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An elementary hydrodynamic and Brownian motion model of the thermal diffusivity DT of a restricted class
of binary liquid mixtures, previously proposed by the author, is given a more transparent derivation than
originally, exposing thereby the strictly kinematic-hydrodynamic nature of an important class of thermodiffu-
sion separation phenomena. Moreover, it is argued that the solvent’s thermometric diffusivity � appearing in
that theory as one of the two fundamental parameters governing DT should be replaced by the solvent’s
�isothermal� self-diffusivity DS. In addition, a corrective multiplier of O�1� is inserted to reflect the general
physicochemical noninertness of the solute relative to the solvent, thus enhancing the applicability of the
resulting formula DT=�DS� to “nonideal” solutions. Here, � is the solvent’s thermal expansivity and � is a
term of O�1�, insensitive to the physicochemical nature of the solute �thus rendering DT primarily dependent
upon only the properties of the solvent�. This formula is, on the basis of its derivation, presumably valid only
under certain idealized, albeit well-defined, circumstances. This occurs when the solute molecules are: �i� large
compared with those of the solvent; and �ii� present only in small proportions relative to those of the solvent.
When the solute is physicochemically inert, it is expected that �=1. When these conditions are met, the
resulting thermal diffusivity of the mixture is, in theory, independent of any and all properties of the solute.
Moreover, because � is algebraically signed, the thermal diffusivity can either by positive or negative, accord-
ing as the solvent expands or contracts upon being heated. This formula for DT is compared with available
experimental data for selected binary liquid mixtures. Reasonable agreement is found in almost all circum-
stances with � near unity, the more so the higher the temperature, especially when the solute-solvent mixture
properties closely approximate those where agreement would be expected and conversely. Finally, it is pointed
out that for the restricted circumstances described, the formula DT=�DS� is equally credible for gases. Here,
based on gas-kinetic theory, it is possible to furnish the theoretical value of �. Overall, while spanning a range
of about five orders of magnitude, the DT values given by this elementary formula are shown to apply with
reasonable accuracy to: �i� liquids �including circumstances for which DT is negative� as well as gases; �ii� all
combinations of solvents and solutes tested �the latter including, for example, polymer molecules and metallic
colloidal particles�; and �iii� all sizes of solute molecules, from angstroms to submicron.
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I. INTRODUCTION

Considerable theoretical and practical interest has recently
arisen �1,2� in regard to thermal diffusion and thermophore-
sis in liquids, embracing a variety of different solvents and
solutes. Included among these solutes are colloidal particles
�3–9�, nanoparticles �10–12�, polymers �13–17�, micelles
�9,18,19�, metallic colloidal particles �4�, DNA �20�, proteins
�21�, and other biological molecules �22�, as well as a host of
other entities �e.g., magnetic particles as one of the species of
a ferrofluid �10,23��, all representing macromolecules with
regard to their Brownian movements in liquid solvents. To a
lesser extent, interest also exists in smaller solute molecules,
closer in size to those of the solvent �24–29�, which formerly
represented the focus of thermodiffusion research �2,25�. The
growing wealth of liquid-phase thermal diffusion experi-
ments performed on these systems has revealed a number of
interesting features, including the unexpected facts that sol-
ute migration may undergo a reversal in direction with
changes in temperature �9,21� or composition �24,27,30� and
that the thermal diffusion coefficient for polymeric solutions
is independent of molecular weight and molecular configu-
ration �1�, the former extending over at least a several thou-
sandfold range of molecular weights.

In contrast with such behavior in liquids, gases �31,32�
behave in a relatively benign manner. Whereas the theory

underlying thermodiffusion phenomena in gaseous continua
has been well understood for almost a century, owing largely
to the pioneering theoretical work of Enskog and Chapman
in the case of thermal diffusion �as summarized in the mono-
graph of Chapman and Cowling �32�� and, in the case of
thermophoresis, by the work of Epstein �33� in 1929, com-
parably satisfactory predictive theories for liquids are cur-
rently lacking �1�. Indeed, until recently �6�, the fact that
thermophoresis could occur in liquids had apparently never
been unequivocally demonstrated, earlier claims to this effect
apparently notwithstanding �34�.

Together with Bielenberg, the writer recently co-authored
an elementary theory �35� of thermal diffusion. Among other
things, that work offered an explanation for the unexpected
liquid-phase Soret sign reversal observed in a dilute aqueous
solution near the temperature of 4 °C �7�, at which water has
its maximum density. It also rationalized the molecular
weight- and configuration-independent thermal diffusivity
observed in polymer solutions �1�, at least for those polymer-
solvent mixtures whose properties approximate the condi-
tions cited in the Abstract. Concurrently, the theory furnished
correct order-of-magnitude estimates for the thermal diffu-
sivities DT of nonionic and nonpolar binary liquid mixtures,
in addition to correctly predicting experimentally observed
trends with regard to the dependence of DT upon temperature
and composition. The present contribution both simplifies
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and amplifies that theory, while significantly improving the
accuracy of its predictions by modifying two of its precepts:
namely, �i� replacing the solvent’s thermometric diffusivity �
originally appearing therein by the solvent’s �isothermal�
self-diffusivity DS; and �ii� introducing a nonideality factor �
so as to allow for the solute’s lack of inertness relative to that
of the solvent. The first of these two changes reflects the
recent theoretical recognition �36–38� that thermal fluctua-
tions constitute the fundamental mechanism animating ther-
modiffusion processes.

A. Diffuse volume flux

Elementary, in-principle, Ludwig- �39� Soret- �40� type
experiments, aimed at measuring the thermal diffusivities of
liquid-phase mixtures, entail steady-state measurements per-
formed upon a confined �binary� miscible fluid mixture sub-
jected to an externally imposed temperature gradient in the
absence of gravity. This configuration results in a steady,
nonuniform spatial distribution of the two species within the
fluid, with the larger-size or higher-molecular-weight species
�the “solute”� often, but not always, concentrated in the
colder regions of the fluid. Subsequent measurement of this
spatial distribution furnishes the Soret coefficient ST, a prop-
erty of the mixture. When coupled with knowledge of the
mixture’s Fick’s-law binary diffusivity D, this allows calcu-
lation of the mixture’s thermal diffusivity DT via the formula
DT=STD. In general, each of the three mixture properties
appearing in the latter expression is a function of tempera-
ture, pressure, and composition, each possessing the same
value for both species comprising the mixture �41,42�.

Of particular interest to us in what follows is that of es-
tablishing the functional dependence of DT upon the proper-
ties of both the solvent and solute in mixtures which are
dilute with respect to the solute. In this context we begin by
first considering the seemingly uninteresting limiting case in
which the solute is wholly absent from the mixture, while the
resulting solute-free solvent is subjected to a steady,
externally-imposed temperature gradient. This arrangement
gives rise to a time-independent inhomogeneous solvent den-
sity field �=��T�, with T=T�x� and hence �=��x� each a
function of position x within the confined liquid.

Explicitly, consider a quiescent single-component fluid
�the “solvent”� confined within the one-dimensional region
�0�x�L, −��y��, −��z��� bounded between two
indefinitely extended heat-conducting walls, respectively
situated at x=0 and L, which are permanently maintained at
the respective “hot” and “cold” temperatures Th and Tc �Th

�Tc� by virtue of their intimate contact with heat reservoirs
�43,44�. The effects of gravity, which might otherwise cause
a free-convection flow as a consequence of the temperature
gradient, are assumed to be either wholly absent or negli-
gible. The system’s physical configuration is such that, at
steady state, the confined solvent is host to an elementary
one-dimensional heat conduction process, during which no
mass motion of the fluid occurs. This state of rest is ex-
pressed by the relation

vm = 0 , �1�

where vm refers to the fluid’s mass velocity appearing in the
general unsteady-state continuity equation �� /�t+� • ��vm�

=0, with � the mass density and t the time. As a consequence
of Eq. �1� the linear momentum and continuity equations, in
combination, presumably result in the pressure being uni-
form throughout the fluid: p=const.

During the steady-state heat conduction process, internal
energy flows diffusively, but not convectively, through the
fluid; that is, energy transport occurs without mass motion,
corresponding to the circumstances described by Eq. �1�. Ac-
cording to an unorthodox, volume-based view of the nature
of fluid “motion” proposed by the author �45�, this Fourier-
law-driven diffuse energy flow q=−k�T �with k the thermal
conductivity� gives rise to a diffusive flux or “flow” of vol-
ume accompanying the heat flow through the fluid. The pos-
sibility of a diffuse volume flow—as opposed to a convective
volume flow �the latter representing the mode by which vol-
ume is usually thought to be exclusively transported�—is
novel, apparently not having been explicitly proposed in the
literature prior to its introduction in Ref. �45�. While the
concept of volume “flowing” in the absence of an accompa-
nying mass flow may seem strange, even impossible, espe-
cially in a single-component fluid, it needs to be recognized
that volume, viewed as an extensive thermodynamic prop-
erty of a fluid body, is simply a nonmaterial property of that
body. As such, volume is no different than any other exten-
sive nonmaterial property, be the latter internal energy,
momentum, species mass, electric charge, entropy, etc.
�whether or not a conserved property�, all of which are
capable of being transported purely diffusively—i.e.,
nonconvectively—through space, as explicitly embodied in
constitutive equations such as Fourier’s, Newton’s �rheologi-
cal�, Fick’s, Ohm’s, etc., laws, respectively.

According to volume transport theory �45�, the diffuse
volume flux density jv accompanying the Fourier heat flux
density q through a single-component fluid, either liquid or
gas, is given constitutively at a point x thereof by the expres-
sion jv=−�Dv� v̂, where the non-negative scalar phenom-
enological coefficient Dv is the fluid’s “volume diffusivity”
and v̂=1/� is the specific volume. Expressed alternatively,
entirely in terms of the density, one has that

jv = Dv � ln � . �2�

A subsidiary goal of the present analysis is to present con-
vincing experimental evidence to support our eventual con-
tention that the solvent’s volume diffusivity coefficient ap-
pearing in Eq. �2� is equal to solvent’s self-diffusion
coefficient DS—explicitly, that Dv=DS. As will be seen in
Sec. VI, this empirical relation is philosophically indepen-
dent of its use in our subsequent analysis of thermal diffusion
phenomena; rather, since diffuse volume transport is not it-
self directly measurable, thermal diffusion represents only
one of several possible experimental schemes capable of fur-
nishing data to test our contention that Dv=DS.

Given the presumed constancy of the pressure throughout
the steady-state Soret apparatus, the solvent’s single-
component equation of state �=��p ,T� furnishes the isobaric
expression � ln �=−��T, in which
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is the solvent’s coefficient of thermal expansion or thermal
expansivity. Equation �2� thus adopts the form

jv = − Dv� � T . �4�

As noted in Eq. �1�, no mass flow occurs in the present
circumstances. More generally, however, in circumstances
where a nonzero mass flux nm exists, the total volume flux nv
of fluid, in addition to possessing a diffuse portion jv, also
possesses a convective portion nmv̂ �45�. Here, with dS a
space-fixed directed element of surface area at a fixed point x
of the fluid, the quantities dS·nm and dS·nv, respectively,
represent the mass and volume flowing per unit time across
dS. Hence, in general,

nv = nmv̂ + jv. �5�

By virtue of being a volume flow per unit area per unit time,
nv possesses the units of a velocity. As such, the latter flux
density nv is often designated as representing the fluid’s vol-
ume velocity �41,42�, here represented by the symbol vv �45�.
By definition, the mass flux nm is related to the fluid’s mass
velocity vm by the expression nm=�vm. Accordingly, Eq. �5�
is frequently expressed in the alternative form vv=vm+ jv, the
latter formula serving to relate the fluid’s respective volume
and mass velocities.

