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Exact relations between critical exponents for elastic stiffness and electrical conductivity
of two-dimensional percolating networks
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It has long been known that the critical expond@nbf the elastic stiffnes€,xAp’ of a d-dimensional
percolating network £ p=p—p.>0 measures the closeness of the network to its percolation threpgold
satisfies the following inequalities: 1dv<T=<t+2v, wheret is the critical exponent of the electrical con-
ductivity o, Ap' of the same network and is the critical exponent of the percolation correlation length
«Ap~". Similarly, the critical exponents that characterize the divergeBgesAp| S, o.*|Ap| S of a rigid
or normal and a superconducting or normal random mixtap=p—p.<0 now measures the closeness of
the rigid or superconducting constituent to its percolation threshgichave long been known to satisy
<s. We now show that, whed=2, T is in fact exactly equal td+2» andSis exactly equal tc.
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I. INTRODUCTION when voids are created in an elastic solid, even a tenuous

chain of narrow solid sections locally resists bending at any

That the macroscopic stiffness moduli of a percolatingpoint, as well as resisting stretching. This is also consistent
network of elastic bonds behave differently from the electri-with the fact that such a system will fall apart mechanically,
cal conductivity of a similar network of conducting bonds with all the stiffness moduli going to zero, simultaneously
was first pointed out by the authors of Ref,2]. By nu-  with the conductivity decreasing to zero, i.e., the electrical
merical simulations of two-dimensionéD) random elastic conductivity and elastic rigidity thresholds coincide in any
networks it was shown, shortly thereafter, that the criticalreal continuum composite. Finally, experiments on randomly

exponents for those two material coefficients differ considerperforated thin films have shown that the critical exporient

ably [3,4], is close to predictions resulting from the 2D network models
with both types of forces, and is inconsistent with the pre-
goxAp!, CexApT, t=1.30, T=4.0, dictions resulting from central force mod¢l&-9|. Here, we

only consider networks where bond stretching forces and
whereo, is the macroscopic electrical conductivitge is @  angle bending forces are both present.
generic macroscopic elastic stiffness coefficieatp=p In the case of a random network of elastic bonds and
—p.>0 is the difference between the volume fraction ortotally rigid bonds, i.e., bonds for which both types of force
bond occupation probability and its value at the percolation constantsk, m are infinite,(such mixtures are often charac-
thresholdp., t and T are the critical exponents. terized by using the abbreviated adjective “superelagtilg
These results apply to the case where the basic elastifacroscopic elastic stiffness moduli diverge when the frac-
properties of the network bonds include a “bond stretchingtion of rigid bonds approaches its percolation threshmld
force” kdb that is needed to change the bond lengthéby  from below This can be compared with the behavior of a
as well as an “angle bending forcahde that is needed in  similar network of normal conducting bonds and perfectly
order to change the angle between two neighboring bondsonducting or superconducting bondsiich mixtures are of-
(i.e., bonds connected to the same networK &itede. Only  ten termed “superconducting” for brevitywhere the macro-
if both types of basic elastic responses are present, with noscopic conductivity diverges when the fraction of the latter
zero force constants andm, does the rigidity threshold of bonds approaches, from below. Denoting the fraction of
the systenti.e., the value op at which the macroscopic bulk rigid or superconducting bonds gy and usingA p=p—p.
and shear moduli all tend to) @oincide with the usual per- <0, the critical behaviors of the macroscopic moduli in 2D
colation thresholg,, which is also the electrical conductiv- random networks are
ity threshold whereo,—0. Elastic networks where only
bond stretching forces appeésp-called “central force mod- ge*|Ap| 7S, Cex|Ap|™S, s=t=1.30.
els”) i.e., every bond represents a simple one-dimensional
spring, do not only have a rigidity threshold that differs from The fact thats=t exactly is a consequence of classical du-
pc, [in the case of a 2D simple square or a 3ree- ality [10,11].
dimensional simple cubic network of springs, even the un-  Interestingly, the best numerical value obtained Toin
diluted network is nonrigifibut their critical behavior near simulations of 2D random networks, namely,=3.96
that threshold is apparently also different, with different val-=0.04[4], is in excellent agreement with the best numerical
ues for the critical exponents andT [5,6]. value for the upper bound, namely 2v=3.964+ 0.007.
Percolating continuum elastic composites apparently lie inThis naturally raises the challenge to try and see whether a
the universality class of the networks with both types ofrigorous equalityT=t+2» can be proven to hold. Such a
forces. This is evident from physical considerations, namelyproof is presented in this paper. While the conjecture That
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=t+2v exactly has been expressed befpt@,13, a con- A rigorous derivation of this inequality for the case of 2D
vincing proof has never been formulated, as far as | know. networks appears in Sec. Il below.

