Egs. (37)—(39):
image - -

plete phonon set as given by Eq85—(39); we will also
compare these estimates with the results for interadiing q=1//. (45)
bulk electrons and bulk phonottsf. Appendix D.

We note that the integrands of Eq%) and(D1) increase Note that Eq.(45) does not apply to the partial contribution
monotonically with the transferred momentugrand energy of the bulk phonon modes in E36).
o until the correspondent cutoff values are reached. This As shown below, the temperature and concentration de-
leads to the following estimates for the relaxation rates validpendence of the relaxation frequencies depend critically on

for arbitrary degeneracy of the electron system: the competition of the two cutoffg< k andq=w/s. These
two conditions become equivalent®t T, where the criti-
Uty quil T/m cal temperature is defined as
1Ur ~ co Im th(wmaxaqmax) w2 )qu (40) o _
¢ e e To~hsk~Vm<e. (46)

Herev=2,3 specifies the dimensionality of the electron SYSgince at temperatures of the order of or belbyythe elec-
tem (in fact, this result applies to one-dimensional eIectrons[ron as is usually degenerate, E46) may be reduced to
v=1). The electron mean kinetic energy and the velocity al 9 y ged ' y

. i . . rel'c,~ﬁskp. In view of Eq.(43), we find
given by either their Fermi or thermal values:>~max@,T)
and v = V2 e/m~max@g ,v7). T=fsl/d, 47
The maximum momentum and energy transferred during ) .
a single electron-phonon collision are determined as a resuffnere the equalityl,~#s//" is reached when the lowest

of the competition between several mechanisms: quantization subband is practically filled. _
To analyze the temperature dependence of the relaxation

rates for different dimensionalities of electrons and phonons,
we present schematically in Figs. 2 and 3 the regions of
L transferred momentum and energy contributing to Eds.
®max=MIN(T/A,Qmaxt ) - (42) and(D1) at small/. Due to the monotonically increasing

Amax~MIN(2K, ©maS), (41)



15776 YURI M. SIRENKO, K. W. KIM, AND MICHAEL A. STROSCIO 56

A. High-temperature regime (T>T,)

For interactingbulk electronsand phonons, the effective
transferred momentum and energy are given by

Omax= @max! S~ 2 K. From Eqs.(40) and (D3) we find

Ury| 22 m¥2

-
= 172
Ur.)  ps? #%S4(k) | mg 48

where the three-dimensional screening factor is given by
Sy(q)~[1+4m%e?ngleqeq?]?.
As seen from Eq(48), the ratio of the energy and mo-
mentum relaxation rates is equalTéms’<1; i.e., the pho-
non scattering is quasielastic. In the nondegenerate case
where e ~T, the standard results 4} T%? and 14T are
reproduced® For degenerate electrons, /44T and the en-
ergy relaxation rate %/ depends weakly on the temperature.
For a 2D electron channelthe principal contribution is
given by bulklike phonons witly~ 2k since they contribute

to the maximum energy transfes for the sameq.,— K.
Depending on the relation betwe@nand#s/d, two situa-
tions are possible.

In the case whed >7s/d=T,, (Fig. 2, upper pangl we

substitute the cutoff valueg,,,~ k and w,~s/d into Eq.
(40) and obtain

T

#2s?/ ed?,

1
~—— = (49
lre)  ps? #3S,(k) d

FIG. 2. Regions of transferred momentugrand frequencyw .
for T>#As/d>T, (upper panglands/d>T>T, (lower panel. where the factoS,(q)~[1+2me’n,/eqeq]? accounts for

screening by the 2DEG. In a typical situation of an almost

integrands, the dominant contributions are given by the;ompletely filled lowest subbarkid~ 1, expressiort49) co-
maximum possible values @ andq. _ incides with its bulk value in Eq48).

Scattering of the 2DEG with bulk and bulklike phonons  The opposite case afis/d>T>T,, (see Fig. 2, lower
contributes to the dark shaded region.at s,q. The totally  panej can be realized only for a weakly populated lowest
reflected phonon modes are shown by the light shading afypbandcf. Eq. (47)] and occurs rarely in practice. Substi-

s> w>s,q and the two-dimensional Rayleigh phonons, .. v N : ;
correspond to the thick line ai=sgq. In contrast, the inter- tuting Amay~ k and wmax=T/ into Eq. (40), we find