Consistent with Eq. �1�, nm=0 in the present steady-state,
confined-fluid case. Consequently, Eqs. �4� and �5� furnish
the expression

nv = − Dv� � T . �6�

The ability of the solvent to diffusively transport volume in
the presence of a temperature gradient is seen from this ex-
pression to depend critically upon its �isobaric� compressibil-
ity, as embodied in its thermal expansivity �.

In the present Soret apparatus, the temperature T obeys
the energy conservation equation � · �k�T�=0. Hence, when
k can be regarded as sensibly constant �as is true a priori for
sufficiently small temperature gradients�, the temperature
gradient will be uniform throughout the fluid at the value
�T=−x̂�Th−Tc� /L=const, with x̂ a unit vector in the x di-
rection.

II. THERMOPHORESIS OF A SINGLE PARTICLE

Equation �6� provides the fundamental basis for our even-
tual calculation of the thermal diffusivity DT of a binary
mixture formed by dissolving or dispersing a small amount
of solute in the confined solvent. Imagine for the moment
that a single, physicochemically inert, macroscopic �i.e.,
non-Brownian� particle is inserted into the quiescent, undis-
turbed solvent which is undergoing the volume flow �6�. El-
ementary fluid-mechanical theories �46�, based upon simul-
taneously solving the continuity, linear momentum, and
energy equations subject to the usual no-slip boundary con-
dition on the particle surface for the specified physical cir-
cumstances �namely, no net mass flow far from the particle, a

prescribed temperature difference Th−Tc, a mass-
impermeable particle surface, etc.�, lead to the theoretical
prediction that the particle will simply remain at rest within
the fluid, with heat flowing via conduction around the par-
ticle �and, possibly, through it as well, were the particle to be
heat conducting�. Experiment, however, teaches otherwise.
In particular, the macroscopic particle is observed to move
towards one or the other of the two walls. This occurs in the
case of both gases and liquids, as recently reviewed by Bren-
ner and Bielenberg �47�, the resulting single-particle motion
being termed thermophoresis.

That the particle moves, rather than remaining at rest,
arises from the fact that the traditional no-slip boundary con-
dition along the solid particle surface is violated as a conse-
quence of the existence of a temperature gradient in the fluid
proximate thereto �47�. In the case of gases, such “thermal
creep” was first identified and analyzed by Maxwell �48–50�
in 1879 on the basis of gas-kinetic theory �32�. Maxwell’s
macroscopic slip boundary condition was subsequently em-
ployed by Epstein �33� in 1929 to explain, purely hydrody-
namically, the origin of thermophoretic particle motion in
gases, without having to discuss the molecular basis of such
motion. An alternative hydrodynamic explanation �38,51,52�
advanced to explain thermophoretic particle motion in both
gases and liquids argues that a particle is simply entrained
�53� in the solvent’s flux field nv and hence moves through
space at the solvent’s volume velocity vv, provided that the
particle is physicochemically “inert.” This solvent-based
conveyance of the particle is formally equivalent, math-
ematically, to supposing that it is the fluid’s volume velocity,
rather than the mass velocity, which does not slip at the
particle’s surface. From either point of view, Eq. �6� shows
that in such circumstances the inert entrained particle will be
transported through space by the fluid at a velocity �Up�inert

=−Dv��T. Importantly, this velocity is seen to be indepen-
dent of the particle’s size, shape, and physicochemical con-
stitution. In a related context �37� this velocity is referred to
as the “drift velocity” of the �undisturbed, particle-free� sol-
vent, a purely molecular transport property of the nonisother-
mal solvent.

In circumstances where the thermophoretic particle is not
inert with respect to the fluid in which it is immersed, we
insert a noninertness or nonideality O�1� coefficient � into
the preceding relation to reflect this fact, thus obtaining the
more general relation

Up = − �Dv� � T �7�

for the velocity of the non-Brownian particle. The general
notion of “inertness” is discussed in Ref. �52�. For example,
in the case of gases, a macroscopic �i.e., non-Brownian� par-
ticle ceases to be “inert” when it possesses a nonzero thermal
conductivity kp. In that case, one has for a spherical particle
that �47� �= �1+ �kp /2k��−1, where, as before, k is the sol-
vent’s thermal conductivity. Thus, as later observed in Sec.
VII, the fact that � is found both theoretically and experi-
mentally to be less than unity �as well as being of O�1�� in
the case of gases could be empirically rationalized in terms
of this noninertness factor, although the notion of assigning a
thermal conductivity to the “interior” of a single molecule of
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the solute in an attempt to obtain quantitative agreement with
the gaseous data would clearly be irrational.

III. SOLUTE TRANSPORT IN THE BINARY SYSTEM

A. Dilute solution of solute macromolecules

Consider a binary solution composed of a solute �species
“1”� and solvent �species “2”�. Denote by wi �i=1,2� the
mass fraction of species i and by �i=	i� the mass of species
i per unit volume of solution. Of special interest is the lim-
iting case where the size of the solute molecules greatly ex-
ceeds that of the solvent molecules. This circumstance en-
ables the solvent to be viewed as a viscous hydrodynamic
continuum relative to the discrete, effectively macromolecu-
lar, solute particles—as in the case of the Sutherland- �54�
Einstein �55� classical Brownian-motion model of the �iso-
thermal� diffusion of colloidal solute molecules in a liquid
solvent. We further suppose these solute particles, regarded
as Brownian, to be present only in relatively modest propor-
tions, enabling each such “macromolecule” to be regarded as
effectively interacting only with the solvent molecules, but
not with each other. In this dilute solute limit the undisturbed
particle-free solvent volume flux—nv2 say—will remain sub-
stantially unaffected by the presence of the solute molecules,
from which it follows from Eq. �6� that nv2=−��Dv�2�2�T.

The density �1 denotes the mass of solute per unit volume
of solution. Concomitantly, in these dilute solutions, it rep-
resents the solute mass per unit volume of pure solvent. Ac-
cordingly, upon regarding each solute molecule as being in-
dividually entrained in this solvent flow, it follows that the
rate per unit time per unit area at which solute mass is being
transported through space accompanying this solvent volume
flow is nv2�1�−��Dv�2�2�w1�T. In the context of our
“drift-velocity” notion �37�, the latter represents the hypo-
thetical solute flux that would ensue were the solute macro-
molecules to be devoid of Brownian motion by virtue of
their being regarded as macroscopic particles. This missing
diffusive attribute is subsequently reintroduced into the
analysis by recognizing that the preceding deterministic sol-
ute mass flux is opposed by a diffusive mass flux stemming
from the previously neglected Brownian motion, the latter
given by Fick’s law for the entrained solute molecules as
−�D�w1, in which D is the �isothermal� binary diffusivity.
The sum

n1 = − ��Dv�2�2�w1 � T − �D � w1 �8�

thus furnishes the net solute mass flux in the net mass flux-
free Soret apparatus.

B. Calculation of the thermal diffusivIty

In a barycentric reference frame �41,42�, for which choice
mass serves as the convective carrier of extensive physical
properties, the diffuse mass fluxes ji �i=1,2� of the respec-
tive solute and solvent species in the present isobaric case are
given by the constitutive expression ��42� p. 359�

j1 = − DT,12�w1w2 � T − D12� � w1, �9�

together with a similar expression for species 2, such that, by
definition, j1+ j2=0. In the counterpart of Eq. �9� for the

solvent species, DT,12=−DT,21�DT, with DT�0 the thermal
diffusion coefficient; moreover, D12=D21�D�0 is the ordi-
nary binary mutual diffusion coefficient. Since, from Eq. �1�,
there is no net mass flow in present circumstances, it follows
that the diffusive mass fluxes ji of the two species are the
same as their respective total mass fluxes ni �56�.

In the present dilute solute case we have that w2�1 in Eq.
�9�. Consequently, in this limit, the total mass flux of solute
is

n1 = − DT�w1 � T − D� � w1. �10�

Comparison of the latter with Eq. �8�, which is equally ap-
plicable in this same dilute solute limiting circumstance, fur-
nishes the fundamental relation DT=��Dv�2�2. On the under-
standing that in the subsequent text Dv and � refer to the
respective properties of the pure solvent, we can for simplic-
ity suppress the solvent-based subscript 2 affixed to these
thermal properties and write that

DT = �Dv� . �11�

This limiting expression for the mixture’s thermal diffusivity,
which was derived here using purely kinematical arguments,
is closely related to that originally obtained by Bielenberg
and Brenner �35� �see also Sec. VII of Ref. �37��, albeit with
the noninertness factor � now included and with the solvent’s
thermometric diffusivity �2 appearing in their expression
here replaced by the more phenomenologically neutral sym-
bol �Dv�2�Dv. By the word “neutral” is meant that we have
not yet committed ourselves to any particular constitutive
relation between the phenomenological coefficient Dv ap-
pearing in Eq. �2� and the physical properties of the solvent
�ultimately, its self-diffusivity DS�. In contrast to our purely
kinematical derivation of Eq. �11�, Bielenberg and Brenner
�35� used dynamical arguments in their derivation, including
invoking the ad hoc assumption of a Boltzmann distribution
of solute molecules within the Soret apparatus, despite the
fundamentally nonequilibrium nature of the nonisothermal
Soret steady state.

C. Proposed comparison of Eq. (11) with experimental data

A quantitative comparison of Eq. �11� with experimental
DT data �in the sense of establishing that � is indeed insen-
sitive to the nature of the solute as well as being of order
unity� obviously requires knowledge of the solvent’s volume
diffusivity Dv. However, knowledge of the functional depen-
dence of Dv upon the properties of the solvent is itself a
separate and distinct issue, one currently under development
and for which no general consensus yet exists owing to the
newness of the concept of diffuse volume transport �45� un-
derlying Eq. �2�. While this quantitative issue of the viability
of the ultimate relationship DT=�DS� based upon the further
hypothesis that Dv=DS will ultimately be discussed in Secs.
VI and VII, it nevertheless proves convenient to initially as-
sess the purely qualitative agreement of the less restrictive
relation DT=�Dv� with experiment in order to clearly dis-
tinguish the present thermal diffusion theory �as thus far em-
bodied in Eq. �11�� from the issue of whether the additional
relation Dv=DS is also valid, in the sense of being supported
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by experimental data. After all, the question of the viability
of the latter relation is independent of that of Eq. �11� itself,
since the possibility exists that Eq. �11� may be correct,
whereas the relation Dv=DS may be wrong.