Results for the critical exponers were also obtained The fact that the bond stretching force constait irrel-
from numerical simulations. When a 2D random networkevant was confirmed by numerical simulations, which
model with bond stretching and angle bending forces washowed that the macroscopic elastic response near the perco-
used, the results werg=s=1.30+0.01[14]. This approxi- lation threshold depends only on the angle bending force
mate equalityS=s of the superelastic and superconductingconstanim[3,4]. It should, however, be remembered that, for
exponents again raises the challenge to try and see whethemay value ofAp, this ceases to be true if the ratibm is too
rigorous equalityS=s can be proven. Such a proof is also small. In that case, the critical behavior presumably crosses
presented in this article. over to a different universality class. We will assume that the

Simulations of another superelastic network model, whereaisual universality class, whekeis irrelevant, is appropriate
flat circular disks are placed on a square lattice and conwhenever the total bond stretching energy is less than the
nected by springs in such a way that the 2D rigidity thresholdotal angle bending energy.
coincides with the percolation threshold, yielded a different In the case of the superelastic and superconducting critical
result, namely,S=1.02+0.07 [15], which is less than the exponents, a discussion by Miltd26] can be extended to
previous result by about 4 standard deviations. Another set gfield the following inequality, which is valid for arbitrarg:
simulations, using a network model much like the one used
in Ref. [14], yielded S=1.23+0.03[16]. Although this is S<s. (©)
closer to the best value fa=1.297+0.007[17-19, it is
still lower than that value by about 2 standard deviationslt is noteworthy that all of the numerical results quoted
These discrepancies have not been resolved until now.  above forS satisfy this inequality. A rigorous derivation of

A detailed discussion of elastic network models, mostlythis inequality also appears in Sec. Il below.
based on the Koch curve fractal, has led Limat to conclude The rest of this paper is organized as follows. Section II
that the conjectures=t+ 2v andS=s are incorrecf20]. In reviews the previously known results regarding the relation
contrast with that conclusion, | believe that the results prebetween the critical exponentsandt, as well as the relation
sented here show that those equalities should hold genefetweenSands. This includes the variational principle used
cally in the case of 2D networks, i.e., for a percolating net-to obtain Eq.(2) for d=2, as well as the variational argu-
work as well as for other types of fractal networks. ment used to obtain Eq3). In Sec. lll another variational

In parallel with the numerical studies described aboveprinciple is used to obtain results similar to those equations,
further light was shed on these problems starting with thédut with the < inequality sign replaced by the opposite
pioneering work of Kantor and Webmé4@1]. They showed inequality sign. Section IV discusses the possibility of gen-
that, in a percolating network with both bond stretching anderalizing the results obtained for 2D systems to arbitrary val-
angle bending forces, the bond stretching becomes unimpotes ofd.
tant and irrelevant close tp... All the macroscopic moduli
then depend only on the angle bending force constants. This || REVIEW OF PREVIOUSLY KNOWN RESULTS
is due to the fact that, gs. is approached, the percolating ] o ]
cluster becomes increasingly tenuous. Consequently, any The analysis presented in this paper is based on the fol-
kind of macroscopic strain can be produced with increaslowing representation for the potential enery of a 2D
ingly greater efficiency(i.e., at a decreasing relative cost in network of elastic bonds,
energy by bending of interbond angles as compared to
stretching of individual bonds. This picture also leads to a _ 2 _ 2
rigorous lower bound foff, namely[21] ZEL_Ei i(by) +(i]j)2:nn mij(S¢i=d¢)= (4

