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Near-surface electrons and acoustic phonons: Energy and momentum relaxation

Yuri M. Sirenko* and K. W. Kim
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911

Michael A. Stroscio
U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709-2211

~Received 20 June 1997!

We study energy and momentum relaxation of a two-dimensional~2D! electron channel located at a finite
distancel from a free crystal surface. The interaction with a complete set of bulklike, totally reflected, and
Rayleigh acoustic phonon modes is taken into account. In most cases of interest the relaxation rates have the
same temperature dependence as for 2D or bulk electrons interacting with bulk phonons. Numerical calcula-
tions demonstrate that the presence of a surface results in approximately a 10% modification of scattering rates
in the high-temperature region. In the opposite limit~Bloch-Grüneisen regime!, the contribution of the surface
phonons may dominate over that of bulklike modes. Oscillations of the relaxation rates as a function of the
distancel between the electron channel and the surface are also predicted.@S0163-1829~97!01148-X#
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I. INTRODUCTION

During the past decade much effort has been devote
the understanding of the influence of spatial quantization
the vibrational properties of semiconductor heterostructu
and superlattices. While optical-phonon confinement
been analyzed in great detail,1 it is only recently that much
attention has been focused on the more subtle effect
acoustic-phonon quantization in restricted geometries.2

The procedure of spatial quantization of acoustic wave
inhomogeneous media is quite straightforward. First,
elasticity theory equations are solved in conjunction with
proper boundary conditions to obtain the spectrum and
placement pattern of the resulting acoustic modes. For m
geometries, the solutions of elastic wave equations are
established3,4 and the studies focus on the modification
elastic modes inad hocsystems. Next, thephononmodes are
defined by applying the second quantization formalism t
complete orthonormal set of classical waves.5 The introduc-
tion of a carrier-phonon interaction Hamiltonian facilitat
the study of phonon-limited mobility, power dissipation, a
other kinetic properties of confined electrons.

Depending on the system geometry, it is convenient
distinguish between buried heterostructures and s
supported structures. Inburied waveguides and resonator
the modification of propagating bulk phonon modes res
from the difference in elastic constants~sound velocities! of
the materials forming a heterojunction. In narrow regions
phonon frequencyv and wave vectorq evanescent wave
may be supported in one or both materials, giving rise
confined and interface modes localized in the vicinity o
waveguide.6 Thus confinement effects foracousticphonons
in buried structures are much weaker than for dispersion
optical phonons, where confined modes always exist due
the difference in the optical-phonon frequencies of the t
materials.1,2

Early works on the acoustic wave properties of bur
heterostructures were devoted primarily to the study
acoustic mode folding in superlattices.7 Later, Tamura and
560163-1829/97/56~24!/15770~12!/$10.00
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co-workers investigated the resonant transmission of ac
tic wave packets in superlattices and double-barrier syste8

Kochelap and Gu¨lseren9 have modeled the localization o
acoustic modes due to electron-phonon interactions with
two-dimensional electron gas. Acoustic wave confinemen
spherical microcrystals embedded in an elastic matrix
been studied by means of low-frequency Ram
scattering.10,11 Wendler and Grigoryan investigated the ex
tence of interface acoustic modes in semiconductor sandw
structures12 and Nishiguchi studied in detail the modes su
ported by a buried cylindrical wire.13 Finally, we note the
recent studies of elastic wave modes supported by cytos
etal filaments and microtubules immersed in a liquid.14

Very recently, Nishiguchi applied the standard quantiz
tion procedure to determine both the extended and local
acoustic modes in a system of a GaAs wire embedded in
AlAs matrix.15 The resulting phonon modes were used
calculate electron-phonon scattering rates due to the de
mation potential coupling. Calculations for a wire of radi
50 Å demonstrated that the maximum contribution of co
fined phonons to the scattering rate is two orders of mag
tude smaller than that of the extended phonons. Since
interaction with confined modes occurs only above the cu
energy of 76 meV, the modification of carrier kinetic coef
cients would be negligible. The virtual absence of phon
confinement effects in a buried GaAs/AlAs structures res
from the similarity in elastic constants of GaAs and AlAs,
well as the predominantly transverse nature of the confi
modes.

Since a large difference in the elastic properties of
media at an interface is a conditionsine qua nonfor strong
acoustic-phonon confinement, smallself-supportedstructures
with ~semi!conductor-vacuum interfaces are ideal candida
for the observation of confinement effects. In fact, rec
advances in material growth techniques have resulted in
fabrication of free-standing nanostructures16 and have
opened the way to observation of acoustic-phonon confi
ment effects. Wybourne and co-workers17 have presented ex
perimental evidence of the two-dimensional nature
15 770 © 1997 The American Physical Society
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56 15 771NEAR-SURFACE ELECTRONS AND ACOUSTIC . . .
acoustic-phonon modes in self-supported thin films. Th
experimental findings motivated theoretical investigations
Stroscio and collaborators on the role of acoustic-pho
quantization in free-standing nanostructures.18–20Results for
phonon spectra and electron-phonon scattering rates in
supported whiskers,18,19 dots,18 and slabs20 convincingly
demonstrate the profound effect of different mechani
boundary conditions on the kinetics of the electron-phon
system.