By purely qualitative agreement with experiment is
meant, inter alia, establishing whether or not thermal diffu-
sion experiments performed in dilute solute solutions support
the notion, implicit in Eq. �11�, that DT depends predomi-
nantly upon the solvent, being—for a given solvent—
insensitive to the physicochemical nature of the particular
solute. According to the proposed qualitative test of Eq. �11�,
experimental DT values obtained for a given solvent should
all be approximately the same, provided that conditions �i�
and �ii� described in the Abstract are met. Of course, such a
test does not furnish the � value itself. As such, the test
which is carried out below in Secs. IV and V does not impact
upon whether � is of O�1�, since it does not require knowl-
edge of the solvent’s volume diffusivity Dv. Only later, in
Secs. VI and VII, following the further hypothesis that Dv
=DS, is the magnitude of � established for specified solute-
solvent pairs.

There exists a significant body of experimental liquid-
phase thermal diffusion data in the literature against which
Eq. �11� may be checked for consistency with the premises
underlying its derivation in circumstances where these pre-
mises are, at least approximately, met. It is not our intention
here to review these data in a fully systematic and compre-
hensive manner. Rather, in Secs. IV and V which follow, we
have selectively chosen several liquid-phase data sets whose
special attributes impact qualitatively upon the main issues
explicit or implicit in the validity of Eq. �11� for liquids and
later, quantitatively, upon its more complete formulation,
where Dv=DS. �Gaseous data bearing thereon are presented
and discussed in Sec. VII.� More thorough and varied analy-
ses of existing databases will be seen to be warranted by our
necessarily limited findings, including the desirability of per-
forming key systematic experiments for which no data yet
exists.

IV. COMPARISON WITH LIQUID-PHASE EXPERIMENTS:
(I) WATER AS THE SOLVENT

A. Dilute aqueous solutions

1. Data of Iacopini, Rusconi, and Piazza

Foremost among the pertinent data sets currently avail-
able for aqueous mixtures, and indeed the inspiration moti-
vating our writing of the present paper, is the recent report by
Iacopini, Rusconi, and Piazza �9� on thermal diffusion in
dilute aqueous solutions of various high molecular weight
solutes. The pertinence of their work to a test of our thermal
diffusion model lies in the fact that not only did these authors
measure DT for a variety of different macromolecular solutes
dissolved or dispersed in water, but that these studies were
also effected over a range of temperatures including that at
which water has its maximum density—namely 4 °C—and
hence for which �=0 in Eq. �11�, requiring that DT=0 if our
theory is to prove to be correct. It is important to recognize
that this particular prediction of our theory—namely, the

temperature at which DT reverses its algebraic sign—derives
solely from the dependence of jv upon �� and thus holds
independently of the explicit functional dependence of the
phenomenological coefficient Dv in Eq. �11� upon the physi-
cal properties of the system. Indeed, were the diffuse volume
flux to simply be of the general functional form jv= f����,
not necessarily linear as in Eq. �2�, and were f to possess the
property that f�0�=0, it would then be true that jv=0 and,
hence, DT=0 whenever �=0, a conclusion transcending the
other key assumptions underlying Eq. �11�.

The small temperature differences involved in the experi-
ments of Iacopini et al. �9� were of the order of only 0.5 °C,
enabling them to obtain temperature-specific DT values. This
permitted these investigators to unambiguously and accu-
rately ascertain those temperatures at which the thermal dif-
fusivities appropriate to each solute underwent a change in
algebraic sign. In turn, this ability will be seen to reflect
critically upon the viability of Eq. �11� �57�.

The mixture’s thermal diffusivity DT, given Eq. �11� and
ostensibly applicable in circumstances for which the condi-
tions hypothesized during its derivation are satisfied, is in-
sensitive to the nature of the solute. Rather, its value depends
primarily only upon the properties of the solvent. Moreover,
because � is algebraically signed, DT can either by positive
or negative, according as the neat solvent expands or con-
tracts upon being heated. Water, for example, has its maxi-
mum density at 4 °C �more precisely, 3.984 °C�, so that �
for water is either positive or negative, according as T is
greater or less than 4 °C. Inasmuch as Dv�0 at all tempera-
tures �in order that the Clausius-Duhem entropy production
inequality be satisfied �58��, it follows from Eq. �11� that in
dilute aqueous solutions DT�0 for T�4 °C and, con-
versely, DT�0 for T�4 °C. This holds true irrespective of
the physicochemical nature of the dissolved solute, at least
for the class of solute molecules that fulfill the basic criteria
cited in the Abstract. Moreover, again subject to this same
caveat, the numerical value of DT in dilute aqueous solutions
should, according to the present theory, be essentially the
same for all solute species. As will be seen in what follows,
these predictions accord well with the recent experimental
observations of Iacopini, Rusconi, and Piazza �9� for the case
of dilute aqueous solutions in which three different solutes
were dissolved, these solutes being: �i� sodium dodecyl sul-
fate �SDS� ionic micelles; �ii� sodium polystyrene sulfonate
�NaPSS�, a linear polyelectrolyte; and �iii� polystyrene latex
particles �PS’s� �59�.

In order to distinguish these three particular solutes, ter-
minologically, from the several other solutes on which ex-
periments were performed by these authors �which are not
further commented upon here� and which were found to dis-
play fundamentally different behavior from that described
above, Iacopini et al. �9� refer to this class of solute mol-
ecules as “athermal.” According to these authors, such sys-
tems encompass suspensions of particles interacting via
screened Coulombic forces, a state presumably achieved in
their experiments by dissolution in the water of small
amounts of NaCl in an attempt to limit the effects of inter-
particle electrostatic interactions �60�. Basically, the data en-
compassed by the experiments of Iacopini et al. �9� per-
formed on these athermal aqueous systems is, according to
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these authors, well correlated over the temperature range
from roughly 5 to 40 °C by the linear relation

DT = A�T − T*� �m2 s−1 K−1� , �12�

where the constants A�0 �m2 s−1 K−2� and T* �°C� are pa-
rameters which, respectively, characterize each of the indi-
vidual solutes. We have estimated these parameters for each
solute from the experimental data presented graphically in
their Fig. 7. The estimated values thereof are tabulated in
Table I. Possible experimental uncertainties in the DT values
derived from Eq. �12� are estimated by us to be of the order
of ±0.1
10−12 m2 s−1 K−1. Also tabulated in Table I for later
reference are the respective thermal diffusivity values for
each solute at 25 °C, as derived from Eq. �12�.

Within likely experimental error, the T* data tabulated in
Table I, corresponding to the respective temperatures at
which DT=0 for each solute, accord more or less exactly
with the temperature at which water has its maximum den-
sity and hence for which �=0. In addition, the �estimated�
experimental values of DT at 25 °C for each solute are com-
parable in magnitude �and algebraic sign� although not ex-
actly the same. These facts roughly support the prediction
implicit in Eq. �11� that, for a specified solvent �and
temperature�—water in the present case—all solutes should
possess essentially the same thermal diffusivity, indepen-
dently of their respective physicochemical attributes, size,
configuration, etc. Of course, the validity of the latter con-
clusion hinges on how well these solutes are likely to fulfill
the basic criteria underlying the ostensible validity of Eq.
�11�.

As discussed in the next two subsections, thermal diffu-
sion data exist for dilute aqueous solutions of solutes other
than those reported upon in Table I. These data generally
support the predicted solute independence of DT.

2. Data of Shiundu, Williams, and Giddings

Foremost among these other dilute aqueous solution data-
bases is the extensive study by Shiundu et al. �4�. Their
thermal diffusion data were, however, obtained by an experi-
mental scheme very different than that employed by Iacopini
et al. �9�: namely, “thermal field-flow fractionation” �thFFF�

�4,5,14,44�. Except for some brief remarks, it is not our in-
tention here to comment in detail on the accuracy of their
thermal diffusivity results, especially as none of their data �or
indeed any of the data reported here, other than that of Iaco-
pini et al. �9�� pertain to the key issue of a possible change in
the algebraic sign of DT at 4 °C. The DT data of Shiundu et
al. �4� are reproduced above in Table II for those of their
experiments performed without the significant addition of
salts, surfactants, or buffers to the water containing the sol-
utes to be tested. The water did, however, contain 0.1 nM of
tertiarybutylammonium perchlorate �TBAP�. This was added
as an electrolyte in order to suppress agglomeration of the
solute molecules that would otherwise occur in its absence,
creating experimental complications.

Assigning an appropriate of degree of accuracy to the
results of Shiundu et al. �4� is problematic for a variety of
different reasons, not the least of which were the relatively
large temperature differences imposed across the walls of
their apparatus in relation to the strong temperature depen-
dence of the physical properties of water, especially its ther-
mal expansivity �cf. Table V�. For example, it appears �from
their Fig. 2� that the temperature difference across the gap
between the walls of their thFFF channel was at least 24 °C
in some of their PS experiments, while the temperature of the
cold wall was systematically varied between 25 and 40 °C,

TABLE I. Estimated experimental thermal diffusion parameters
for various athermal solutes in water for use in Eq. �12�.

Solute
A
1012

�m2 s−1 K−2�
T*

�°C�
DT
1012 �25 °C�

�m2 s−1 K−1�

PSa 0.0823 6 1.6

SDSb 0.138 4 2.9

NAPSSc

Mw=15 400d 0.169 4 3.5

Mw=32 900 0.139 4 2.9

Mw=74 000 0.112 4 2.4

aPS=polystyrene latex particles �radius=30 nm�.
bSDS=sodium dodecyl sulfate �ionic micelles�.
cNaPSS=sodium polystyrene sulfonate �a linear polyelectrolyte�.
dMw=molecular weight.

TABLE II. Experimental thermal diffusivities of aqueous
solutionsa of various latex solute particles, and of different sizes
obtained by thFFF. Data of Shiundu, Williams, and Giddings Ref.
�4�.

Particle diameter
��m�

Thermal diffusivity
DT
1012

�m2 s−1 K−1�

PSb

0.105 3.63

0.220 3.05

0.300 2.55

0.398 2.01

PBc

0.121 3.25

0.232 2.80

0.410 1.95

0.550 1.50

PMMAd

0.130 3.29

0.299 2.09

0.347 1.97

0.586 1.26

aThe water contained 0.10 nM of tertiarybutylammoniumperchlo-
rate as an electrolyte in order to coulombically screen the particles,
thereby minimizing collective interparticle interactions.
bPS=polystyrene latex particles.
cPB=polybutadiene latex particles.
dPMMA=polymethylmethacrylate latex particles.
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with the spacing between the channel walls of the apparatus
lying somewhere between 50 and 250 �m. Since the theo-
retical equations underlying the interpretation of their experi-
ments treat key fluid properties, most notably DT and D, as
being constant across the gap, this gives rise to uncertainties
whose magnitudes remain to be estimated.

Owing to such temperature variations, the reported DT
values in Table II represent an average over the thFFF chan-
nel gap. Judging, for example, from the temperature depen-
dence of the PS solute as embodied in Eq. �12� and corre-
sponding to the A value for PS in Table I, it would appear
that such uncertainties could, in fact, be comparable in mag-
nitude to the DT values themselves cited in Table II. Of par-
ticular note in this context is the significant difference be-
tween the values of Shiundu et al. �4� for aqueous PS
solutions in Table II and those of Iacopini et al. �9� in Table
I.