1+dv<T, (1) Here 6b; is the change in length of the bomdvhile S¢; is
the change in its absolute 2D orientation, i.e., a rotation
angle in the system plane. The second summation ranges
over all pairs of nearest neighbor bonds, i.e., bonds that are
gxAp, joined at a network site. This representation was first used by
Kantor and Webman, who derived a bound on the critical

which is equal to 4/3 in 2D systenig2,23. It is noteworthy ~ behavior of the macroscopic stiffness moduli of such a net-
that the concept of “Sing|y connected bor(&:B)“ p|ays an work when it is diluted by random removal of bonds until it
important role in derivations of Eq(l) [21,24 (an SCB  approaches its percolation thresh@Ri]. In this way they
between any two connected sites of a diluted network is @btained the lower bound of E¢l) for T, which reads as
bond that, when deleted, severs the connection betwedgllows for the 2D case:
those sitep

Somewhat later, an upper bound was found, namely T=1+2r=11/3.
[25]

whered is the dimensionality of the network andis the
percolation correlation length critical exponent

Somewhat later, the upper bound of Eg) for T was
T<t+2v. (2)  found by Roux[25], namely,
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T<t+2v.

Another derivation of this bound for the 2D case was later
given by the present authfi24], based on the expressiof)
and on the variational property of the following expression
for the Joule heat production rat¥, of a network of con-
ducting bonds:

s
W, = E gij(Vi_Vj)z- (5) =
n

@i.5)=n

HereV; is the potential at site of the network andy;; is the
electrical conductance of the bondj(), which connects the b., where the inner boundary is a circle of radigswhich is

nefll_rheSt rkl)elghbor S'tes_]' is tantalizinglv similar to th rigidly rotated by an anglée,=|ug|/¢. Thus, each of the bonds
€ above expression IS tantalizingly simiiar 10 the S€Cyq ¢ jntersect that boundary has its orientation rotatedgy, but
ond sum of Eq(4), leading to the idea that a correspondenceys jength remains unchanged. The outer boundary is a concentric
might be established between the elastic network problemgicie of radiusy¢, wherey>1 is a large but fixed numerical fac-
and the conducting network problem. However, in order toy, je., it is independent akp, in contrast with the percolation
establish such a correspondence we need to implement thoggrrelation lengtte. In the covering lattice, each bond is replaced
two problems on networks that are related but different. They a site, and the sites on the inner boundary have a potential equal
conductivity problem will be considered on thevering net-  to §¢, applied to them. Both the potential and the planar displace-
work of the elastic network, and the latter will also be re- ments at the outer boundary are made to vanish£X ¢ square
ferred to as theoriginal network The covering network is configuration of a rigid/normal network, nepg of the rigid con-
constructed by replacing each bond of the original networkstituent. A displacementy is applied at the upper boundary. The
by a site, and connecting two such siteandj by a bond gray regions inside the_ s_ystem represent rigid clusters. Only some
(i,j) if and only if the original bonds were nearest neighborsof the normal(i.e., nonrigig bonds are shown. In many cases, the
[27]. Clearly, the covering network percolates if and only if separation between the largest rigid cluster and the boundary in-
the original network percolates. Furthermore, the covering/0lves just one normal bond, or a small number of such bonds.
network presumably belongs to the same universality clas§onsequently, many of the boundary bonds have their lengths
of percolation as the original network, at least as far as tochanged by an amouwb; which is of orderf ug|, and tie" onien-
pological and simple electrical conductivity properties areta::onsbchgnghedlby akr: apg&"i |Wh'Ch Is of orde(6¢3:b|uo|(:b?, o
concerned. Therefore, the relevant critical exponents wil""€"€Po 'Stt € kerlgt oran eer(;w_entat\)ry ugsna'n.f O‘Tl . n the
also have the same values. The sum inByis now similar Z?gg:zg gtir\ml\tli(; . uZI fgrtrﬁ;ffggnq'ggvaé;haa%; et(s) tWhIem ave an
to the second sum in Eg4), since each site of the covering P 4 i app '
lattice corresponds to a bond of the original lattice and each . .
) . In order to obtain an upper bound for we can consider
bond of the covering lattice corresponds to an angle between . . . )
: o . an elastic network in the shape of a 2D circular ring where
nearest neighbor bonds of the original lattice. The correspory, - . .
: he inner radius ig and the outer radius is greater thaiy
dence becomes even stronger if the bond conductagiges