In summary, buried heterosystems reveal negligi
acoustic confinement effects if the materials at the interf
possess similar elastic properties~e.g., GaAs/AlAs pair!. On
the other hand, in self-supported objects confinement eff
are strong; however, such structures remain rather exotic
are not easy to integrate into mainstream planar technolog
Yet there exists another configuration that combines the
vantages of both buried and free-standing structures: a pl
crystal surface.

In this paper we explore the effects of phonon confin
ment at a crystal-vacuum interface and the interaction
phonons with a near-surface two-dimensional electron
~2DEG!. Such a system supports both extended~reflected!
waves and Rayleigh waves that are localized in the vicin
of the surface. The study of the interaction between ne
surface quantized electrons and phonons not only is im
tant from a fundamental perspective, but may also lead to
introduction of a different type of channel coupling as w
as delay lines into the arsenal of planar nanotechnology
fact, properties of classical surface acoustic waves~SAW’s!
are well known and have numerous device application21

Recently, there have been a number of experimental22 and
theoretical23 studies of the interaction between a classi
SAW and 2DEG. Measurements of SAW attenuation w
found to be a sensitive probe in the study of the quant
Hall effect.24

Our work extends the study of Ezawaet al.25–27 on the
electron mobility in silicon metal-oxide-semiconductor fiel
effect transisters limited by the interaction of electrons w
bulk and surface acoustic-phonon modes. These authors
a soft-medium approximation for a SiO2 layer and assumed
a stress-free surface bounding a silicon half space. Eza26

constructed a complete orthonormal set of elastic vibrati
supported by the system and quantized them in an ‘‘in-pl
phase velocity’’ representation. The mobility of electrons o
cupying six equivalentX valleys was calculated in a quas
elastic relaxation time approximation. Since the tempera
was considered to be in the range 200–300 K, electrons w
treated as nondegenerate and an equipartition distribu
was taken for the phonon population. Electrons occupied
lowest subband of a triangular potential well located at
Si/SiO2 interface. Numerical calculations showed that t
modification of the phonon modes due to the presence of
boundary can lead to a change of up to 15% in the mobil
depending on the ratio of the two deformation potential c
stantsJu /Jd .

In this paper we study in detail both mobility and pow
loss in a 2DEG located in a square or triangular well a
finite distancel from the surface of a GaAs-like semicon
ductor with a conduction-band minimum at theG point. We
focus on interaction of electrons with surface and b
acousticphonons and consider the temperature range wh
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the acoustic-phonon contribution is larger than or com
rable to that of optical phonons. Electrons can be assume
be degenerate for reasonable concentrations of the 2D
Since at low temperature the carrier mobility is limited pr
dominantly by static lattice imperfections, we calculate bo
momentum andenergyrelaxation rates. Kinetic coefficient
are calculated within a dielectric formalism28–32 that fully
treats inelasticity of acoustic-phonon scattering and uses
full form of the phonon distribution function.

This paper is organized as follows. In Sec. II we spec
the model system and introduce the relaxation rates to
calculated. Section III presents the general expressions
the energy and momentum relaxation times and contains
rameters characterizing the quantized phonon modes and
electron-phonon interaction Hamiltonian. In Sec. IV w
make a qualitative, analytical comparison of the electro
phonon interaction in cases of different dimensionalities
electrons and phonons. Section V provides results of num
cal calculations and conclusions are formulated in Sec.
Auxiliary formulas and expressions can be found in the A
pendix.

II. MODEL AND DEFINITIONS

We consider the semiconductor-vacuum system of Fig
where the semiconductor occupies the half spacez.0. In the
isotropic elastic continuum approximation, the material
characterized by longitudinal and bulk sound velocities33 sl
andst and by the lattice dielectric constant«0.

Electrons occupy the lowest subband of a square or tr
gular well at a distancel from the surface. For asquare
quantum well of widthd, the density distributionux(z)u2 is
nonzero forl ,z,l 1d, where it is given by

ux~z!u25~2/d!sin2
p~z2l !

d
. ~1a!

In a triangular well, the electron distribution forz.l is
taken in the Stern-Howard approximation specified by
variational parameterb:

ux~z!u25~b3/2! ~z2l !2e2b~z2l !. ~1b!

Electrons interact with an equilibrium phonon syste
maintained at a lattice temperatureT0. Due to an applied
electric fieldE or to an initial excitation, the electron syste

FIG. 1. Two-dimensional electron channel of widthd at dis-
tancel from the free surface.
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acquires a finite average velocityu and, in an effective tem-
perature approximation, electron temperatureTe different
from the lattice temperatureT0.

Electron–acoustic-phonon scattering causes a chang
the average momentum per electron and energy per elec
^p& and ^e&, respectively. For an electron subsystem not
from equilibrium, linearization of collision terms inu or
Te2T0 facilitates the definition of themomentumandenergy
~more precisely, temperature! relaxation timestm andte :

S ]^p&
]t D

coll

52
mu

tm
, ~2!

S ]^e&
]t D

coll

52
Te2T0

te
, ~3!

wherem is the electron effective mass.
If the electrons are driven out of equilibrium by an a

plied electric fieldE, the substitution of collision terms~2!
and ~3! into the balance equations gives

u5
etm

m
E,

Te5T01
e2tmte

m
E2.