action of bulk electrons and phonons occurs at

w=s09<min(T/4,T,/%), as specified by the factor Ut _ 5_2 m T_2 € (50)
8(w—s/q) in Eq. (D3), where the bulk wave vector Ur.] ps?h%sS(k) e |T.
d=(dx.dy.d,). Below we analyze the relaxation rates in the
limits of high and low temperaturé=T, andT=<T,,. In this regime, phonon scattering is strongly inelastic:
7.~ T for nondegenerate electrons ang> r,, for degener-
w ate statisticdi.e., effective temperature relaxation is faster
\ than the momentum relaxatipnThus the frequently used
Tofi [ = e e _ quasielastic approximation in the energy conservatiorflaw
e is invalid for this regime?
€7
B f// -5 o2 0=t 4' B. Bloch-Gruneisen regime(T<T,,)
T/h f;ii _ T For T<T,,, the_momentum and energy transfer cutoffs
= Q3R : are given bygma—~ K andwny,q~ T/%, respectively, as shown
| in Fig. 3. From Eq.(40) we obtain the following estimate
| g which is valid for any dimensionality of electrong <€ 2,3)
k and phonons:
Ury,| E2 T4

FIG. 3. Regions of transferred momentgnand frequency in

~— — — 51
a low-temperature limif <T,,. Ure)  ps? p%Vme s* S,(k) ms. ®1
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As seen from Fig. 3, the Rayleigh phonons contribute to 10"
maximum energy transféro as a result of the lower propa-
gation speedgz<<s;<s). Therefore, despite a similar tem-
perature dependence of all phonon modes, the Rayleigh pho-
non contribution to relaxation may become dominant for
T<T,. Rayleigh modes make a large contribution only
when there is a small separation between the 2DEG and the
surface ¢'<1/k); in the limit of large/, the surface contri-
butions vanish.

In this study we have not considered piezoelectric phonon

total

10°

bulk
of L bulk-like

Momentum relaxation rate (1/s)
=)

scattering, which  prevails for sufficiently low ——- Rayleigh
temperature®>** However, the details of the electron- 10° ot refl
phonon coupling do not affect our kinematic analysis as T
shown in Figs. 2 and 3. 10" & ! T
10°
V. NUMERICAL RESULTS AND DISCUSSION

In our numerical calculations we neglect the difference in g 10’
the elastic properties of the quantum well and barrier mate- b
rials and use the following parameter set for G4Asrystal k|
density p="5.32 gl/cnt, lattice dielectric constant,=12.5, g 10°
electron effective mass=0.067m,, and deformation poten- b
tial constant==8.0 eV. Based on the components of the 5.,
elastic stiffness matrix, C,;=11.88<10'* dyn/cn?, 10
C1,=5.38x 10" dyn/cn?, and C,,=5.94x 10" dyn/cn?, &
we find in the isotropic approximatidhthat the propagation E 10°

speeds ares;=5.14x10° cm/s for longitudinal waves,

s;=3.02x 10° cm/s for transverse waves, agg=2.77x 10°

cm/s for Rayleigh waves. 10
In Fig. 4 we show the dependence of the momentum and

energy relaxation rates, calculated from Ed), versus the

lattice temperaturd for a square quantum well of width

d=50 A located at the crystal surface. A carrier concentra- F!G. 4. Momentumupper pangland energy(lower pane) re-

tion of n= 102 cm~2 corresponds to the case of degeneratéaxat'on rateszof aﬂDEG vs temperature. Electrons with a concen-

electron statistics for the temperature range under consideff@ion n=10? cm* occupy a square quantum well of width

ation. The thin solid lines corresponds to bulk phonons thafj:50 A located at the surfacé=0.

are not modified due to the presence of the free surface. The

thick solid lines represent the total rates of electron relaxthe change in the scattering rates is due to the modification of

ation due to the complete set of near-surface phonon modebulk modes near the surface. In contrast, in the Bloch-

these contributions are designated as follows: bulkidk&t-  Gruneisen regime, the partial contribution of the surface

ted line, Rayleigh(dashed ling and totally reflected waves Rayleigh waves increases and may even exceed the contri-

(dash-dotted ling At temperatures below 2 K the piezoelec- bution of the bulklike waves. As explained in Sec. IV, the

tric scattering mechanism becomes domirfattowever, the interaction with Rayleigh phonons is enhanced due to their

low-temperature range of Fig. 4 is depicted in order to demiower propagation speed and therefore larger assisted mo-

onstrate the asymptotic temperature dependences of the deentum transfer; see the thick line in Fig. 3. Finally, the

formation potential scattering rates. contribution of the totally reflected modes to deformation
In agreement with the qualitative analysis of Sec. IV, allpotential scattering is negligible for all temperatures because

partial contributions to the total scattering rates, as well a®f their predominantly transverse character, Be51 in Eq.