are chosen to equal the angle bending force constantsf large but fixed factoy that is independent afp—see Fig,
-qua 9 9 i 1(a). The bonds at the outer boundary are fixed, so that
the corresponding interbond angles.

In a network of conductors, if the potentiafs are fixed at %‘f‘ :ing?r;: OI;?E% V\;hrllzrt]hfélnnegob?#gt%%rilg gnrfgtgd. ng-
some partial set of sites, which can be considered as “surface y P y gie«o. ! #i

sites,” then the expression fow, of Eq. (5 attains its 6:,007&_0 for bonds at that boundary. For this kind of Sys-
; L , tem, £ is the only relevant length scale, beyond the basic
unique absolute minimum value when all thg's assume
. . . bond lengthb,. At the length scal&, we can already use the
their correct physical values. Therefore, if we assugye SO : .
o . macroscopic stiffnes€, to write an expression for the total
=m;; for all the bonds of the covering network, then the

solution 6¢; of the elastic problem on the original network elastic energy,

FIG. 1. (a) Flat ring configuration of a percolating network near

provides a trial set of values f&#; on the covering network, E_~ Co(500)2. @
if the boundary values o0b¢; andV; are the same. Conse- Lo 0
quently, we can then write For the covering network of conductomg;=my;, with

boundary conditionV;=0 at the outer boundary and;,
=Jd¢, at the inner boundary, the total production rate of
— 50.)2 0
WL<(i’j)2:nn mij (o¢i— 0¢;) Joule heat is then of order,
W, ~o(de )2, (8
<2 ki(db)*F X my(d¢i—d¢)? BoeTe
B apart from a multiplicative logarithmic correction that we
=2E, . (6) ignore. The facto&?, which appears in the expression
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but is absent from the expression & , reflects the differ-
ent physical dimensions @&, (energy per unit argaand o

PHYSICAL REVIEW E 65 026124

mass density of the solid. The minimizing functioggr)
andu(r) are the correct local physical potential and displace-

(conductancein 2D systems. Using these expressions in thement fields.

inequality (6) we get

Cel?>0=Ap' 2">Ap'=T<t+2v. 9
We note that if the inner radius of the ring were much
greater thang, then instead of Eq(7) we would haveE,
~CqlL?(8¢0)2, while Eq. (8) for W, would remain un-
changed. In that case the inequality of E§) would be
satisfied in a trivial fashion and become useless.

Numerical simulations of 2D percolating elastic networks
found T=3.96+ 0.04[4]. This is consistent with the value 4,
which is the exact value of in a six-dimensional percolat-
ing medium[24]. It is also in excellent agreement with the
value t+2v=3.964+0.007, which is based upadr=1.297
+0.007[17-19 and on the exact resuit=4/3[22].

In the case of a continuum composite, the macroscopi
moduli o, C, have the property that, for any given volume
average electric fiel&, or strain%o, the total rate of produc-
tion of Joule heat per unit volumEg- .- Eq or t\Nlce the
total elastic potential energy per unit volum@ C 60 are
the absolute minimum values of the followmg quadratic
functionals of the local electric potentigi(r) and local dis-
placement fieldi(r), respectively:

1 R
—J dVVe-o-Vo, (10)
Vv
1J dVi.E.0 _1 U, dug 11
Y2 L) PO & (1

subject to the conditions thap(r)=—(r-Ey) and u(r)
=¢o- I at the system boundaries. Herér) is the local elec-
trical conductivity, a second rank tens&(r) is the local

elastic stiffness, a fourth rank tensor, aag) is the local
strain, a second rank tensor.

