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Abstract

Using exact results of the properties of photonic crystals consisting of chiral spheres in conjunction with an existing
Maxwell–Garnett-like model for chiral composites we examine the possibility of describing such a crystal as a homogeneous
chiral entity. q 1999 Elsevier Science B.V. All rights reserved.
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Chiral media possess an intrinsic handedness that causes right and left circularly polarised waves to propagate with
w xdifferent phase velocities 1,2 . This circular birefringence suggests that wave interactions in periodic chiral media will

induce a richness of phenomena associated with their response to different circular polarisations evidenced in the gap region
w xof the frequency band structure, produced by the fundamental Bragg condition 3,4 . It is clear then that periodic structures

with different responses to waves of opposite circular polarisations will have applications as polarisation-sensitive filters in
the optical, microwave, and millimetre-wave regimes. In particular, periodic dielectric-chiral media might serve as new

w xcomposite materials for engineering periodic resonant devices with index modulation and stop band features 5,6 .
In this work, we examine the effective medium behaviour of dielectric-chiral composite photonic crystals in the

Ž .long-wavelength limit of electromagnetic EM waves. For this purpose we use the results of the calculation of the EM
w xresponse of photonic crystals of chiral spheres 4 in conjunction with an effective medium approach to chiral composites

w xdeveloped by Lakhtakia et al. 7,8 . In the case of high optical contrast, for a variety of chiral responses and volume filling
fractions, we compare the effective EM response of the crystal with the exact one, and discuss the concept of
homogenisation in the frequency range extending up to the first band gap of the EM spectrum.

Many effective medium descriptions of long wavelength EM waves in composite structures are based on the well-known
Ž . w xMaxwell–Garnett MG theory 9–11 . The MG model was applied to the case of chiral composite materials, only recently

w x w x7,8,12–14 . Here we adopt an MG-like approach developed by Lakhtakia et al. 7,8 for composite materials consisting of
chiral spheres.

1 E-mail: ipsarob@atlas.uoa.gr

0030-4018r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0030-4018 99 00073-5



( )I.E. PsarobasrOptics Communications 162 1999 21–2522

w xWe consider a homogeneous isotropic chiral sphere obeying the Drude–Born–Fedorov constitutive equations 1,15

w xDsee Eqb ==E , 1Ž .0

w xBsmm Hqb ==H . 2Ž .0

The dimensionless coefficients e , m represent the relative permittivity and relative permeability of the chiral medium and b

Ž .in units of length is the chirality parameter. A photonic crystal formed by a periodic arrangement of chiral spheres, such as
the above one, in a dielectric host defined by e and m can be described as a homogenised chiral medium possessing theh h

w xfollowing three dimensionless effective parameters 8 ,
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where f , known as the volume filling fraction, is the fraction of the total volume fraction occupied by the spheres.
Ž .We consider in particular an fcc crystal, of lattice constant a, consisting of non-overlapping chiral spheres e , m and b

Ž .in a dielectric host medium e , m . Assuming a sphere of radius S per lattice cite, the crystal will have a volume fillingh h
Ž .3 Ž .fraction fs16p Sra r3. We view the crystal as a sequence of 001 planes. The physical solutions of Maxwell’s

Ž .equations normal modes for the infinite crystal of given v may be written as propagating Bloch waves of k
Ž .s k ,k v . We shall consider normal incidence in which case, k s0; k v characterise the circularlyŽ .Ž .I z ;L ,R I z ;L ,R

Ž . Ž .polarised propagating modes of the EM field of left L and right R handedness respectively for the given v. As functions
Ž . w xof v, k v define the corresponding frequency bands which are similarly distinguished as L- and R-bands 4 . At thisz;L ,R

w xstage, it should be mentioned that the calculation in Ref. 4 of the frequency band structure of the infinite crystal, as well as
the transmittance of light through a finite slab of the crystal, is based on an exact method that takes fully into account

w xmultiple scattering by the spheres 16,17 . In the case of photonic crystals of chiral spheres the exact results are obtained
w xusing a modified version of the program in Ref. 17 .

The dispersion curves of the corresponding homogenised effective chiral crystal, the effective-medium frequency bands,
w xare given by 1,2

n vrc
k v s , 6Ž . Ž .z ;L ,R 1"nb vrc

'where ns m e is the effective index of refraction for the crystal while the other effective parameters are those defined in
Ž . Ž .Eqs. 3 – 5 .