the rates due to the unmodified bulk phonons, have the san{&3).

temperature dependence in the limitsTef T, and T<Ty,. The dependence of the relaxation rates on the distance

Namely, in the high-temperature limit the momentum relax-between the electron channel and the semiconductor surface

ation rates satisfy ¥, T, while the energy relaxation rates is presented in Figs. 5 and 6. The partial contributions of

saturate to a constant value; see E4P). In the Bloch- different phonon modes are shown in Fig. 5 for a tempera-

Grineisen regime, the dependences,®T° and 1f,xT*  tureT=2 K. As one can see, the contributions of the surface

are observed, in agreement with the Esfl). (dashed ling and totally reflecteddash-dotted linemodes
Although the strengths of electron coupling to differentdecrease rapidly with distaneéfrom the surface due to the

phonon modes have the same overall temperature behavidactor exp(-2q/) in Eq. (C3) for the form factorZm,qdq).

their relative contributions to the relaxation rates depend ohe well-pronounced oscillatory behavior of the total scat-

the temperature interval considered. For high temperaturgering rates(thick solid line is due primarily to the surface

the surface phonon contribution is more than an order otorrections to the bulk phonon modésf. the term with

magnitude weaker than that of bulklike modes and 10% otoshq(z+2') in Eq. (33) for the phonon polarization func-

‘ 1 10
Temperature (K)
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5 2 \\ ! ‘i’_\\ ///
5 €111\ =
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S 10+ Y, n=510"cm’
~ 0.3 4 T=42K
‘v
wc 0.9 1 | I
= 0 10 20 30
(23 .
*é 0.2 Distance (nm)
=
= FIG. 6. Momentum relaxation rate 4 vs distance/. Solid
g — total —— Rayleigh line, triangular quantum well with effective width =50 A;
ERXE  bulk —-- tot refl dashed(dotted line, square quantum well of widtld=100 A
2 ' T (d=30 A). The electron concentratian=5x 10'* cm™~2; tempera-
> H A bulk-like tureT=4.2 K.
5 \
K= \
0.0 S=2= 1*0 2‘0 3? g~Tl/#hs, (cf. Fig. 3), the period of oscillations can be esti-

mated asL~ w/q~whs, /T, which is consistent with the

Distance (nm) valueL~20 nm from Fig. 3.

FIG. 5. Momentum(upper pangland energylower pane) re-
laxation rates of a 2DEG vs. distange Electrons with a concen-
tration n=10'% cm~2 occupy a square quantum well of width
d=50 A. The temperatur& is 2 K.

VI. CONCLUSIONS

In this paper we have reported our studies on the interac-
tion]. With increasing distance’, the amplitude of oscilla- tion of a ne?r-surfage cEanneI of ZdD electrons V:;'IT) the com-
tions decreases and the scattering rates approach their bl@'(ete set o 'acoust|c-p onon modes sgpporte y a sem-
limit. Finally, we notice that the dip in the scattering rates for ound. semiconductor structure. Using the dielectric
unmodified bulk phonongthin solid lin is caused by a [o/malism, we have calculated both the momentum and en-
decrease of the effective system dielectric function in Eq.ergy relaxation rates of a 2DEG and analyzed the relative

(B2), from e4(q) ~ &, at large/ to (eo+1)/2 at/=0. The contributions of bulklike and surface phonon modes for
’ s Z 2 . K
small value ofe (q) leads to an enhanced contribution of G2AS material.

electrons to the screening factdr+ As(w,q)/s(w,q)| 2 At high temperatures, the surfa(_:e phonon contribution is
in Eq. (7) and therefore to a decrease in the scattering rategMall and the modification of bulklike phonons leads to ap-
for small /. proximately a 10% change in mobility. In the low-