The rest of this paper deals with the calculation of ene
and momentum relaxation rates 1/te and 1/tm for a 2DEG
interacting with the full set of phonon modes in a sem
bounded system. Since we are interested in a sufficie
low-temperature range where the acoustic phonon contr
tion is at least comparable with that of optical phonons,
2DEG is assumed to be degenerate, i.e.,

T!F[\2kF
2/2m, ~4!

wherekF5A2pn2 is the Fermi wave vector of a 2DEG an
n2 is an electron sheet density. In addition, we assume
the sound speed is much smaller than the Fermi velocityvF :

sl ,t!vF[\kF /m. ~5!

III. BASIC EQUATIONS

In Sec. III A we present the general expressions for el
tron relaxation times; then in Sec. III B we specify the set
phonon modes. Finally, in Sec. III C we introduce t
electron-phonon interaction Hamiltonian.

A. Dielectric formalism

We now describe the kinetics of the interacting electro
phonon system within the dielectric formalism28–32based on
the dielectric functions~polarization operators, noninterac
ing Green functions, etc.! of the electron and phonon sub
systems. The use of the dielectric formalism is equivalen
the Fermi golden rule and the random-phase approximat
but it is particularly convenient for the description of scree
ing and dissipation in an inhomogeneous dielectric mediu
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To avoid a cumbersome numerical solution of the Bol
mann kinetic equation for the electron-phonon system,
use a two-parameter shifted equilibrium distribution functi
for the 2DEG:

f k5 f TeF \2

2mS k2
m

\
uD 2G , ~6!

where f T(e)[$11exp@(e2m)/T#%21 is the Fermi-Dirac dis-
tribution. Unlike the relaxation time approximation, such
model accounts well for the inelasticity in scattering a
becomes exact in the limit of strong electron-electr
interaction.35

The inverse momentum and energy relaxation times,
fined by Eqs.~2! and~3!, can be expressed in terms of int
grals over the transferred momentum\q and the energy\v
as29

1/tm

1/te
J 5

1

p2 n2
E

0

`dv

v2 E
0

`

q3 dq H T/2m

v2/q2J
3

Im pph~v,q! Im pe~v,q!

u11D«e~v,q!/«s~v,q!u2
F \v/2T

sinh~\v/2T!G
2

. ~7!

Here the dielectric function of the 2DEG,D«e , is related to
its polarization functionpe ,

pe~v,q!5
2

S (
k

f k1q2 f k

\v2ek1q1ek1 i0
, ~8!

as

D«e~v,q!5vCoul~q!pe~v,q!, ~9!

whereS is the area of the system andvCoul(q) is the Fourier
transform of the two-dimensional~2D! Coulomb potential

vCoul~q!52pe2/q. ~10!

The explicit expression for the polarization function of th
degenerate 2DEG is provided in Appendix A.

The total polarization function of the system in the a
sence of electrons

ps~v,q!5vCoul~q!/«s~v,q! ~11!

and its phonon partpph are obtained by weighting the linea
response functions with the electron density functions:

ps,ph~v,q!5E dzux~z!u2

3E dz8ux~z8!u2ps, ph~v,q,z,z8!. ~12!

Here the linear-response functionsp(v,q,z,z8) specify the
Fourier component of the potentialV(z) induced by the elec-
tron distributionr(z8),

V̂~v,q,z!5E dz8p~v,q,z,z8!r̂~v,q,z8!. ~13!



ha

f
at

t

e

-
io

d

-
in

do
id

ie

a

n
o

ree

xed

ge

tinu-

r-

the

56 15 773NEAR-SURFACE ELECTRONS AND ACOUSTIC . . .
Explicit formulas for functions«s(v,q) and pph(v,q) are
derived in Appendix B and Sec. III C from Eq.~13!.

B. Phonon modes

The free phonon modes in an elastic medium can be c
acterized by the set of quantum numbersJ5(q,V, j ), where
q5(qx ,qy) is an in-plane wave vector,V is the phonon
frequency,36 and j 5H,L,T,R specifies the different types o
elastic modes as discussed below. In the second quantiz
representation, the phonon displacement operator takes
form

Û~r ,z,t !5(
J
A \

2rV
@uJ~r ,z! b̂Je

2vt1 H.c.#, ~14!

where r5(x,y) and b̂ is a phonon annihilation operator a
time t50. The classical acoustic wave displacementsu are
taken as plane waves in thex,y directions,

uJ~r ,z!5uJ~z!
eiq•r

AS
~15!

and must obey the orthonormality conditions

E dz uj Vq
~a! ~z! uj 8V8q

~a8!* ~z!5da,a8d j , j 8d~V2V8!.

Herea5x,y or z. Dirac’s delta function is replaced by th
Kronecker functiond(V2V8)→dV,V8 if either V or V8
belongs to the discrete part of spectrum.

The classical displacement vectorsu and the wave spec
trum are found from the solution of the elastic wave equat
with the stress-free boundary conditionsaz50 imposed on
the strain tensors at z50.4 Such a solution can be obtaine
as a linear combination of bulk plane waves exp(6iklz) and
exp(6iktz), wherekl and kt correspond to the normal com
ponents of bulk longitudinal and transverse waves with
plane wave vector,q and frequencyV:

kl ,t5A~V/sl ,t!
22q2. ~16!