Questions of accuracy aside, it should be noted that the
data reported in Table II endorse, at least qualitatively, the
hypothesis that, for a given solvent, DT is essentially the
same for all solutes. The accompanying prediction of solute
size independence in aqueous solutions based upon Eq. �11�
does not appear to be comparably well satisfied by these
data, which clearly suggest a systematic trend entailing a
decrease in thermal diffusivity with increasing particle size.
However, given the relatively large sizes of some of the par-
ticles, the question of whether the residence time in the
thFFF apparatus was sufficient for the particle’s translational
Brownian motion to have been properly manifested needs to
be explored. Given that DT is intrinsically a molecular at-
tribute �rather than a macroscopic thermophoretic attribute�,
thus requiring expression of the particle’s Brownian motion,
the possible failure of the particle’s Brownian motion to be
properly manifested is an issue that remains to be resolved
�61�.

3. Data of Chan et al.

These authors, like Shiundu et al. �4�, also used a thFFF
cell to measure the Soret coefficients ST of dilute aqueous
solutions of a series of fractionated polyethylene glycol
�PEG� polymers, with the respective fractions ranging in mo-
lecular weight from about 200 to 20 000. In combination
with their independent mutual binary diffusion measure-
ments of D for these same solutions, this enabled Chan et al.
�16� to determine DT. These experiments showed the thermal
diffusivity of the aqueous PEG solution to be independent of
the PEG’s molecular weight over the entire Mw range stud-
ied, averaging out to about DT=5.5
10−12 m2 s−1 K−1. Indi-
vidual molecular weight-specific measurements deviated less
than about ±0.3
10−12 m2 s−1 K−1 from this average over
the entire range of molecular weights. �This aqueous PEG DT
value is repeated in Table III.�

This PEG DT value is somewhat larger than those of the
other aqueous values tabulated in Tables I and II �over sub-
stantially the same temperature range�. Moreover, the obvi-
ous consistency of these PEG data would appear to identify
them as being statistically different from the other water-
based data cited. Given the strongly polar natures of both the

solute and solvent in these aqueous PEG experiments, such
differences might have been anticipated.

4. “Exceptional” behavior: The data of Regazzetti et al.

Regazzetti et al. �6,62� present thFFF-derived thermal dif-
fusion data for dilute aqueous “suspensions” of 3-�m-diam
Si-OH �porous spherical silica gel� particles. These aqueous
DT data are summarized in Table III. Because entities of this
size are too large to undergo appreciable Brownian motion
on the time scale of most experiments, these essentially
purely macroscopic experiments constitute an important
counterpoint to the previous aqueous data sets cited in Tables
I and II, especially that of Iacopini et al. �9� in Table I.

TABLE III. Thermal diffusivities or thermophoretic mobilities
DT for several different solvents and solutes.

Solute
ThFFF

experiment?

Thermal
diffusivity
DT
1012

�m2 s−1 K−1� Reference

SOLVENT

Water

PEGa Yes 5.5 �16�
Si-OHb Yes 22 �6�

Acetonitrile

Si-OHb Yes 16 �6�
Si-ODSc Yes 5.2 �6�

n-Heptane

Si-ODSc Yes 5.7 �6�

Toluene

POSd Yes 4.1-4.2 �11�
PSe No 11.5 �13,15,17�

n-Pentane

n-decane
xn-decane=0.20

No 9.28±0.75 �28�

n-decane
xn-decane=0.50

No 7.54±0.61 �28�

n-decane
xn-decane=0.80

No 7.18±0.59 �28�

aPEG=polyethylene glycol �DT was observed to be essentially in-
dependent of molecular weight over the molecular weight range
from about 2
102 to 2
104�.
bSi-OH=Hypersil 3 �m �a porous spherical silica gel�.
cSi-ODS=Hypersil-ODS 3 �m �same as Si-OH, but coated with a
monolayer of octadecyl silane�.
dPOS=polyorganosiloxane nanospheres �DT was observed to be es-
sentially the same for the two sphere radii studied—namely, 19 and
25 nm�.
ePS=polystyrene �DT was observed to be essentially independent of
molecular weight over the molecular weight range from about 2

103 to 3
106�.
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Regazzetti et al. �6� refer to their thFFF-derived DT values as
“thermophoretic mobilities” rather than �true� thermal diffu-
sivities and posit that these data �as well as their data for the
other solute/solvent systems which they studied—see Table
III� present, for the first time, unequivocal evidence of the
phenomenon of thermophoresis in liquids. Previous evidence
of the existence of such macroscopic thermophoretic motion
in fluids had been confined exclusively to gases, the sole
exception being the liquid-phase study by McNab and
Meisen �34�; see the discussion of their work in Ref. �47�.

By explicitly assigning a different name to the quantity
DT measured in their experiments, Regazzetti et al. �6� ap-
pear to give implict recognition to the fact that thermophore-
sis is a single-particle phenomenon pertaining to the motion
of a macroscopic, non-Brownian solid body, manifested by
the migration of such a particle through a single-component
fluid under the influence of an externally imposed tempera-
ture gradient. As such, their choice of terminology appears
meant to distinguish thermophoresis from thermal diffusion,
the latter being a strictly molecular phenomenon occurring
only in mixtures �solutions� of miscible species. However,
since their data were obtained in a thFFF device and since
the interpretation of data obtained therefrom depends cru-
cially upon the solute particle experiencing �transverse�
diffusion—both thermal and mutual—as well as upon the
residence time in the device being of sufficient duration to
assure the attainment of a transverse steady state �63�, ques-
tions naturally arise with respect to the consistency of their
thermophoreticlike experiments with the notion of thermal
diffusion.

Maintaining this terminological distinction between ther-
mal diffusion and thermophoresis is important, especially as
much of the current thermodiffusion literature on liquids has
tended to blur the fundamental distinction between these two
phenomena. As such, especially with regard to particles
whose size renders them Brownian in their behavior, as op-
posed to macroscopic �referring to the particulate data in
Tables I and II and, later, Table IV�, fundamental questions
could be raised about whether thermophoretic mobilities
�measured in thFFF devices� and thermal diffusivities �mea-
sured in static Soret devices� are to be regarded, unequivo-
cally, as one and the same entity.

This issue is compounded by recent theories which, fol-
lowing a proposal by Ruckenstein �64�, argue that the ther-
mal diffusion of solid solute particles in liquids is analogous
to the Marangoni migration of “bubbles” �droplets as well as
gas bubbles �65,66�� through liquids, caused by an externally
imposed temperature gradient. This solute motion is attrib-
uted to Marangoni stresses �65� at the solute particle-solvent
interface stemming from the variation in the bubble’s inter-
facial tension with temperature. Such a model of migration
might possess some degree of legitimacy in the case of mac-
roscopic solid particles were one to suppose that solid-liquid
interfacial tension �including its variation with temperature�
was a well-understood phenomenon, which it is not. More-
over, one might even attempt to extend this Marangoni
model to the case where the particles were Brownian in size,
each regarded as being a single macromolecule �our empha-
sis here being on the last syllable of the latter: namely, the
phrase “molecule”�. However, it does not appear, at least not

to us, that this model can rationalize thermal diffusion phe-
nomena in liquids, since the latter is a strictly molecular
phenomenon. Individual molecules, whether macromolecular
or, simply, micromolecular in size, do not, after all, possess
macroscopic surfaces; nor does the concept of an interfacial
tension at a point lying on such a hypothetical molecular
surface, much less its local positional variation with tem-
perature at that point, appear acceptable as a viable concept,
given that interfacial tension is a joint macroscopic property
of contiguous multiphase continua.

That said, how do the non-Brownian themophoretic mo-
bility Si-OH data of Regazzetti et al. �6� in Table III, based
on water as the solvent, compare with the water-based
Brownian particle and molecular data of others cited in
Tables I and II? Explicitly, as noted, Regazzetti et al. �6�

TABLE IV. Thermal diffusivities of various solute particles, and
of different sizes, in acetonitrilea obtained by thFFF. Data of Shi-
undu, Williams, and Giddings Ref. �4�.

Particle diameter
��m�

Thermal diffusivity
DT
1012

�m2 s−1 K−1�

PSb

0.105 9.07

0.220 7.67

0.300 6.58

0.398 5.47

PBc

0.121 8.21

0.232 6.57

0.410 5.21

0.550 4.03

PMMAd

0.130 10.2

0.299 7.14

0.347 6.74

0.586 4.06

Palladium metal particles

0.2±0.1 6.14

Platinum metal particles

0.3 7.53

Silica

0.15 5.00

0.25 4.84

0.50 3.69

aThe acetonitrile contained 0.10 nM tertiarybutylammoniumper-
chlorate as an electrolyte.
bPS=polystyrene latex particles.
cPB=polybutadiene latex particles.
dPMMA=polymethylmethacrylate latex particles.
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report a value of DT=22
10−12 m2 s−1 K−1 for 3-�m-diam
Si-OH particles in purified water free of dissolved electro-
lytes. This value exceeds by a large margin those for the
other water-based solutes cited in the preceding Tables I and
II �as well as the PEG value in Table III�. Whether the dif-
ference is to be attributed to solute size, the purity of the
water, or to as yet unresolved interpretative issues associated
with use of a thFFF cell, as discussed earlier, remains to be
seen.

B. Summary of data for the aqueous solutions

The fact that all of the varied DT data in Tables I–III for
dilute aqueous solutions and suspensions embrace only a
relative modest range of numerical values �except for the
Regazzetti et al. �6� Si-OH data in Table III� is not inconsis-
tent with our model-based prediction of Eq. �11� that DT
depends predominantly upon the properties of the solvent—
namely, water in the present instance—at least in idealized
circumstances. Inasmuch as Dv and � constitute properties of
the solvent, the fact that the experimental DT values are not
identical reflects upon the fact that the �implicit� � values
vary to some extent with the choice of solute. While the
requisite criteria of relative solute size and diluteness appear
to have been met by these data, the strongly polar nature of
water renders satisfaction of the criterion of solute inertness
unlikely irrespective of nature of the solute, in which case
such �implicit� variations in � values might have been antici-
pated. That the explicit � values are indeed of O�1� is dis-
cussed in Sec. VI following the introduction of the hypoth-
esis that Dv=DS.

V. COMPARISON WITH LIQUID-PHASE EXPERIMENTS:
(II) NONAQUEOUS SOLVENTS

The nonaqueous experimental DT data tabulated in Tables
III and IV embody a potpourri of different nonaqueous sol-
vents and solutes dissolved or dispersed therein, the latter
only for the dilute-solute case and then only for solutes
whose molecules are large compared with those of the sol-
vent. �Note that data on acetonitrile as the solvent appear in
both tables.� Given the availability in the literature of DT
values for a large number of solvent/solute combinations, the
limited selection of data in these tables is, as stated earlier,
meant to be neither comprehensive nor systematic. In antici-
pation of our subsequent presentation in Sec. VI of a theory
suggesting that the volume diffusivity Dv appearing in Eq.
�11� is, in fact, equal to the solvent’s �isothermal� self-
diffusivity DS, the limited choice of solvents displayed in
these tables is further conditioned by the concomitant avail-
ability of self-diffusion data for these particular solvents. In
addition, given that one of the idealizations underlying our
model requires that the solvent molecules be substantially
smaller in size than those of the solute �or the Brownian
solute particles in the case of “nonmolecular” solutes�, these
tables embody only solute/solvent pairs for which this con-
dition appears likely to have been satisfied.