We assume that the local response is isotropic, henise

a position dependent scalar aBddepends on just two posi-
tion dependent Lameoefficients\ and u
C

=N8apdyot i(8ayOput Baudsy). (12

afyw

These coefficients satisfy the following relations:

Copap=n>0 for a#p,

Caaaazcllz)\+2ﬂ:pv§>0'
2 d-1
K=N+ aM:Cll_ZTM>O,

wherex is the bulk modulusy is the shear modulu§,; is
another one of the elastic stiffness moduli, written in Voigt's
notation,v is the longitudinal sound velocity, anglis the
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The solutioneg(r) of an appropriate conductivity problem
in the volumeV can be used to construct trial functions for
the elastic energy functional: Following Miltd26], we take
u(r) = ¢,(r)eg as a trial function, where,(r)=—r, at the
boundary ana,; denotes the unit vector alomg . Using this

I,

trial function we easily get
2
+
) M;ﬁ ( &ry)

ba
<(N+2p)(V$o)?=C1(V ba)?,

s
and applying this mequallty to the integrand of Efjl), we
get the following results fOE’o andC

eCe= ()\-FZ,u,)(

(0) = (0)—

¢ e=e=-3(1+6,p), alltheother)=0, (13

(e

Caﬁaﬁ \V;

f dV Ciy(V ) 2=c@la(n], (14

d-1
o(1)=Cpy(N=N)+2u(r)=x(r)+2——u(r).
(15

This means that the macroscopic conductivities of a hetero-
geneous medium, where the local conductivitfr) is equal

to the local stiffness coefficienCq4(r), provide upper
boundsfor some of the macroscopic stiffness moduli. In par-
ticular, if we are dealing with a composite medium that has

an isotropic microstructure, where,= o is a scalar an€,
has the form of Eq(12), then

pe=oda(n)], (16)

ClY=Net2ue<oda(n)], (17)
d-1

:Cgi)_zTMe- (18)

Applying the inequalities of Eq$16) and(17) in the case
of a rigid/normal mixture, we immediately obtain E®). In
the case of a percolatingiluted) network, these inequalities
lead toT=t, which is a much weaker lower bound drthan
the inequality of Eq(1).

IIl. NEW BOUNDS FOR T AND S

We now invoke another variational principle, whereby the
expression(4) is minimized only whensb; and S¢; attain
their correct equilibrium physical values, subject to fixed
given values at some surface bonds and to certain con-
straints, which are described below. We then try to use the
exact solutionV; of the electrical conductivity problem on
the covering network as trial values fétp; .

In order to succeed, this approach needs to overcome two
problems:(a) In order to be acceptable as trial values for
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N = included in the explicit summatiohsve get the following
: upper bound for E, :
.\ 2E <k (8b)2+g X (Vi—V)2 (19)
4 \I i (i,j)=nn
]
\‘/ We would now like to assign a value to the bond stretching
} constantk that will make the first sum not greater than the
N ]  second sum, which is equal W, of the covering network.

@ ) However, in general, the first sum_depends on the total size
of the system, as well as ahp, while the second sum de-

FIG. 2. (3) Compact cluster of 6 bonds where, if the orientationspends only om p, due to the dimensionalitg=2.[This is

of the bonds are assigned arbitrarily, it is usually impossible to finditerally true for the ring geometry of Fig.(8); for other 2D

any consistent bond lengths. For example, if the two small trianglesample geometrie®/, can depend on details of the macro-

on the left side are both isoceles with identical angless shown,  scopic shapé.In order to determine a value & that will

then the third small triangle must also be isoceles, which leaves ngatisfy the above requirement for all the samples that we

freedom in choosing the orientation of the rightmost bdbgHon- need to consider, we assume that the system is again ring

eycomb network rigidly connected to two parallel rigid plates. shaped, as in Fig.(4), with inner radius equal t¢ and a