In isotropic media, we can direct the wave vectorq along
thex axis. Then the displacement in they direction is decou-
pled from the other components, defining thehorizontal
shearmode (j [H) with

ux
~H !5uz

~H !50 , uy
~H !~z!5A 2V

pst
2kt

cos~ktz!, ~17!

and frequencyV.stq. These purely transverse modes
not contribute to the deformation potential coupling cons
ered in our subsequent analysis.

To describe the remaining elastic modes, it is conven
to introduce the scalar potentialsf andc. In the case where
qix, the displacement vector components can be written

u~r ,z!5¹f1¹3@c~r ,z!•ey#, ~18!

where f and c satisfy wave equations with propagatio
speedssl and st , respectively. One can also define comp
nentsf(z) andc(z) in a way similar to Eq.~15!:
r-

ion
the

n

-

-

nt

s

-

fJ~r ,z!

cJ~r ,z!
J 5H fJ~z!

cJ~z!
J eiq•r

AS
. ~19!

The rest of this subsection specifies the remaining th
acoustic modes: incident longitudinal (j [ L), incident trans-
verse (j [T), and Rayleigh (j [ R) waves.36 Note that even
a pure longitudinal or transverse wave acquires a mi
character after reflection from the surface.

1. Incident longitudinal wave

The incident longitudinal wave (j [ L) exists over a con-
tinuous range of frequenciesV.slq and is specified by the
scalar potentials

fqV
~L !~z!5

1

A2pVkl

@e2 ikl z2A eiklz#,

cqV
~L !~z!52

B

A2pVkt

eiktz. ~20!

Here

A~l,t!5
~t221!224lt

~t221!214lt
~21!

and

B~l,t!5
4Alt~t221!

~t221!214lt
, ~22!

wherel[kl /q andt[kt /q; furthermore,A21B251.

2. Incident transverse wave

This type of wave exists for frequencies in the ran
V.stq and is given by

fqV
~T!~z!5

B

A2pVkl

eiklz, ~23!

cqV
~T!~z!5

1

A2pVkt

@e2 iktz2A eiktz#.

In the subinterval ofslq.V.stq the longitudinal compo-
nent of the wave becomes evanescent and analytical con
ation kl5 i ukl u is used.

3. Rayleigh wave

The Rayleigh wave is localized in the vicinity of the su
face and possesses a discrete~at fixedq) frequencyV5sRq.
The surface wave velocitysR can be obtained from the
equation4

~t221!214lt50. ~24!

Both the longitudinal and transverse components of
displacement vectors are evanescent in thez direction and
the continuationskl→ i ukl u and kt→ i uktu should be em-
ployed. The scalar potentials are given by
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fqVR

~R! 5AR

q
e2ukl uz, ~25!

cqVR

~R! 5AR

q

22i ulu

11utu2
e2uktuz,

where the constant,

R 52ulu utu2/~ ulu2utu!~ ulu2utu12ulu utu2! ~26!

depends only on the Poisson ratio of the material. Since
characteristic equation~24! also specifies the poles of func
tions A andB in Eqs.~21! and ~22!, the constantR is pro-
portional to the residue in the complexV plane

R 5 Res
A~l,t!

il U
V5sRq

. ~27!

C. Electron-phonon coupling

In this subsection we derive the dissipative part of
phonon polarization functionpph defined by Eq.~13!. We
start from the electron-phonon interaction Hamiltonian in
Heisenberg form

Ĥe-ph~ t !5(
q,k

âk1q
† ~ t !âk~ t ! V̂q~ t !, ~28!

whereâ (â†) is the electron annihilation~creation! operator.
In this paper we consider the deformation potential int

action specified by a constantJ:

V̂~r ,z,t !5J div Û~r ,z,t !. ~29!
o

o
-

e

e

e

-

Taking the phonon displacement operatorÛ to be Eq.~14!

and using the identity¹2f5f̈/sl
252(v2/sl

2) f, we find
the interaction operator

V̂~r ,z,t !52 J (
J

V2

sl
2
A \

2rVS

3@ b̂JfJq~z! ei ~q–r2Vt !1 H.c.#. ~30!

According to the Kubo theorem,37 the dissipative part of
the linear-response functionpph is proportional to the anti-
symmetric part of correlation of the potentialsV̂:

Im p~v,q,z,z8!5
1

2\ E
2`

`

dt E d2rei ~vt2q–r !^V̂~ t,r ,z!

3V̂~0,0,z8!2V̂~0,0,z8!V̂~ t,r ,z!&.

~31!

Substituting expression~30! into Eq. ~31! and performing
the necessary commutations, we find

Im pph~v,q,z,z8!5
pJ2V3

2rsl
4 (

j ,V
f jqV~z!f jqV* ~z8!

3@d~v2V!2d~v1V!#. ~32!

We found a general expression for the polarization fu
tion of phonons coupled to electrons by the deformation
tential in a system, which is inhomogeneous in thez direc-
tion. Using the scalar phonon potentialsf in Eqs.~20!, ~23!,
and ~25!, we obtainpph for phonons in a half space:
Im pph~v,q,z,z8!5
J2

2rsl
4

v2

q
35

1

l
coslq~z2z8!2

A~l,t!

l
coslq~z1z8! at v.slq

uB~ i ulu,t!u2

2ulu
e2uluq~z1z8! at slq.v.stq

p

K~s!
e2uluq~z1z8!v d~v2sRq! at v'sRq.