It is evident, however, apart from the n-pentane/n-decane
�P-D� mixture data �28� �Table III�, that the other solute/

solvent combinations cited in these tables are unlikely to
fulfill the criterion of physicochemical inertness required in
order that the model be strictly applicable thereto with a
value of �=1. Explicitly, without claiming to have per-
formed an exhaustive search of the pertinent liquid thermal
diffusion database, we were able to locate pertinent data for
only this single mixture whose attributes appeared more or
less certain to accurately fulfill all three basic idealizations
and for which self-diffusion data were also available. �But
see also Sec. VIII E, where the system benzene-cyclohexane
is discussed in the context of “inertness.”� In this context it is
also important to note two facts: �i� the P-D mixture is the
only nonaqueous solution for which the solute molecules
were not macromolecular in size and hence for which use of
either the Marangoni model or the thermophoretic boundary-
slip model of thermal diffusion would be absurd; and �ii� the
P-D combination is the only mixture appearing in Tables III
and IV �apart from the PS/toluene mixture� for which the DT
values were not obtained using a thFFF device and hence for
which the related issues of the magnitude of the Brownian
motion or the residence time in the device were not a matter
of concern.

In the interest of brevity, the DT-related data presented in
these tables and in the subsequent text summarize only the
barest technical details regarding the background of the data
cited. Further details relating thereto appear, of course, in the
original publications cited. �Unless otherwise stated, the fol-
lowing data appear to refer to temperatures averaging out to
about 25 °C or thereabouts, although the temperature issue
for the nonaqueous solvents cited in these tables is nowhere
near as critical as it was in the case of Table I, which in-
volved water near its temperature of maximum density.�
Overall, it is seen that each of these nonaqueous data sets
support the hypothesis that, for a given solvent, the DT value
is essentially the same for all solutes �except the data of
Regazzetti et al. �6� for Si-OH in acetonitrile�.

The respective n-heptane and n-pentane solvent data in
Table III, respectively, pertain to single, rather than multiple,
solutes, and therefore neither data reflect upon the issue of
the solute independence of DT for a specified solvent. Rather,
these data appear here only in connection with their subse-
quent role in supporting the hypothesis advanced in the next
section that Dv=DS, as embodied in Eq. �13�.

VI. IS THE SOLVENT’S VOLUME DIFFUSIVITY Dv
EQUAL TO ITS ISOTHERMAL SELF-DIFFUSIVITY DS?

A. Experimental basis underlying the hypothesis that
Dv=DS in liquids

This section focuses on making plausible the hypothesis
that the solvent’s volume diffusivity Dv appearing in Eq. �11�
is, in fact, equal to its self-diffusivity DS. This is accom-
plished by showing that �=O�1� for all solutes tested and
that ��1 in the single case where ideality would be ex-
pected: namely, for the n-pentane/n-decane mixture. In all
prior discussions of this issue of the constitutive equation for
the volume diffusivity, dating back to the original develop-
ment of the notion of diffuse volume transport �45�, it was
believed that Dv=� in single-component fluids �gases as
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well as liquids�, where �=k /�ĉp is the fluid’s thermometric
diffusivity, in which ĉp is its isobaric specific heat. The va-
lidity of this assumption regarding � has both a theoretical
and experimental basis in the case of ideal gases �52�, espe-
cially those gases that could be regarded as composed of
Maxwell molecules �32�. However, in such circumstances, �
is essentially equal to the gas’s self-diffusivity DS �37,46�—
the ratio of the two being the Lewis number—in which case
one could just as well have written that Dv is equal to DS
rather than to �. The basis of our modified hypothesis lies in
the recent recognition �36–38� that the diffusional flux of
volume is a consequence of the existence of fluctuations and
that such fluctuations are quantified in single-component flu-
ids by their respective self-diffusivities DS, rather than by
their thermometric diffusivities �.

Given the identification of fluctuations as the driver for
the diffuse transport of volume �36–38�, together with the
fact that fluctuations exist in both gases and liquids, it thus
seems reasonable to introduce the hypothesis that, for both
states of matter, one should have that

Dv=
?

DS. �13�

Despite the existence of a fluctuation-based rationale behind
Eq. �13�, the presence of the question mark surmounting the
equality sign is meant to suggest that this relation should be
regarded objectively as constituting a strictly empirical phe-
nomenological hypothesis, one to be ultimately justified or
rejected on the basis of the agreement of its consequences
with experiment. However, this caveat notwithstanding, Eq.
�13� will be seen in Sec. VII to possess a sound gas-kinetic
theoretical basis in the case of gases, to the extent that an
explicit quantitative formula, one that accords with experi-
ment, can be derived expressing � in terms of the gas’s mo-
lecular properties.

Experimental verification of Eq. �13� requires designing
an appropriate experimental protocol meant to measure the
phenomenological coefficient Dv appearing in Eq. �2�. In
fact, this issue possesses two distinct aspects, since it has to
be established concurrently that the diffusive volume flux is,
functionally, linearly dependent upon ��, all other things
being equal. Given that volume is a nonmaterial property of
a fluid, such questions cannot be lightly approached, no more
than was internal energy or momentum the particular exten-
sive property to be measured, each of which is equally non-
material in nature. And one can neither see, feel, taste, smell,
nor otherwise sense, directly, such abstract nonmaterial prop-
erties. Experience in such matters, whether experimental or
merely philosophical, teaches that one has necessarily to ap-
proach such issues indirectly, since thermodynamically ex-
tensive nonmaterial properties cannot be directly measured
in experiments. And this imposition of an indirect measure-
ment scheme, in turn, necessitates relying upon the validity
of subsidiary hypotheses. Thus, as will be seen, a nontrivial
chain of reasoning necessarily underlies any attempt to con-
firm Eq. �13�.

In the present thermal diffusion context and in light of the
closing remarks of the preceding paragraph, it is important to
recognize that the necessity for confirming the validity of the

constitutive equation �2� for the diffuse volume flux, irre-
spective of subsequently establishing the functional depen-
dence of Dv upon the solvent’s properties, rationally pre-
cedes establishing the validity of Eq. �11� for DT. That is,
were Eq. �2� to be proved wrong, Eq. �11� could not then
possibly be correct under any circumstances. As such, the
question of the correctness of Eq. �13� is independent of its
possible use in connection with Eq. �11�. Stated explicitly,
the introduction of Eq. �13� into Eq. �11�, so as to obtain the
relation

DT=
?

�DS� , �14�

does not provide a rigorous test of the validity of Eq. �13�,
per se, inasmuch as the failure of Eq. �14� to agree with
experiment �with � of order unity� could still be attributed,
for example, to a lack of physicochemical inertness of the
solute, despite Eq. �13� being true. After all, Eq. �13� has
nothing whatsoever to do with the presence of a solute in the
solvent. On the other hand, were Eq. �14� found to accord
with experimental thermal diffusivity measurements, espe-
cially in circumstances where the solute could be regarded as
substantially inert with respect to its physicochemical inter-
action with the solvent, this would then be a strong indicator
of the correctness of the more basic relation �13�. This
lengthy preface brings us, therefore, to the stage of effecting
a comparison of the predictions of Eq. �14� with the data in
Tables I–IV.

Effecting a comparison of our fluctuation theory perspec-
tive with experiment is tantamount to calculating the value of
� for each data point in Tables I–IV, enabling us thereby to
establish how close this parameter is to unity. Operationally,
however, rather than compiling � values for each entry, we
have simply tabulated in Tables V and VI theoretical values
of the defined quantity

DT
*
ª DS� �15�

for each solvent listed in Tables I–IV, based upon the known
thermal expansivity and self-diffusivity of each at the tem-
peratures of interest. The � value for each solvent �and sol-
ute� for which data are tabulated in Tables I–IV can then be
obtained from the relation

� =
DT

DT
* �16�

for any or all of the individual DT entries in Tables I–IV.
However, rather than doing so in detail, we believe that it
will suffice on the part of the reader to simply mentally com-
pare the experimental DT values tabulated in Tables I–IV
with the respective calculated DT

* values in Tables V and VI
for each specified solvent. The disparity or agreement be-
tween these two sets of numbers for the given solvent then
provides a simple overview of how well our underlying
fluctuation-based notion of thermal diffusion accurately re-
flects the physics of the phenomenon.
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B. Comparison of theory and experiment: Is �=O„1… for all
solute-solvent combinations?

Based upon the experimental data available for both the
self-diffusivity and thermal expansivity of water over a range
of temperatures, the last column of Table V presents the hy-
pothetical thermal diffusivity DT

* defined by Eq. �15�, arbi-
trarily representing the idealized �=1 limiting value of the
theoretical DT value for the case of perfectly inert solutes
dissolved or dispersed in water. Table VI presents the corre-
sponding data �at 25 °C� for the four nonaqueous solvents
cited in Tables III and IV.

1. Water as the solvent

Consider, first, the aqueous experimental DT data in
Tables I and II �as well as the two water-based entries in
Table III� in relation to the value of DT

* =0.59

10−12 m2 s−1 K−1 in Table V for water at 25 °C. Except for
the two aqueous entries in Table III, this corresponds to val-
ues in the range ��2–6. Being of O�1�, these � values are
thus of the right order of magnitude. However, by virtue of
encompassing a threefold range of values for the different
solutes, this conclusion is not fully in accord with the hy-
pothesis that � should have essentially the same value for all
solutes. Moreover, the aqueous Si-OH value in Table III lies
significantly outside this threefold range, as too does the cor-
responding PEG data, although the latter to a lesser extent.
This Si-OH “anomaly” could, conceivably, be a consequence

of the fact that the 3-�m-diam particles were not Brownian.
In any event, given that water molecules are highly polar, the
strong noninertness assumption required for Eq. �14� to be
strictly applicable would seem unlikely to have been met by
virtually any solute dissolved or dispersed in water. In addi-
tion to this noninertness rationalization of the departure of
the Si-OH/water data of Regazzetti et al. �6� from expecta-
tions, questions arise, as earlier discussed in the context of
the accuracy of the �non-temperature-specific� DT data in
Table II �as well as that of the aqueous Si-OH entry in Table
III�, all of which were obtained by thFFF measurements.

2. Nonaqueous solvents

Table VI presents DT
* values for each of the four nonaque-

ous solvents listed in Tables III and IV. Calculation of the �
values via Eq. �16� based on the experimental DT values
appearing in these tables leads to observations and conclu-
sions similar to those for the aqueous case, discussed above.
Here again, the 3-�m Si-OH solute data of Regazzetti et al.
�6� in Table III, albeit this time for acetonitrile rather than
water as the solvent, deviates markedly from the other non-
aqueous � values.

Of special interest is the n-pentane/n-decane �P-D� data in
Table III, since n-decane is the only solute on the list whose
molecules are not macromolecular in size. Moreover, this
P-D mixture DT data �28� were not obtained in a thFFF de-
vice. Although the data in this table indicate that the

TABLE V. Properties of liquid water at 1 atm and various temperatures used to calculate the hypothetical
thermal diffusivity DT

* of solutes dissolved or dispersed in water.