When a single column ofdasheqi bonds withpreassigned arbi-  muych larger outer radiugé. In that case, both sums depend

t_rary orle_ntatlon5|s added to the_network, it is always possnblt_a to only onAp. The second sum is of ordgn\ pt(é%)z’ ie., it

find consistent bond lengths, which leave all the loops intact, if thedecreasesvhenAp decreases. By contrast, the first sum is of

orientations are not too different from those of the ideal honeycom 2 2 :
structure. Moreover, sufficient freedom remains in the choice of chOrderNLkbo( 9¢o)”, whereN, is the total number of bonds

éb;’s, of the bonds in each elementary hexagon, to allow the sun) the |nd_ependent close_d _Ioops of t_he fing. That is because
2 L the density of loops of sizé.e., gyration radiusmuch less
3i(6b;)¢ in each hexagon to be minimized. : ;
than ¢ does not change whekp is decreased further, while
. _ ~ the total area of the ring increases; also, more bonds will
d¢i, theV;’s need to satisfy constraints that are absent in theyppear in the loops of size comparable to or greater ghan
electrical COﬂdUCtiVity problem. These constraints arise besinceg itself increasesNL is thus a quantity thaihcreases
cause any closed loop of elastic bonds must remain a closeghen Ap decreases. Thus, if we choosdy requiring that
loop even after the bonds are distortéd) Even if those

constraints are satisfied, we would still only have a trial 5
value for the second sum in E@), whereas we are seeking kEi (6b;) =g(i’j)2:
an upper bound for the entire elastic potential endtgy

The first problem is overcome if values fab; can be for a given positive valud p, of Ap, then the left hand side
found that satisfy all the constraints whefp;=V;. The of this equation will be less than the right hand side for any
guestion whether it is possible to satisfy those constraintdarger value ofAp.
for a given set ofd¢;, by an appropriate choice afb; We now letde; anddb; vary, subject to the constraints, in
depends on the types of closed loops found in the networkorder to seek the minimum value of the elastic energy. When
Clearly, a triplet of simple triangular loops, whose circum-that minimum is attained, the SUEIS i j)—nn(S¢i— 0¢;)?
ference is also a simple triangular lopgee Fig. 2a)], does  Will have increasedo a value that is greater tha, . At the
not allow those constraints to be satisfied in general. Onéame time, the surk=;(sb;)? will have decreasedby an
could argue that, in the vicinity gf., such compact clusters €ven greater amount, to less than the vahie that it had
of bonds are unimportant or irrelevant. Alternatively, we canWhen ob; were determined, by the constraints, from the as-
limit ourselves to networks that have a more open microSigneddée;=V;. This is dictated by the fact that the sum of
structure, even when they are undiluted. For example, if wdhoseé two sums will have decreased to its minimum value,
consider a honeycomb network, as in Figo)2then, even in subject to the constraints, hence it must be less thak .2
the undiluted network, values afb; can always be found 1nerefore, the two sums will now satisfy
that satisfy all the constraints. This can be seen by consider-
ing the addition of an entire column of bon@spresented by kz (6by)%<g E (8qi— 5@;)2, (21)
dashed linesto an existing honeycomb network that is rig- [ (i,j)=nn
idly connected to two parallel rigid plates, as shown in Fig.
2(b). Thesedb; are all of orderbyd¢py=byVy, Whereby is
the length of an undistorted bond aoﬁcbooz\(}o is the mac- ZEL:kZ (5bi)2+g(i'j)2nn (8¢i= 8¢))?<2Wi ,
roscopic potential difference that is applied across the entire (22
sample.

Using the trial valuesdg;=V;, and éb; as determined wheneverAp>Ap,. Note that the inequality of Eq22) is
from them by the constraints, in an elastic network wherenot inconsistent with the inequality/, <2E, of Eq. (6). We
m;; =g andk;=k, (the bonds wittkj=m;;=0 are simply not  also note that the inequality of E¢21) should suffice to

(Vi—V))2=wW_ (20
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ensure that the elastic network under consideration is in th&ogether with Eq(3), this leads to the result
universality class wherk is irrelevant.
From Egs.(7) and(8) we now get S=s. (28)
T-2v
E=Ap™™?, WixAp', E<W =T=t+2v. As in the case of the diluted elastic network, rigid/normal
(23 networks of different topologies are expected to belong to