~33!
For comparison, we present the polarization function
acoustic phonons in an unbounded medium

Im pbulk~v,q,z,z8!5
J2

2rsl
4

v2

lq
coslq~z2z8! atv.slq.

~34!

Examination of Eqs.~33! and ~34! shows that the phonon
polarization function in a half space is equal to the sum
the bulk part depending onuz2z8u and the image part de
pending onz1z8.

Finally, we weight the functionpph(v,q,z,z8) with the
electron density functionux(z)u2. Substituting Eq.~33! into
f

f

Eq. ~12! and using the definitions of form factorsZ andZ in
Appendix C, we obtain

Im pph~v,q!5 Im pbulk~v,q!1 Im pbulk corr~v,q!

1 Im p tot refl~v,q!1 Im pRayleigh~v,q!.

~35!

Here the first term in Eq.~35! coincides with the contribution
of the bulk phonons

Im pbulk~v,q!5
J2

2rsl
4

v2

lq
Zbulk~lq! u~v2slq!.

~36!
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The image part of the polarization function accounts
modifications due to the free boundary atz50 and is given
by the sum of the expressions (u is a step function!

Im pbulk corr~v,q!52
J2

2rsl
4

v2

q

A~l,t!

l
Zimage~lq!

3u~v2slq!, ~37!

Im p tot refl~v,q!5
J2

2rsl
4

v2

q

uB~ i ulu,t!u2

2ulu

3Zimage~ uluq!u~slq2v!u~v2stq!,

~38!

Im pRayleigh~v,q!5
J2

2rsl
4

v2

q
pRZimage~ uluq!

3vd~v2sRq!. ~39!

Equations~37!–~39! may be identified with~i! corrections to
the bulk phonon modes due to the presence of the sur
and contributions of~ii ! totally reflected modes as well a
~iii ! Rayleigh phonons.

IV. QUALITATIVE ANALYSIS

It is possible to provide analytical order-of-magnitude e
timates of the relaxation rates in Eq.~7! in order to obtain the
dependence of the scattering rates on temperature, ele
concentration, and other parameters of the problem. To
an understanding of the effects of phonon quantization on
relaxation of the 2DEG, we consider both the case of~a!
unmodified, bulk phonons@see Eq.~36!# and ~b! the com-
plete phonon set as given by Eqs.~35!–~39!; we will also
compare these estimates with the results for interacting~c!
bulk electrons and bulk phonons~cf. Appendix D!.

We note that the integrands of Eqs.~7! and~D1! increase
monotonically with the transferred momentumq and energy
v until the correspondent cutoff values are reached. T
leads to the following estimates for the relaxation rates va
for arbitrary degeneracy of the electron system:

1/tm

1/te
J ;

qmax
n11

ē v̄
Im pph~vmax,qmax! H T/m

vmax
2 /qmax

2 .
~40!

Heren52,3 specifies the dimensionality of the electron s
tem ~in fact, this result applies to one-dimensional electro
n51). The electron mean kinetic energy and the velocity
given by either their Fermi or thermal values:ē ;max(F,T)

and v̄ [A2 ē /m;max(vF ,vT).
The maximum momentum and energy transferred dur

a single electron-phonon collision are determined as a re
of the competition between several mechanisms:

qmax;min~2 k̄ ,vmax/s!, ~41!

vmax;min~T/\,qmaxv̄ !. ~42!
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Here the conditionsq&2 k̄[2min(kF ,kT) and v&q v̄ are
due to the factor Impe(v,q) in the expressions for the
relaxation times; see also Eqs.~A1! and ~A2!. The former
inequality limits the momentum transfer to the effective d
ameter of the electron distribution function, while the latt
is a result of the momentum and energy conservation law38

Similarly, the condition v&T/\ stems from the factor
@(\v/2T)/sinh(\v/2T)#2 in Eqs. ~7! and ~D1! and, for de-
generate electrons, limits the energy transfer to a narrow
gion of widthT near the Fermi surface. Finally, the conditio
qmax,vmax/s implies that only the electrons with a phas
velocity exceeding the speed of sound may interact with
phonons~Cherenkov effect!.

Spatial confinement of the electron system leads to
additional cutoffs forq and v. Prior to the introduction of
these conditions we note that for electrons to occupy
lowest quantization subband, the following inequality mu
be obeyed:

kF&1/d, ~43!

whered is the effective transverse width of electron chann
and the relationkF;1/d corresponds to the maximum occu
pancy of the lowest subband.

Electron confinement in thez direction breaks the mo
mentum conservation law forqz , replacing it by a weaker
inequality qz&1/d. Taking into account the relation
v;sAq21qz

2 and Eq.~43!, we find a condition augmenting
Eq. ~42! for a spatially confined electron system:

v&s/d. ~44!

Finally, the surface corrections to the phonon spectr
weaken with the increasing distancel between the surface
and the 2DEG. The following inequality arises from the for
factorsZimage in Eqs.~37!–~39!:

q&1/l . ~45!

Note that Eq.~45! does not apply to the partial contributio
of the bulk phonon modes in Eq.~36!.

As shown below, the temperature and concentration
pendence of the relaxation frequencies depend critically
the competition of the two cutoffsq& k̄ andq&v/s. These
two conditions become equivalent atT;Tcr , where the criti-
cal temperature is defined as

Tcr;\s k̄;Ams2 ē . ~46!