Temperature
�°C�

Thermal expansivitya

�
103

�K−1�

Self-diffusivityb

DS
109

�m2 s−1�

Hypothetical thermal diffusivity for �=1
DT

* 
1012

�m2 s−1 K−1�

0 −0.0681 1.10 −0.075

1 −0.0501 1.14 −0.0571

3.984 0.0000 1.26 0.000

4 0.00027 1.26 0.00034

5 0.0160 1.30 0.0208

10 0.0880 1.53 0.135

15 0.151 1.77 0.267

20 0.207 2.02 0.418

25 0.257 2.30 0.591

30 0.303 2.59 0.785

35 0.346 2.91 1.01

40 0.385 3.24 1.25

45 0.422 3.59 1.51

50 0.458 3.96 1.81

60 0.523 4.75 2.48

70 0.584 5.62 3.28

80 0.641 6.56 4.20

90 0.696 7.57 5.27

100 0.750 8.67 6.50

aReference �96�.
bReference �97�.
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n-decane solute concentrations employed in the experiments
were insufficiently small to have achieved the “dilute” solute
status presumably necessary for Eq. �14� to be strictly appli-
cable, the relatively modest variation of DT with n-decane
concentration nevertheless encourages extrapolation of the
data to zero solute concentration in order to estimate the
limiting dilute solution value of DT. In turn, given the mag-
nitude of the experimental uncertainties in the data, it does
not appear overly presumptuous to conclude that our theory
is not in disagreement with the P-D data, since the extrapo-
lated � value is very close to the theoretically expected value
of �=1 for thermodynamically “ideal” mixtures.

3. Theoretical basis underlying Eq. (13) in the case of liquids

From a theoretical point of view, the posited validity of
Eq. �13� rests on the fundamental role played by fluctuations
in the notion of diffuse �i.e., nonconvective� volume trans-
port �45�. This fluctuation-based role can be seen most
clearly by considering the closely related case of mutual
mass diffusion in isothermal thermodynamically ideal binary
fluid mixtures, both gaseous and liquid. In this purely iso-
thermal context, wherein thermal gradients play no role in
contemplating fluctuations �thus excluding � from consider-
ation as a possibly relevant variable in the analysis� and
hence for which the fluctuations are associated exclusively
with fluctuations in composition, volume transport theory
�45� teaches that the diffusional volume flux is given, un-
equivocally, by the expression jv=D� ln �, with D the
Fick’s-law binary mutual diffusion coefficient—in which
case comparison with Eq. �2� yields Dv=D. Thus, in contrast
with the single-component relation �13�, there exists no

doubt of the correctness of identifying the fluid’s volume
diffusivity Dv with its diffusivity D in the isothermal two-
component case �67�. The suggested analogy here between
the two-component isothermal relation Dv=D and its single-
component nonisothermal counterpart, Dv=DS, is self-
evident, given that, in both cases, fluctuations constitute the
sole source of the diffuse volume transport process.

Other seemingly compelling reasons exist for belief in the
validity of Eq. �13�. These can be seen from a recent analysis
�37� of the nonisothermal isobaric density distribution �
=��x� prevailing within a confined single-component fluid
�either gas or liquid� at rest between two parallel walls while
undergoing one-dimensional steady-state Fourier heat con-
duction in the absence of gravity. It was argued in that con-
text that this nonuniform density distribution could be envi-
sioned as representing a kinematical mass balance between a
flux Un of molecules being conveyed in a piggyback mode
preferentially towards one of the two walls as a result of the
prevailing temperature gradient, while being opposed by a
back-diffusion flux of molecules, −D��n, as a consequence
of the ensuing gradient in the molecular number density n.
Here, U is the fluid’s “drift velocity” and D� its so-called
nonisothermal self-diffusivity �37�. Inasmuch as �=mn, with
m the molecular mass, this flux balance leads immediately to
the relation U=D��ln � in single-component nonisothermal
fluids. By then identifying U with the fluid’s volume velocity
vv �the latter equal to the fluid’s diffuse volume flux jv in
present circumstances wherein Eq. �1� applies� and further
identifying D� with the fluid’s isothermal self-diffusivity DS,
one thus recovers the posited relation �13� as a consequence
of Eq. �2�. While the original derivation �37� dealt only with
gases, in which case D� was identified with �, the kinemati-
cal balance scenario clearly applies equally to liquids, in
which case it is more natural to identify D� with the liquid
solvent’s self-diffusivity DS.

VII. THERMAL DIFFUSION IN GASES

A. Application of the theory to gases

While we have thus far emphasized thermal diffusion in
liquids, there is nothing in the derivation of Eq. �14� to pre-
vent its being applied to gaseous binary mixtures, provided
only that the basic criteria entering into its derivation are
satisfied. What is of interest in this context is the fact that
satisfactory theories of thermal diffusion in gases have ex-
isted for almost a century, following the pioneering work of
Enskog and Chapman �32�. Moreover, since these theories
are much broader in scope than is Eq. �14�, comparison of
the respective predictions of the two can provide potentially
useful insights into the limitations of our more specialized
theory, at least when applied to gases. The hope, of course, is
that some of the conclusions thereby gleaned may carry over
to the case of liquids, where no comparably satisfactory gen-
eral theory currently exists to suggest the limitations of Eq.
�14�.

In effecting the proposed comparison of Eq. �14� with
experimental results for gases, it needs to be borne in mind
that the quantity termed the thermal diffusivity in the gas-
phase literature, and there designated by the same symbol DT

TABLE VI. Properties of various solvents used to calculate their
hypothetical thermal diffusivities DT

*.

Thermal
expansivitya

�
103

�K−1�

Self-
diffusivity
DS
109

�m2 s−1�

Hypothetical
thermal diffusivity

for �=1
DT

* 
1012

�m2 s−1 K−1�

SOLVENT

Tolueneb,c

1.05 2.66 2.8

Acetonitriled

1.35 4.34 5.9

n-Heptanee,f

1.24 3.12 3.9

n-Pentanef

1.58 5.5 8.7

aReference �98�.
bReference �99�.
cReference �100�.
dReference �101�.
eReference �102�.
fReference �103�.
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as here, is really equivalent to our TDT �with the gas-phase
thermal diffusivity possessing the dimensions of a true dif-
fusivity, namely �length�2/time�. Accordingly, in order to
avoid confusion in what is to follow, we affix a prime to the
gaseous thermal diffusivity symbol, writing it as DT�, so that
DT��TDT, with DT the thermal diffusion coefficient appear-
ing throughout the present paper, including in what follows.
The gas-phase thermal diffusivity DT� is rarely used in prac-
tice to quantify thermodiffusion effects �31,32�. Rather, pref-
erence favors use of the so-called thermal diffusion factor
�T, a dimensionless quantity defined as �T=DT� /D�TST and
thus related to the Soret coefficient ST=DT� /DT�DT /D �68�.

Binary mixtures composed of gaseous H2 �as the “sol-
vent”� admixed with each of the noble gases Ne, Ar, Kr, and
Xe �as the respective “solutes”� �69� represent candidates
likely to approximate all the criteria necessary for the appli-
cability of Eq. �14�. Accurate experimental data for �T and D
at a common temperature, and in the dilute solute concentra-
tion limit needed to evaluate DT for each of these mixtures,
are provided by Dunlop et al. �69� over an extensive range of
temperatures. Their data at 300 K are summarized in Table
VII together with the values of DT calculated therefrom for
each noble gas. It should be noted from these data that, in-
dependently of the numerical value of the volume diffusivity
Dv, our theoretical prediction that this “tracer” thermal dif-
fusivity should be the same for all inert solutes �at least those
whose molecules are large relative to those of the solvent� is
borne out by these data, at least approximately.

The self-diffusivity of gaseous hydrogen at this tempera-
ture is �approximately� DS=1.4
10−4 m2 s−1 ��32� p. 267�.
Since �=1/T for ideal gases—namely, H2 in the present
case—Eq. �15� furnishes the value DT

* =4.7

10−7 m2 s−1 K−1 at 300 K. In turn, from Eq. �16�, this
yields the � values shown in the last column of Table VII for
each noble-gas solute. The next subsection shows that these
values of � �including the fact that � is essentially the same
for all solutes� accord well with theoretical expectations
based upon the gas-kinetic theory analysis of de la Mora and
Mercer �70�.

B. Gas-kinetic theory prediction of the value of �

de la Mora and Mercer’s �70� quasi-Lorentzian analysis
neatly complements our present purely continuum-level

transport arguments by explicitly identifying and quantifying
the molecular-level factors that need to be considered in es-
tablishing the magnitude �as well as the algebraic sign� of �
in the case of gases. Their work was recently reviewed by the
present writer �37� in a context not wholly dissimilar from
that addressed here. A remarkable feature of their analysis,
and one in complete accord with our theory, is that when a
large disparity exists between the respective molecular
masses in a binary gaseous mixture and when the mixture is
dilute in the heavier species �the “solute”�, corresponding
collectively to a so-called quasi-Lorentzian mixture �32,37�,
the thermal diffusivity DT of the mixture depends only upon
the transport properties of the lighter of the two species
�namely, the “solvent”�.

As summarized in Ref. �37� and as reexpressed in our
present notation, the calculations of de la Mora and Mercer
lead to the relation D�T=CM/M�, where D and �T are, re-
spectively, the mutual diffusion coefficient and thermal dif-
fusion factor, as already defined, while � is the kinematic
viscosity of the light species. The dimensionless O�1� CM/M

coefficient, referring to the light gas, is given by the expres-
sion

CM/M =
3

2
�3

12
*

11
* −

5

2
� , �17�

where the above  integrals are those tabulated in the Ap-
pendix to the book by Hirschfelder et al. �71�. Values of
CM/M calculated therefrom are tabulated in Ref. �37� for vari-
ous collisional potential-energy models, including Lennard-
Jones 6-12, square-well, hard-sphere, etc., over a wide range
of reduced temperatures T* �with CM/M attaining asymptotic
values as T*→� of 0.517 in the Lennard-Jones case and 0.75
in both the square-well and hard-sphere cases�.

In terms of our present notation, DT=CM/M� /T. Alterna-
tively, since �=1/T for ideal gases, this can be written in the
form of Eq. �14�, wherein

� = CM/MSc, �18�

in which Sc=� /DS is the Schmidt number for the light-gas
solvent, with DS the latter’s self-diffusivity. As such, the
work of these authors provides a theoretical molecular basis
for Eq. �14�, at least in the case of gases, including establish-

TABLE VII. Experimental thermal diffusivities DT and calculated � values at 300 K for H2–noble-gas
mixtures in the limit where the mole fraction of the specified noble gas solute approaches zero.

Noble gas

Reciprocal thermal
diffusion factora

��T�−1

Mutual diffusion
coefficientb

D
105

�m2 s−1�

Thermal
diffusivityc

DT
107

�m2 s−1 K−1�

�=
DT

DT
*

Ne 2.75 11.76 1.43 0.30

Ar 2.11 8.24 1.30 0.28

Kr 1.92 7.24 1.26 0.27

Xe 1.75 6.23 1.19 0.25

aThis corresponds to c0 in the notation of Dunlop et al. Ref. �69�.
bThis corresponds to D12

0 in the notation of Dunlop et al. Ref. �69�.
cCalculated from the expression DT=�TD /T.
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ing the functional dependence of the nondimensional O�1�
coefficient � upon the properties of the solvent.