Together with Eq(9), this leads to the result 'E)r]leths:r:]ne universality class. Thus E2g8) should hold for all
T=t+2v. (29
It is generally believed that, even with networks of differ- IV. SUMMARY AND DISCUSSION

ent topologies, the critical behaviors of randomly diluted ver- . . )
sions of such networks are characterized by the same univer- 1ne equalitiesT=t+2», S=s, which were strongly in-
sal values of the critical exponenfig3)]. It follows that Eq. ~ dicated previously by numerical calculations Bf and by
(24) should hold in all of those cases. some numerical calculations 8f using 2D random networks
The network variational principles can also be applied toith both bond stretching and angle bending forces, and by
rigid/normal mixtures, so that we again obtain B). How-  humerical calculations df=s in 2D random conducting net-
ever, in order to usefully apply this inequality to such a net-WOrks, have now been proven rigorously, using variational
work that is near its rigidity threshold, we need to look at aPrinciples for such networks. Although these equalities had
different type of macroscopic boundary value problem: WeP€en conjectured earlier, and were supported by some of the
consider a network of sizéx ¢ which is tied by normal numerical simulations, a convincing proof was lacking until
bonds to a rigid or controlled boundary, as shown in Fig.NOW. These results now join the set of other exact results for

1(b). That boundary is displaced by an amount which is a2D Percolating systems. , ,
. . . - . The bounds o for diluted networks of arbitrary dimen-
linear function of positionuy= €, r, so that the macroscopic

S o ~ sionality d, namely,[see Eqgs(1) and(2)],
or average strain ig,. Because of its size, the system will
typically consist of one large main rigid cluster which is 1+dp<T<t+2v,
connected to the boundary by a small number of nofirel,
nonrigid bonds. In fact, it was rigorously proven that the
average total number of “singly disconnecting bonds
(SDB),” between any two sites of the network separated by

distance¢, (an SDB be;ween two given sites of a rlg!d/ whend=6, and at least to a good approximation for values
normal or superconductmg/norma[ cpnductmg network 'S %t d in between those two. It is natural to wonder whether
normal bond that, when made rigid or superconductlng,l_:sz and alsoS=s, might perhaps be true for all val-

makes the connection between those sites rigid or SUPErcolle,. o¢q. Althouah the variational broperties of the expres-
ducting; obviously, SDB in superelastic networks is the ' g brop P

counterpart of SCB in diluted networkis proportional to sions forg; andW,_ of networks extend to arbitrary dimen-

1/|Ap| [28], i.e., itis large. Those SDB's will undergo length sionality, the_ detalled_ form of the_ expression Ear beco_mes
; . ; .more complicated, since the orientation of a bond is deter-
distortions which are comparable to the overall macroscopic

displacement at the upper boundary of the system of Figr..nlned byd-1 angles in the general case, and since the

; il , élastic potential energy must then depend also on angles be-
1(b), i.e., 8b~[uo| ~eof, Wheree, represents the magnitude tween further than nearest neighbor bonds. That is why we

of the imposed macroscopic or average stregnand the  4r6 currently unable to generalize the derivation of the new
angles adjacent to those SDB’s will change by an amount oy wer bound forT [Eq. (23] to other values ofl. This re-

order d¢o=eo¢/bo. The total elastic potential energy will mains a challenge for future studies. By contrast, it appears
then be of order that the new lower bound f@[Eq. (27)] can be extended to
2.2 2 2 arbitrary values ofl [29].
B~ Cet®60=Cebi( 9¢0)". (25) We note that the arguments and proofs presented here do
This differs from Eq.(7) in that the elementary unstressed 0t rely on the fact that the fractal percolating cluster is
bond lengthb, appears instead of the diverging percolationProduced by a random assignment of the network bonds to

correlation lengtte. For the covering network of conductors WO different classes. Therefore they should also be appli-
gij=m;j, with boundary conditionV;,=0 at the lower bar cable to other fractal systems, such as the one discussed in

andV, = 8¢~ S, at many other sites on the boundary, the Ref. [20], which is based on the fractals known as Koch