Since at temperatures of the order of or belowTcr the elec-
tron gas is usually degenerate, Eq.~46! may be reduced to
Tcr;\skF . In view of Eq. ~43!, we find

Tcr&\s/d, ~47!

where the equalityTcr;\s/l is reached when the lowes
quantization subband is practically filled.

To analyze the temperature dependence of the relaxa
rates for different dimensionalities of electrons and phono
we present schematically in Figs. 2 and 3 the regions
transferred momentum and energy contributing to Eqs.~7!
and ~D1! at small l . Due to the monotonically increasin
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integrands, the dominant contributions are given by
maximum possible values ofv andq.

Scattering of the 2DEG with bulk and bulklike phono
contributes to the dark shaded region atv.slq. The totally
reflected phonon modes are shown by the light shadin
slq.v.stq and the two-dimensional Rayleigh phono
correspond to the thick line atv5sRq. In contrast, the inter-
action of bulk electrons and phonons occurs a
v5slq,min(T/\,Tcr /\), as specified by the facto
d(v2slq) in Eq. ~D3!, where the bulk wave vecto
q5(qx ,qy ,qz). Below we analyze the relaxation rates in t
limits of high and low temperatureT*Tcr andT&Tcr .

FIG. 2. Regions of transferred momentumq and frequencyv
for T.\s/d.Tcr ~upper panel! and\s/d.T.Tcr ~lower panel!.

FIG. 3. Regions of transferred momentumq and frequencyv in
a low-temperature limitT,Tcr .
e

at

A. High-temperature regime „T>Tcr…

For interactingbulk electronsand phonons, the effective
transferred momentum and energy are given
qmax5vmax/sl;2 k̄ . From Eqs.~40! and ~D3! we find

1/tm

1/te
J ;

J2

rs2

m3/2

\4S3~ k̄ !
ē 1/2H T

ms2,
~48!

where the three-dimensional screening factor is given
S3(q);@114p2e2n3 /«0 ē q2#2.

As seen from Eq.~48!, the ratio of the energy and mo
mentum relaxation rates is equal toT/ms2!1; i.e., the pho-
non scattering is quasielastic. In the nondegenerate
where ē ;T, the standard results 1/tm}T3/2 and 1/te}T are
reproduced.35 For degenerate electrons, 1/tm}T and the en-
ergy relaxation rate 1/te depends weakly on the temperatur

For a 2D electron channel, the principal contribution is
given by bulklike phonons withq;2 k̄ since they contribute
to the maximum energy transferv for the sameqmax; k̄ .
Depending on the relation betweenT and \s/d, two situa-
tions are possible.

In the case whenT.\s/d*Tcr ~Fig. 2, upper panel!, we
substitute the cutoff valuesqmax; k̄ andvmax;s/d into Eq.
~40! and obtain

1/tm

1/te
J ;

J2

rs2

m

\3S2~ k̄ !

1

d H T

\2s2/ ē d2,
~49!

where the factorS2(q);@112pe2n2 /«0 ē q#2 accounts for
screening by the 2DEG. In a typical situation of an almo
completely filled lowest subbandk̄ d;1, expression~49! co-
incides with its bulk value in Eq.~48!.

The opposite case of\s/d.T.Tcr ~see Fig. 2, lower
panel! can be realized only for a weakly populated lowe
subband@cf. Eq. ~47!# and occurs rarely in practice. Subst
tuting qmax; k̄ andvmax;T/\ into Eq. ~40!, we find

1/tm

1/te
J ;

J2

rs2

m

\4sS2~ k̄ !

T2

ē
H ē

T.
~50!

In this regime, phonon scattering is strongly inelast
te;tm for nondegenerate electrons andte@tm for degener-
ate statistics~i.e., effective temperature relaxation is fast
than the momentum relaxation!. Thus the frequently used
quasielastic approximation in the energy conservation la39

is invalid for this regime.40

B. Bloch-Grüneisen regime„T<Tcr…

For T,Tcr , the momentum and energy transfer cuto
are given byqmax; k̄ andvmax;T/\, respectively, as shown
in Fig. 3. From Eq.~40! we obtain the following estimate
which is valid for any dimensionality of electrons (n52,3)
and phonons:

1/tm

1/te
J ;

J2

rs2

T4

\4Am ē s4 Sn~ k̄ !
H T

ms2.
~51!
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As seen from Fig. 3, the Rayleigh phonons contribute
maximum energy transfer\v as a result of the lower propa
gation speed (sR,st,sl). Therefore, despite a similar tem
perature dependence of all phonon modes, the Rayleigh
non contribution to relaxation may become dominant
T!Tcr . Rayleigh modes make a large contribution on
when there is a small separation between the 2DEG and
surface (l ,1/k̄ ); in the limit of largel , the surface contri-
butions vanish.

In this study we have not considered piezoelectric pho
scattering, which prevails for sufficiently low
temperatures.35,41 However, the details of the electron
phonon coupling do not affect our kinematic analysis
shown in Figs. 2 and 3.