The hydrogen-noble gas data of Dunlop et al. �69� in
Table VII provides a basis for judging the accuracy of the de
la Mora–Mercer analysis. In Eq. �18� the Schmidt number
for H2 is about Sc=0.73 �46�. For purposes of estimating
CM/M we adopt the Lennard-Jones 6-12 potential. The
Lennard-Jones parameter for H2 is � /kb=38.0 K �with kb
Boltzmann’s constant� ��46� p. 864�. At 300 K this corre-
sponds to a reduced temperature of T*=kbT /�=7.89 and thus
to the value CM/M�0.48 for the Lennard-Jones potential
case. Similarly, one obtains CM/M=0.39 for the modified
Buckingham 6-Exp12 potential case �37�. As such, the re-
spective theoretical � values for these two intermolecular
models are �=0.35 and 0.26. These values are seen to accord
quite well with the range of experimental values tabulated in
Table VII �72�.

VIII. DISCUSSION AND CONCLUSIONS

A. Review of prior theories applicable to both liquids and
gases

The only other recent work known to us that also pro-
poses a theory of thermal diffusion which is applicable to
both liquids and gases is that of Kempers �73�. Indeed, his
theory also addresses solids. Since Kempers’ paper reviews
earlier theories, we confine our review of the pertinent litera-
ture entirely to his paper.

Kempers’ theory, like ours, is applicable only to binary
mixtures. �74� However, a separate theory of Kempers, al-
though not concerned with the Soret effect, deals with ter-
nary molecular diffusion processes in isothermal mixtures.
However, apart from both addressing the Soret effect, our
theories appear to have nothing in common. They even differ
slightly in their respective goals, since our theory is aimed at
predicting the thermal diffusion coefficient DT, whereas
Kempers’ theory aims at predicting the thermal diffusion fac-
tor, �T=DTT /D. Moreover, where our model addresses only
dilute solutions, Kempers’ theory is not similarly restricted.
Furthermore, in order to predict DT, our theory requires no
knowledge whatsoever of the solute’s physicochemical prop-
erties, only those of the solvent: namely, its self-diffusivity
DS and thermal expansivity �—properties readily available
in handbooks and in the archival literature. In contrast, pre-
dictions of Kempers’ thermal diffusion factor �T require
knowledge of the mixture’s thermodynamic properties �de-
rived in part from a modification of the Soave equation of
state for the mixture�, as well as knowledge of the thermal
diffusion factor �T

0 that would exist in the mixture’s ideal gas
state, the latter derivable from gas-kinetic theory. According
to Kempers, a test of his theory against the experimentally
measured Soret effect in 18 liquid and gaseous mixtures
showed agreement generally to within a factor of about two
over four decades of �T values, although not in all cases. Of
course, in the case of �low pressure� gases, a major portion of
this observed agreement merely represents the fact that the
dominant contribution stems from the ideal gas contribution
�T

0 derived from Chapman-Enskog theory, which is known to
accurately mirror experimental values. Viewed from an over-

all perspective, Kempers’ theory requires a priori data on the
equilibrium and kinetic properties of the mixture itself. In
contrast, our theory does not require any mixture data �ex-
cept, of course, if one wishes to attempt to predict the non-
inertness � factor in our model�.

Among other things Kempers’ model has been tested only
for situations in which the solute and solvent molecules are
both of ordinary size, thus addressing only so-called molecu-
lar fluids. As such, in contrast with our model, which has
been shown to furnish reasonably accurate Soret predictions
for solutes encompassing the entire molecular-size spectrum,
Kempers’ theory has not been tested for either macromolecu-
lar �i.e., polymeric� or colloidal solutes, although he states
that such applications are possible in principle. Moreover, as
discussed in Section VIII F, our theory appears to have some
degree of legitimacy in the case of ionic solutes, in apparent
contrast with Kempers’ model.

B. Orders of magnitude of the thermal diffusivities of liquids
and gases

As seen from Tables I–IV, except under unusual circum-
stances �such as arises in the case of water at temperatures
near to its maximum density, where DT=0� and irrespective
of the particular solute-solvent combination being
considered, virtually all of the experimental liquid-phase
thermal diffusivity values are of the order of DT
=O�10−12� m2 s−1 K−1, at least in the dilute solutions consid-
ered. The same is true of much of the other liquid-phase
thermal diffusivity values available in the literature which we
have examined but not explicitly cited here. This magnitude
is entirely consistent with Eq. �14� and owes to the facts that:
�i� thermal expansivities for most ordinary liquids lie in the
range of about �=O�10−3� K−1 to within a multiple of O�1�
�Ref. “a” in Table VI�; and �ii� the self-diffusivities of these
same liquids obey, at least approximately, the Stokes-
Einstein-Sutherland diffusion relation �54,55� DS
=kbT /3��2d2, where �2 and d2 are, respectively, the sol-
vent’s viscosity and molecular diameter. Since the molecular
sizes of common mobile liquids tend not to differ too much
from one another, and for circumstances where these liquids
possess normal viscosities �thus excluding exceptionally
high-viscosity solvents like glycerine�, typical liquid-phase
self-diffusivities are of the order of DS=O�10−9� m2 s−1 to
within a multiple of O�1� �cf. Tables V and VI�. Use of these
� and DS estimates in Eq. �14� shows why DT values for
liquids tend to be clustered around the O�10−12� m2 s−1 K−1

value cited �75�.
Similar arguments based upon applying Eq. �14� to gases

show that thermal diffusivities should be of the order of DT
=O�10−7� m2 s−1 K−1, in accord with experimental data �cf.
Table VII and other gaseous data �31,32,71��. Explicitly,
based on the Stokes-Einstein-Sutherland diffusion model
�54,55�, self-diffusivities in gases are found to be of the order
of DS=O�10−4� m2 s−1 to within a multiple of O�1� �cf. Table
VII�. Inasmuch as �=1/T for ideal gases, at ordinary tem-
peratures �e.g., T=300 K�, the magnitudes of gaseous ther-
mal diffusivities are thus seen to lie in the range indicated
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above, being larger than comparable values for typical liq-
uids by about five orders of magnitude.

C. Effect of temperature on �

According to the theory presented here, the departure of �
from unity is a manifestation of the effects of noninertness
or, equivalently, nonideality in regard to solute-solvent
physicochemical interactions. It is therefore natural to expect
that, all other things being equal, the higher the temperature,
the closer � should be to unity. Thus, for example, in the case
of liquid water one would expect the extent of hydrogen
bonding to diminish with increasing temperature, resulting in
more ideal behavior by making it easier for a solute molecule
to wend its way through the water by not having to “break”
any bond. It is possible to test this expectation by supposing
that the aqueous athermal DT data of Iacopini et al. �9�, sum-
marized by Eq. �12� and covering the range from 0 to only
40 °C, can nevertheless be extrapolated to 100 °C �a quite
reasonable assumption given the linearity of their data as
displayed in their Fig. 7�. From Table V, it is seen that at
25 °C and 100 °C, DT

* =0.59
10−12 m2 s−1 K−1 and DT
*

=6.5
10−12 m2 s−1 K−1, respectively, for liquid water. Using
Eq. �12� to compute the respective “experimental” DT values,
Table VIII compares the respective � values for aqueous
solutions of PS, SDS, and NAPSS at these two temperatures.
It is evident that the � values for all three athermal solutes
are very much closer to unity at the higher temperature, in
accord with our intuitive expectations.

D. Can � exceed unity?

According to the theory advanced here, �→1 in the lim-
iting case where the solute molecules are “inert” relative to
those of the solvent. The theory does not, however, establish
whether � is greater or less than unity in circumstances
where the solute fails to be inert. The data presented here
suggest that, generally, ��1 in the case of liquids whereas
��1 in the case of gases. Given that the numerical value of
� derives from the issue of the entrainment of a solute par-
ticle in the solvent’s volume flow, it may thus appear strange

that in the case of liquids the solute molecules appear to be
moving faster than those of the solvent, as implied by the
fact that ��1. In resolving this concern it must be borne in
mind that in steady-state Soret-type experiments both the
solute and solvent molecules are, in fact, �on average� mac-
roscopically at rest. In particular, the solvent “velocity” re-
ferred to in the present analysis is that of volume rather than
mass �with mass motion, �vm�2= �nm�2 /�2, referring to the net
movement of solvent molecules through space�. Since vol-
ume is an abstract, nonmaterial property, the notion of a
“volume velocity” here should not be taken literally as refer-
ring to the movement of a material entity through space �45�.
Rather, it is a normalized diffuse flux density, totally disas-
sociated from the net physical movement of matter through
space.

Indeed, one can define the diffuse “velocity” of any ex-
tensive physical property. Thus, if j�, say, denotes the diffuse
flux density or current of any such property �representing the
amount of that property per unit time crossing a unit area� at
a point of a fluid �or even solid� continuum and if � denotes
the density of the property at that point �representing the
amount of the property per unit volume�, then v�ª j� /� con-
stitutes the so-called “property-specific velocity.” In the case
of volume, this gives vv= jv for the volume velocity. Owing
to the nonmaterial nature of volume, the fact that the solute’s
“velocity” can exceed this value, corresponding to the fact
that ��1, does not violate any physical principle. Indeed, in
steady-state Soret-type experiments, since the solute is, in
fact, at rest, the notion of a solute velocity represents only a
virtual or drift velocity �37�. Being thus aphysical, no con-
tradiction to physical law resides in the fact that � can ex-
ceed unity.

E. Benzene-cyclohexane mixtures: Another “inert”
liquid-phase system?

Earlier, we indicated that the only complete liquid-phase
data set of which we were aware for which “inertness” ap-
peared intuitively likely �corresponding to �=1�, occurred
for n-pentane/n-decane mixtures. However, we have subse-
quently become aware of data for another such candidate
mixture: namely, the system benzene-cyclohexane, with ben-
zene serving as the “solvent” in the sense of being the
smaller, lower molecular weight species, and accumulating at
the warmer wall of the Soret apparatus �cf. the following
references�. Pertinent data for this system at 25 °C are as
follows: ST=1.03±0.05
10−3 K−1 �76�, D=2.10

10−9 m2 s−1 �77,78�, DS=2.21
10−9 m2 s−1 �79�, and �
=1.14
10−3 K−1 �Ref. “a” of Table VI�. These respectively
give DT=STD=2.16
10−12 m2 s−1 K−1 and DT

* =DS�
=2.52 m2 s−1 K−1. Accordingly, to within experimental un-
certainties �the error estimate is ours�,

� = DT/DT
* = 0.86 ± 0.04.

The fact that � is not closer to unity can perhaps be ex-
plained in terms of the fact that the cyclohexane molecule is
not sufficiently large relative to that of a benzene molecule
for the disparate size precondition to be met. Another source
is, obviously, the possible failure of our intuitive expecta-

TABLE VIII. � values at different temperatures for various
athermal solutes in water.

Solute
�

�25 °C�
�

�100 °C�

PSa 2.7 1.2

SDSb 4.9 2.0

NaPSSc

Mw=15 400d 5.9 2.5

Mw=32 900 4.9 2.1

Mw=74 000 4.1 1.7

aPS=polystyrene latex particles �radius=30 nm�.
bSDS=sodium dodecyl sulfate �ionic micelles�.
cNaPSS=sodium polystyrene sulfonate �a linear polyelectrolyte�.
dMw=molecular weight.
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tions. That is, whereas both species are hydrocarbons, they
are not members of a homologous chemical family. Irrespec-
tive of the reason, the fact remains that our prediction DT

* of
the thermal diffusivity DT is in error only by about 15%. As
an aside, it is interesting to note that this is the first liquid-
phase mixture encountered for which the � value is less than
unity.