are actually quite tight fod=2,3,4,5, and the interval that
they define actually shrinks to O whei 6 [24]. The result
aT=t+2v, therefore, holds exactly both whet=2 and

total production rate of Joule heat is then of order curves.
WL~ 0e( 8¢0)?, (26) ACKNOWLEDGMENTS
which is identical with Eq(8). Using these estimates in the A useful conversation with R. Blumenfeld is gratefully
inequality (6) we now get acknowledged. This research was supported, in part, by
, s e grants from the US-Israel Binational Science Foundation and
Cebg>0e=|Ap| >>|Ap| °=S=s. (27)  the Israel Science Foundation.

026124-6



EXACT RELATIONS BETWEEN CRITICAL EXPONENS. .. PHYSICAL REVIEW E 65 026124

[1] S. Feng and P.N. Sen, Phys. Rev. L&&, 216(1984). [15] S. Feng, Phys. Rev. B2, R510(1985.
[2] D.J. Bergman and Y. Kantor, Phys. Rev. Lé&R 511 (1984). [16] S. Arbabi and M. Sahimi, Phys. Rev. Le@5, 725 (1990.
[3] D.J. Bergman, Phys. Rev. &1, 1696(1985. [17] H.J. Herrmann, B. Derrida, and J. Vannimenus, Phys. Rev. B
[4] J.G. Zabolitzky, D.J. Bergman, and D. Stauffer, J. Stat. Phys. 30, 4080(1984%.
44, 211(1986. [18] J.G. Zabolitzky, Phys. Rev. BO, 4077(1984).
[S] M.A. Lemieux, P. Breton, and A.-M.S. Tremblay, J. Phys. [19] C.J. Lobb and D.J. Frank, Phys. Rev:3B, 4090(1984.
(France Lett. 46, L1 (1989. [20] L. Limat, Phys. Rev. B0, 9253(1989.
[6] A.R. Day, R.R. Tremblay, and A.-M.S. Tremblay, Phys. Rev. [21] Y. Kantor and I. Webman, Phys. Rev. Le2, 1891 (1984.
Lett. 56, 2501 (1986. [22] B. Nienhuis, J. Phys. A5, 199 (1982.

[7] L. Benguigui, Phys. Rev. Lets3, 2028 (1984); J. Vareille,
ibid. 57, 1189(1986); L. Benguigui,ibid. 57, 1190(1986.

[8] L. Benguigui, Phys. Rev. B34, R8176(1986; J. Wu, E.
Guyon, A. Palevski, S. Roux, and I. Rudnick, C.R. Acad. Sci.,
Ser. Il: Mec., Phys., Chim., Sci. Terre UniveB95 323

[23] A. Aharony and D. Stauffer,Introduction to Percolation
Theory 2nd ed.(Taylor & Francis, London, 1992

[24] D.J. Bergman, inNonclassical Continuum Mechanjcsdited
by R.J. Kuops and A.A. Lacey, London Mathematics Society
Lecture Notes Series Vol. 12@ambridge University Press,

(1987. :
[9] L.C. Allen, B. Golding, and W.H. Haemmerle, Phys. Rev. B Cambridge, England, 1987p. 166.
[10] J.P. Straley, Phys. Rev. B5, 5733(1977. [26] G.W. Milton, in Physics and Chemistry in Porous Medid-
[11] D.J. Bergman and D. Stroud, Solid State PHyf.147 (1992. ited by D.L. Johnson and P.N. Sen, AIP Conf. Proc. No. 107
[12] S. Feng, P.N. Sen, B.I. Halperin, and C.J. Lobb, Phys. Rev. B (AIP, New York, 1984, P. 66—-77.
30, 5386(1984). [27] V.K.S. Shante and S. Kirkpatrick, Adv. Phy&0, 325 (1971).
[13] S. Roux, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci.[28] D. Wright, D.J. Bergman, and Y. Kantor, Phys. Rev3& 396
Terre Univers301, 367 (1985. (1986.
[14] D.J. Bergman, Phys. Rev. 83, 2013(1986. [29] D.J. Bergmar(unpublishedl

026124-7