V. NUMERICAL RESULTS AND DISCUSSION

In our numerical calculations we neglect the difference
the elastic properties of the quantum well and barrier ma
rials and use the following parameter set for GaAs:42 crystal
densityr55.32 g/cm3, lattice dielectric constant«0512.5,
electron effective massm50.067m0, and deformation poten
tial constantJ58.0 eV. Based on the components of t
elastic stiffness matrix, C11511.8831011 dyn/cm2,
C1255.3831011 dyn/cm2, and C4455.9431011 dyn/cm2,
we find in the isotropic approximation33 that the propagation
speeds aresl55.143105 cm/s for longitudinal waves
st53.023105 cm/s for transverse waves, andsR52.773105

cm/s for Rayleigh waves.
In Fig. 4 we show the dependence of the momentum

energy relaxation rates, calculated from Eq.~7!, versus the
lattice temperatureT for a square quantum well of width
d550 Å located at the crystal surface. A carrier concent
tion of n51012 cm22 corresponds to the case of degener
electron statistics for the temperature range under cons
ation. The thin solid lines corresponds to bulk phonons t
are not modified due to the presence of the free surface.
thick solid lines represent the total rates of electron rel
ation due to the complete set of near-surface phonon mo
these contributions are designated as follows: bulklike~dot-
ted line!, Rayleigh~dashed line!, and totally reflected wave
~dash-dotted line!. At temperatures below 2 K the piezoele
tric scattering mechanism becomes dominant;41 however, the
low-temperature range of Fig. 4 is depicted in order to de
onstrate the asymptotic temperature dependences of the
formation potential scattering rates.

In agreement with the qualitative analysis of Sec. IV,
partial contributions to the total scattering rates, as well
the rates due to the unmodified bulk phonons, have the s
temperature dependence in the limits ofT@Tcr andT!Tcr .
Namely, in the high-temperature limit the momentum rela
ation rates satisfy 1/tm}T, while the energy relaxation rate
saturate to a constant value; see Eq.~49!. In the Bloch-
Grüneisen regime, the dependences 1/tm}T5 and 1/tm}T4

are observed, in agreement with the Eq.~51!.
Although the strengths of electron coupling to differe

phonon modes have the same overall temperature beha
their relative contributions to the relaxation rates depend
the temperature interval considered. For high temperat
the surface phonon contribution is more than an order
magnitude weaker than that of bulklike modes and 10%
o
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the change in the scattering rates is due to the modificatio
bulk modes near the surface. In contrast, in the Blo
Grüneisen regime, the partial contribution of the surfa
Rayleigh waves increases and may even exceed the co
bution of the bulklike waves. As explained in Sec. IV, th
interaction with Rayleigh phonons is enhanced due to th
lower propagation speed and therefore larger assisted
mentum transfer; see the thick line in Fig. 3. Finally, t
contribution of the totally reflected modes to deformati
potential scattering is negligible for all temperatures beca
of their predominantly transverse character, i.e.,B!1 in Eq.
~23!.

The dependence of the relaxation rates on the distancl
between the electron channel and the semiconductor sur
is presented in Figs. 5 and 6. The partial contributions
different phonon modes are shown in Fig. 5 for a tempe
tureT52 K. As one can see, the contributions of the surfa
~dashed line! and totally reflected~dash-dotted line! modes
decrease rapidly with distancel from the surface due to the
factor exp(22ql ) in Eq. ~C3! for the form factorZimage(q).
The well-pronounced oscillatory behavior of the total sc
tering rates~thick solid line! is due primarily to the surface
corrections to the bulk phonon modes@cf. the term with
coslq(z1z8) in Eq. ~33! for the phonon polarization func

FIG. 4. Momentum~upper panel! and energy~lower panel! re-
laxation rates of a 2DEG vs temperature. Electrons with a conc
tration n51012 cm22 occupy a square quantum well of widt
d550 Å located at the surfacel 50.
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tion#. With increasing distancel , the amplitude of oscilla-
tions decreases and the scattering rates approach their
limit. Finally, we notice that the dip in the scattering rates
unmodified bulk phonons~thin solid line! is caused by a
decrease of the effective system dielectric function in E
~B2!, from «s(q);«0 at largel to («011)/2 at l 50. The
small value of«s(q) leads to an enhanced contribution
electrons to the screening factoru11D«e(v,q)/«s(v,q)u22

in Eq. ~7! and therefore to a decrease in the scattering r
for small l .

In Fig. 6 we present the distance dependence of the
mentum relaxation rate 1/tm for different forms of the elec-
tron confining potential (T54.2 K!. The dashed~dotted! line
corresponds to a square quantum well of widthd5100 Å
(30 Å!. The relaxation rates for electrons in a triangular w
of effective width43 6/b550Å ~solid line! are close to those
for electrons in a square quantum well of widthd550
Å ~not shown!.

As seen from Fig. 6, a change in the well width does
change the period of oscillations, but shifts their phase. T
is consistent with the following dependence of the surfa
corrections to the phonon polarization function in Eq.~37!:
Im pbulk corr(v,q)}Zimage(q)}cosq(2l 1d). Since, in the
Bloch-Grüneisen regime, the effective momentum transfe

FIG. 5. Momentum~upper panel! and energy~lower panel! re-
laxation rates of a 2DEG vs. distancel . Electrons with a concen
tration n51012 cm22 occupy a square quantum well of widt
d550 Å. The temperatureT is 2 K.
ulk
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q;T/\sl ~cf. Fig. 3!, the period of oscillations can be est
mated asL;p/q;p\sl /T, which is consistent with the
valueL;20 nm from Fig. 3.