F. Other data in support of the sign change in DT when �=0

Further evidence in support of the discussion in Sec. IV of
the fact that in sufficiently dilute aqueous solutions DT
changes sign at 4 °C for any and all solutes is offered by the
experimental data of Agar and Turner �80� for 0.01 M NaCl
solutions. Thus Caldwell �81�, in the context of his own data
on much more concentrated NaCl solutions �0.5 N�, refer-
ring to their data, states that “Extrapolation of Agar and
Turner’s results for much more dilute NaCl at 25 and
34.7 °C to lower temperatures suggests a change in sign at
5° or so.” Caldwell’s statement is offered in the context of
his experimentally demonstrated belief in the existence of a
strong correlation �based on the theory of Hurle and Jakeman
�82�� between the Soret coefficient ST and the mixture’s ther-
mal expansivity �. Indeed, Caldwell’s 0.5 N NaCl experi-
ments confirm a linear relation between ST and �, although
the relation is not a direct proportionality �i.e., such that ST
=0 when �=0�, which, according to our theory, would be
expected to apply only in dilute solutions, such as that stud-
ied by Agar and Turner �80�.

Equally strong evidence in a similar context is provided
by the results of Alexander �83� on the variation of the Soret
coefficient with temperature in a 0.05 mol/ l aqueous solu-
tion of LiCl, in which the experiments were performed in a
thermogravitational column. Colombani et al. �84�, in com-
paring Alexander’s dilute solution data �83� with their own
LiCl data in significantly more concentrated systems, point
out that Alexander’s data indicate that ST=0 at about 3.6 °C.
Within experimental error this value does not differ from the
4 °C temperature at which water has its maximum density.
Colombani et al. �84�, in relation to this observation, note
that Lin et al. �85� attempted to explain the Soret coefficient
sign change inversion by considering the change in sign of �.

These data sets extend the class of so-called athermal sys-
tems of Iacopini et al. �9� to now include simple electrolytes.
Moreover, the above-cited authors point to the existence of a
prehistory to our belief that DT may be correlated with �.

G. Composition-dependent changes in the algebraic sign of
DT

Section IV A 1, which focuses on evidence that DT=0
when �=0, deals only with changes occurring in the alge-
braic sign of DT arising as the temperature is varied while
keeping the mixture’s composition fixed. This vanishing
thermal diffusivity phenomenon has a counterpart with re-
spect to possible changes in the algebraic sign of �the
temperature-specific� DT occurring as the mixture composi-
tion is changed while keeping the temperature fixed. Indeed,
there exists a growing body of experimental literature dem-
onstrating sign-change phenomena occurring in the latter

composition-varying case, such as arises, for example, in the
case of ethanol-water mixtures �24,27,86�, presumably on
the basis of hydrogen bonding in these highly thermody-
namically nonideal solutions. Indeed, Other examples can be
found in Refs. �30,81�. On the theoretical side, Rousseau et
al. �87�, using molecular dynamics simulations, were able to
explain, quantitatively, the experimentally observed change
in the sign of the Soret coefficient with composition. Other
theories �73,88� aim, inter alia, at this same goal. The source
of the sign change with composition is obviously quite dif-
ferent from that arising from thermal expansivity. Our theory,
of course, provides no insight into such phenomena since it
does not deal with effects of varying composition �89�.

H. Possible pressure-diffusion effects

Given the fact that steady-state Soret experiments entail
no net mass motion, as embodied in Eq. �1�, it has always
been implicitly assumed that the pressure is uniform
throughout the binary mixture, thereby eliminating the pos-
sibility of a pressure-diffusion contribution �90� to the spe-
cies mass flux in Eq. �9�. The isobaric assumption implicit in
Eq. �9� hinges critically on the validity of the Navier-Stokes
equations, in particular—in view of Eq. �1� indicating the
absence of inertial effects—on the applicability of Newton’s
rheological viscosity constitutive law, wherein the velocity
gradient appearing therein is that of the fluid’s mass velocity
vm. However, recent work �38,51,52�, closely related to our
volume-transport view of fluid motion �45� leading to Eq.
�11�, has suggested that the velocity whose gradient appears
in Newton’s viscosity law should be the volume velocity vv
rather than the mass velocity vm. To the extent that this is
indeed true, a pressure gradient might then arise in the
particle-free solvent as a consequence of “thermal stresses”
�51,52� induced by the solvent’s density-cum-temperature
gradient, even in the simple one-dimensional Soret-based ap-
paratus described in the opening paragraph of our presenta-
tion �91,92�. Because it is the divergence of Newton’s vis-
cous deviatoric stress, rather than the stress itself, which
governs the resulting pressure gradient �p, the magnitude
and direction of the latter will depend functionally upon the
temperature-dependence of the solvent’s viscosity, thermal
diffusivity, and especially its thermal expansivity. The pos-
sible effect of such a pressure gradient upon both the theory
underlying Eq. �11� and the experimental evaluation of DT
based upon the modified form of Eq. �9�, which would now
include a pressure-diffusion contribution �41,42�, here ig-
nored, remains to be assessed.

IX. SUMMARY AND CONCLUSIONS

A. Summary

This paper has demonstrated, inter alia, that a theoretical
formula previously derived by us for the thermal diffusivity
DT of a dilute mixture consisting of physicochemically inert
“macromolecular” solute molecules dispersed in a solvent—
and requiring both dynamical and extra-thermodynamic ar-
guments �the latter invoking an assumed Boltzmann distribu-
tion, despite the system’s nonequilibrium nature�—could be
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obtained alternatively by purely kinematical arguments. It
was further shown that the agreement of our previous for-
mula with liquid-phase experiments could be improved, and
its realm of applicability extended so as to include gases,
upon replacing the solvent’s thermometric diffusivity � ap-
pearing in the original formula by the solvent’s isothermal
self-diffusivity DS and by introducing a multiplicative cor-
rection factor � to allow for deviations of the solute-solvent
mixture from “inert” behavior. This led to the formula DT
=�DS� as set forth in Eq. �14�, with � the solvent’s thermal
expansion coefficient and � an O�1� dimensionless param-
eter, presumably equal to unity in the particular case of
physicochemically inert, dilute, disparate-size binary mix-
tures, and �for a given solvent� otherwise weakly dependent
upon the nature of the solute. Arguments based upon gas-
kinetic theory and supported by experiments were shown to
theoretically affirm this new formula. Explicitly, the quasi-
Lorentzian analysis of de la Mora and Mercer �70� for gases,
whose validity we have confirmed in Sec. VII by comparing
its predictions with experiment, was shown to provide a ra-
tional molecular basis for Eq. �14�.

Our new formula for DT, Eq. �14�, was shown on the basis
of the algebraic sign of � to provide a theoretical basis for
rationalizing the observed reversal in the direction of solute
migration with temperature in dilute aqueous solutions at
4 °C by Iacopini et al. �9� for several “athermal” solutes
�93�. Moreover, in accordance with our theory, the thermal
diffusion data in Tables I–IV were shown to provide evi-
dence of the insensitivity of DT to the physical properties of
the solute—be these properties its molecular size or configu-
ration or its physicochemical constitution—as is implicit in
Eq. �14�. In the sole case examined, higher temperatures
were shown to improve agreement between theory and ex-
periment, in accord with expectations.

Whereas Eq. �14� was deemed applicable for only a re-
stricted set of circumstances, comparison of its predictions
with experiments that almost certainly violated these stated
criteria revealed that the formula possesses an unexpected
robustness �94�. The theoretically predicted thermal diffusiv-
ity of n-pentane/n-decane mixtures, the only binary liquid-
phase mixture studied which would be expected to fulfill all
of the basic criteria underlying our model, especially includ-
ing inertness, and for which the requisite DS, �, and dilute
solution DT data sets were also available, agreed well with
experiments in the sense that it was found that �=1 in Eq.
�14� to within the accuracy of the data. Modulo experimental
uncertainties, together with the fact that the set of assump-
tions underlying our theory were almost certainly not met
exactly by any of the liquid-phase solute-solvent systems
analyzed by us �with the possible exception of this
n-pentane/n-decane mixture�, Eq. �14� was shown to be con-
sistent �or, at least, not inconsistent� with the experimental
DT data for each of the several, physicochemically diverse,
solute-solvent liquid-phase systems studied. Excellent agree-
ment of the theory with experiment was also noted in the
gaseous case.

B. Validity of Marangoni-like models of thermodiffusion
phenomena

That Eq. �14� appears to apply to the extraordinary variety
of liquid-phase dispersed solutes listed in the opening para-

graph of this paper, ranging from polymer molecules and
large �albeit submicron in size� metallic colloidal particles
down to solute molecules not much larger than those of the
solvent �as in the n-pentane/n-decane mixture case�, as well
as to gases, casts doubt on the current spate of theoretical
papers whose central thesis argues that thermal diffusion
constitutes a surface-driven Marangoni-like phenomenon
�64�, arising from gradients in interfacial tension or surface
energy over the surface of a single molecule—
macromolecular, mesomolecular, or micromolecular in
size—such gradients, in turn, deriving from comparable tem-
perature gradients over its surface. Apart from the self-
contradictory notion of a macroscopic temperature gradient
acting over the surface of single molecule in a continuum �as
well as the fact that Marangoni-induced particle velocities
increase linearly with particle size �65,66�� is the fact that,
for a given solvent, such interfacial effects would be ex-
pected to be strongly dependent upon the nature of the sol-
ute. Yet, for a given solvent, this predicted functional depen-
dence upon the solute’s physicochemical attributes is not
supported by the data, in the sense that, experimentally, �
=O�1� for all solute-solvent combinations and molecular size
ratios examined, whether referring to liquid- or gas-phase
experiments. Nor is the Marangoni-model-predicted increase
in migration velocity UM �and, hence, in DT �95�� with par-
ticle size borne out by the data in Tables I, II, and IV, which,
without exception, indicate, if anything, a slight decrease in
thermal diffusivity with increasing particle size.

C. Closing remarks

A comprehensive and critical survey of the existing ther-
modiffusion database, as well as the undertaking of several
key experiments implicitly suggested by the results of this
paper, would appear to be warranted by our findings. Among
other things, such studies could serve to establish definitive
trends prerequisite to the creation of a more accurate thermal
diffusion theory, one embodying physical attributes not ad-
dressed by the present elementary kinematical model, espe-
cially composition-dependent effects. In regard to such fu-
ture work, a great deal of liquid-phase thermodiffusion data
capable of serving as a useful guide in this capacity already
exists in the literature. Thus, for example, Zhang et al. �27�
provide extensive and systematic data for both the Soret co-
efficient and mutual diffusivity of toluene/n-hexane mixtures
over the entire range of possible compositions, and at tem-
peratures from 5 to 45 °C. Moreover, self-diffusion and
thermal expansivity data are available for both compounds.
Since the molecules of both species are about the same size,
we made no attempt here to use these data to test our theory,
given the latter’s presumed applicability only to mixtures of
disparate molecular sizes. Nevertheless, any systematic at-
tempts to explore the limitations of the present theory should
certainly take advantage of the availability of temperature-
specific data of this quality, especially as these data were not
obtained in a thFFF device.
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