We shall test an effective-medium description of the crystal for frequencies below the lower frequency edge v of theg

first Bragg gap. We note that formation of the well-known Bragg gaps in photonic crystals is due to destructive wave
interference, an effect which cannot be accounted for by an effective-medium theory. An in-depth investigation of the

Ž . Ž . Ž .effective parameters given in Eqs. 3 – 5 , in the above frequency range v arc-2 , shows that the zeroth order terms of
their Taylor expansion with respect to v arc and up to order f can adequately describe the situation within a relative error
of a fraction of a percent. We then replace the effective parameters with their ultra-low-ka approximations, which are

w xexplicitly given in Ref. 8 , as follows,

3 f e yeŽ .h
e v ,e se 1y , 7Ž . Ž .0 h 2e qeh
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The above clearly implies the validity of the Clausius–Mossotti equation for the effective permittivity and effective
permeability of the composite system under study.

Ž . Ž . Ž .Therefore, by substituting Eqs. 7 – 9 into Eq. 6 we can compare the effective band structure of the crystal with the
exact one. This is shown in Fig. 1. We can safely say that the ultra-low-ka MG approximation, for the chiral composite
employed here, describes adequately the properties of the crystal in the long-wavelength limit. Our choice of rather large b

is meant to demonstrate that the above model will be valid in those cases also. Finally, from the same figure it is evident that
the effective chiral medium description begins to diverge in the vicinity of the gap.

We have also tested the accuracy of the effective-medium model with respect to the specific rotatory power of a finite
slab of the crystal of thickness d. This is done, for normal incidence, by calculating the angle of rotation from the explicit
form of the transmitted fields as compared to the incident. In the case of the effective crystal, this is done in a

Ž . Ž .straightforward manner as for a chiral slab with chiral properties as the ones given by Eqs. 7 – 9 . The explicit formulas, as
w xwell as their approximate versions, for optical rotation in the MG formalism are given in Ref. 8 . The result is shown in Fig.

2 and it is clear that the effective-medium description of the crystal can predict accurately its chiral behaviour at long
w xwavelengths. The exact result was obtained as in Ref. 4 .

In order to have an overall picture of the error introduced in the present analysis with respect to the exact crystal
behaviour we define a relative error factor Qerr as follows,

² : ² :k v y k vŽ . Ž .v vz ;L ,R z ;L ,RerrQ s . 10Ž .² :k vŽ . vz ;L ,R

Ž .The mean values appearing in Eq. 10 with respect to the frequency are defined as

1 v g² :k v s k v dv . 11Ž . Ž . Ž .v Hz ;L ,R z ;L ,R
v 0g

We calculated Qerr for different filling fractions of the fcc crystal and different chirality parameters of the spheres; the
results are presented in Fig. 3. A maximum relative error of ;20%, indicates that the MG approximation employed here
describes the crystal in the long-wavelength region, reasonably well. We note, however, that L-bands are given with lesser
accuracy. This is due to the fact that the L and R modes propagate with an effectively lower and higher refractive index,

Ž . ŽFig. 1. Frequency band structure of the EM field along the normal to the 001 surface of an fcc crystal consisting of chiral spheres e s1.1,
. Ž .ms1, b s0.3a in a dielectric host medium e s12.96, m s1 , with a volume filling fraction f s20%. The effective medium bands areh h

denoted by the thinner lines.
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Ž . Ž .Fig. 2. Specific rotatory power of a 001 slab of an fcc crystal consisting of 32 layers of chiral spheres e s1.1, ms1, b s0.3a, f s20%
Ž .in a dielectric host e s12.96, m s1 versus frequency, at normal incidence. The thicker line is an exact result; the thin line is theh h

effective-medium result.

w x Ž .respectively 1 . The optical contrast between the low index modes L and the host medium is higher than that between the
Ž .latter and the high index modes R . And we know that a higher optical contrast implies a less accurate effective medium

w xapproximation 10 .
w xMore involved studies on the homogenisation of chiral composites of randomly distributed chiral inclusions 12,18 have

set limitations on the size of the inclusions and the concentration of the composite, as far as the validity of the MG model is

err Ž .Fig. 3. Variation of the relative error factor Q with the filling fraction f of an fcc crystal of chiral spheres e s1.1, ms1 in a dielectric
Ž .host e s12.96, m s1 . The various curves correspond to different values of the chirality parameter b.h h
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concerned. In our case the symmetry of the crystal gave more room to stretch those limitations a bit more. Although the
w x w x‘‘exact’’ MG formalism, as well as the extended MG model 12 and the Bruggeman model 18 are expected to give more

accurate estimates, this is beyond the scope of the present work, since exact calculations have been carried out for the sake
of a simpler description, such as the ultra-low-ka MG approximation.

We hope that the conclusions drawn by this study will simplify the aspects and problems associated with engineering of
such composite materials of chiral behaviour.
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