VI. CONCLUSIONS

In this paper we have reported our studies on the inte
tion of a near-surface channel of 2D electrons with the co
plete set of acoustic-phonon modes supported by a se
bound semiconductor structure. Using the dielect
formalism, we have calculated both the momentum and
ergy relaxation rates of a 2DEG and analyzed the rela
contributions of bulklike and surface phonon modes
GaAs material.

At high temperatures, the surface phonon contribution
small and the modification of bulklike phonons leads to a
proximately a 10% change in mobility. In the low
temperature regime, the electron relaxation rates exhibit p
nounced oscillations with respect to the position of t
electron channel, providing the possibility of tailorin
carrier-phonon interactions in nanostructures to minim
dissipation.

The most significant result of this work is the strong i
teraction of electrons with Rayleigh phonons in the Bloc
Grüneisen regime. While the momentum and the ene
transferred to thebulklikephonons are radiated to the bulk o
crystal and lost, the emittedsurfacephonons remain in the
channel and continue to influence electron kinetics. The r
tively weak attenuation of two-dimensional Rayleig
phonons facilitates their use for coupling between differ
electron channels and their constant speed facilitates the

FIG. 6. Momentum relaxation rate 1/tm vs distancel . Solid
line, triangular quantum well with effective width 6/b550 Å;
dashed~dotted! line, square quantum well of widthd5100 Å
(d530 Å!. The electron concentrationn5531011 cm22; tempera-
ture T54.2 K.
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sign of built-in delay lines. Thus the study of surface effe
on the carrier-phonon interaction is important for the des
of semiconductor nanostructures within existing planar te
nologies.
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APPENDIX A: ELECTRON POLARIZATION

For the strongly degenerate caseF5p2\2n2 /m@T and
in the limit of \v&T @see the factor in the square brackets
Eq. ~7!#, the polarization function of the 2DEG given by E
~8! can be reduced to

pe~v,q!.
m

p\2H 11 i
v

qvF

u@12~q/2kF!22~v/qvF!2#

A12~q/2kF!22~v/qvF!2 J .

~A1!

For comparison, under the same assumptions the pola
tion function for a 3DEG is given by

pe~v,q!5
mkF

2p2\2H 11 ip
v

qvF
u@12~q/2kF!2

2~v/qvF!2#J , ~A2!

whereq5(qx ,qy ,qz) is the bulk wave vector. According to
Eq. ~5!, the inequalityvF@sl ,t;v/q holds and the terms
.
in
s
n
-

-

a-

with the factorv/qvF in Eqs. ~A1! and ~A2! give a negli-
gible contribution to the absolute value ofpe andD«e .

APPENDIX B: LATTICE POLARIZATION

The dielectric function of the system of Fig. 1, defined
Eqs.~11! and ~13!, is obtained from a solution of Poisson
equation. Forz,z8.0 one finds

«0

«s~q;z,z8!
5e2quz2z8u1

«021

«011
e2q~z1z8!. ~B1!

Substituting Eq.~B1! into Eq. ~12!, we obtain

1

«s~q!
5

1

«0
FZbulk~q!1

«021

«011
Zimage~q!G , ~B2!

where the form factorsZ are defined in Appendix C.

APPENDIX C: FORM FACTORS

The form factors corresponding to the bulk and ima
parts of the polarization functions are defined as
Zbulk~q!

Zimage~q!
J [E

0

`

dz x2~z! E
0

`

dz8 x2~z8! H exp~2quz2z8u!

exp~2quz1z8u!.
~C1!
ge-
mes
The definitions of form factorsZ(q) are obtained from Eq
~C1! after replacement of the exponential functions by cos
functions. We note the relation

Z~q!5 Re Z~ iq ! . ~C2!

Using Eq. ~1a!, we find for a square quantum well
(u[qd)

Zbulk5
~2p!4~e2u211u!120p2 u313u5

u2@u21~2p!2#2
,

Zimage5e22ql ~2p!4
~e2u21!2

u2@u21~2p!2#2
. ~C3!
e
For a triangular well, substitution of Eq.~1b! into Eq.

~C3! gives (u[qb)

Zbulk5~819 u13 u2!/8~11u!6,

Zimage5e22ql ~11u!26. ~C4!

APPENDIX D: BULK ELECTRONS AND PHONONS

For interacting bulk electrons and phonons in a homo
neous system, the momentum and energy relaxation ti
take the following form, analogous to Eq.~7!:
1/tm

1/te
J 5

1

p3 n3
E

0

`dv

v2 E
0

`

q4dqH T/3m

v2/q2J Im pph~v,q! Im pe~v,q!

u11D«e~v,q!/«0u2 F \v/2T

sinh~\v/2T!G
2

. ~D1!
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Here q5(qx ,qy ,qz) is the three-dimensional transferre
wave vector andn3 is the bulk concentration of electron
The electron polarization functionpe is given by Lindhard’s
formula~8! with the system’s areaS changed to the system
volumeV. Equations~9! and~11! remain intact, but the Fou
rier image of the Coulomb potential in Eq.~10! takes the
three-dimensional form

vCoul~q!54pe2/q2. ~D2!
Finally, for bulk electrons and phonons interacting via t
deformation potential coupling, the phonon polarizati
function is given by

Im pph~v,q!5
J2

2rsl
2

uvu @d~v2slq!2d~v1slq!#.

~D3!
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