In Fig. 6 we present the distance dependence of the mdemperature regime, the electron relaxation rates exhibit pro-
mentum relaxation rate 4/, for different forms of the elec- nounced oscillations with respect to the position of the
tron confining potential T=4.2 K). The dasheddotted line  electron channel, providing the possibility of tailoring
corresponds to a square quantum well of width 100 A carrier-phonon interactions in nanostructures to minimize
(30 A). The relaxation rates for electrons in a triangular welldissipation.
of effective width® 6/b=50A (solid line) are close to those The most significant result of this work is the strong in-
for electrons in a square quantum well of width=50 teraction of electrons with Rayleigh phonons in the Bloch-
A (not shown. Gruneisen regime. While the momentum and the energy
As seen from Fig. 6, a change in the well width does nottransferred to théulklike phonons are radiated to the bulk of
change the period of oscillations, but shifts their phase. Thigrystal and lost, the emittesurfacephonons remain in the
is consistent with the following dependence of the surfaceehannel and continue to influence electron kinetics. The rela-
corrections to the phonon polarization function in Eg7): tively weak attenuation of two-dimensional Rayleigh
IM Touk cord @,9) * Zimagd d) <€0sq(2/ +d). Since, in the phonons facilitates their use for coupling between different
Bloch-Grineisen regime, the effective momentum transfer iselectron channels and their constant speed facilitates the de-
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sign of built-in delay lines. Thus the study of surface effectswith the factorw/qug in Egs.(Al) and (A2) give a negli-

on the carrier-phonon interaction is important for the desigryible contribution to the absolute value of andAe,.
of semiconductor nanostructures within existing planar tech-

nologies.
APPENDIX B: LATTICE POLARIZATION
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APPENDIX A: ELECTRON POLARIZATION

For the strongly degenerate caSe 7%%%n,/m>T and

in the limit of 2w =T [_see the factor in the square brackets in o _ ezl go—1 o-a(z+2)) (BD)
Eq. (7)], the polarization function of the 2DEG given by Eq. ed(0:2,2') got+1 :
(8) can be reduced to s
m o [1—(a/2ke)?— (w/qug)?] Substituting Eq(B1) into Eq.(12), we obtain
me(w,q)=—=1 1+i— .
wh? Que 1—(q/2ke)?’— (w/que)?
(A1)
1 1 . gg—1 . -
For comparison, under the same assumptions the polariza- _SS(Q) —8—0 buik(d) + —80+ 1 imagd ) |» (B2)

tion function for a 3DEG is given by

m ® ' . .
el ,0) = T4im— o1 (q/2ke)2 where the form factorZ are defined in Appendix C.
2mH? Que
_(w/qu)z]}, (A2) APPENDIX C: FORM FACTORS

whereq=(d,dyd,) is the bulk wave vector. According to The form factc_>rs _correspo_nding to th(_a bulk and image
Eq. (5), the inequalityvr>s, \~w/q holds and the terms parts of the polarization functions are defined as

Zbulk(Q)’ Joc @ exp(—q|z—2'|)

=| dzx%z f dz' x2(z' C1

Zimagd ]~ Jo PN o XD ey gz ). (D
|

The definitions of form factor$(q) are obtained from Eq. For atriangular well, substitution of Eq.1b) into Eq.

(C1) after replacement of the exponential functions by cosindC3) gives u=qb)
functions. We note the relation

Z(q)= ReZ(iq) . (C2 Zpuk=(8+9u+3u?)/8(1+u)®,
Using Eq. (1@, we find for a square quantum well
(u=qd) Zimage=€ 2% (1+u) S, (C4)
. _(2m*(e "= 1+u)+207% u3+3u°
bulk™ U U2+ (2m)2)2 ’ APPENDIX D: BULK ELECTRONS AND PHONONS

“u_q)2 For interacting bulk electrons and phonons in a homoge-
Zimage=€ 2 (2m)* #_ (C3)  neous system, the momentum and energy relaxation times

9 u?[u?+(2m)?)? take the following form, analogous to E(}):

. (DD

U7, 1 “do (= , TBm| Im 7y w,q) Im We(w,Q)[ hol2T 1?
L o
1/ 0 a)z 0

o 7ng 0?1?14 Aey(w,q)leel? | SINNAw/2T)]
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Here q=(0dx,qy.,d,) is the three-dimensional transferred  Finally, for bulk electrons and phonons interacting via the
wave vector and; is the bulk concentration of electrons. deformation potential coupling, the phonon polarization

The electron polarization function, is given by Lindhard’s
formula(8) with the system’s are& changed to the system’s
volumeV. Equationg9) and(11) remain intact, but the Fou-
rier image of the Coulomb potential in E¢LO) takes the
three-dimensional form

UCouI(q):47Tezlq2- (D2)

function is given by

=2

Im 7 w,q)= -

|o| [8(w—50)— (w+50)].
(D3)
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