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Exact relations between critical exponents for elastic stiffness and electrical conductivity
of two-dimensional percolating networks
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~Received 24 September 2001; published 18 January 2002!

It has long been known that the critical exponentT of the elastic stiffnessCe}DpT of a d-dimensional
percolating network (Dp[p2pc.0 measures the closeness of the network to its percolation thresholdpc)
satisfies the following inequalities: 11dn<T<t12n, wheret is the critical exponent of the electrical con-
ductivity se}Dpt of the same network andn is the critical exponent of the percolation correlation lengthj
}Dp2n. Similarly, the critical exponents that characterize the divergencesCe}uDpu2S, se}uDpu2s of a rigid
or normal and a superconducting or normal random mixture (Dp[p2pc,0 now measures the closeness of
the rigid or superconducting constituent to its percolation thresholdpc) have long been known to satisfyS
<s. We now show that, whend52, T is in fact exactly equal tot12n andS is exactly equal tos.

DOI: 10.1103/PhysRevE.65.0261XX PACS number~s!: 89.75.Da, 05.45.Df, 46.70.2p, 62.20.Dc
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I. INTRODUCTION

That the macroscopic stiffness moduli of a percolat
network of elastic bonds behave differently from the elec
cal conductivity of a similar network of conducting bond
was first pointed out by the authors of Refs.@1,2#. By nu-
merical simulations of two-dimensional~2D! random elastic
networks it was shown, shortly thereafter, that the criti
exponents for those two material coefficients differ consid
ably @3,4#,

se}Dpt, Ce}DpT, t>1.30, T>4.0,

wherese is the macroscopic electrical conductivity,Ce is a
generic macroscopic elastic stiffness coefficient,Dp[p
2pc.0 is the difference between the volume fraction
bond occupation probabilityp and its value at the percolatio
thresholdpc , t andT are the critical exponents.

These results apply to the case where the basic ela
properties of the network bonds include a ‘‘bond stretch
force’’ kdb that is needed to change the bond length bydb,
as well as an ‘‘angle bending force’’mdw that is needed in
order to change the angle between two neighboring bo
~i.e., bonds connected to the same network site! by dw. Only
if both types of basic elastic responses are present, with n
zero force constantsk and m, does the rigidity threshold o
the system~i.e., the value ofp at which the macroscopic bul
and shear moduli all tend to 0! coincide with the usual per
colation thresholdpc , which is also the electrical conductiv
ity threshold wherese→0. Elastic networks where only
bond stretching forces appear,~so-called ‘‘central force mod-
els’’! i.e., every bond represents a simple one-dimensio
spring, do not only have a rigidity threshold that differs fro
pc , @in the case of a 2D simple square or a 3D~three-
dimensional! simple cubic network of springs, even the u
diluted network is nonrigid# but their critical behavior nea
that threshold is apparently also different, with different v
ues for the critical exponentsn andT @5,6#.

Percolating continuum elastic composites apparently lie
the universality class of the networks with both types
forces. This is evident from physical considerations, nam
1063-651X/2002/65~2!/026124~7!/$20.00 65 0261
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when voids are created in an elastic solid, even a tenu
chain of narrow solid sections locally resists bending at a
point, as well as resisting stretching. This is also consis
with the fact that such a system will fall apart mechanica
with all the stiffness moduli going to zero, simultaneous
with the conductivity decreasing to zero, i.e., the electri
conductivity and elastic rigidity thresholds coincide in a
real continuum composite. Finally, experiments on random
perforated thin films have shown that the critical exponenT
is close to predictions resulting from the 2D network mod
with both types of forces, and is inconsistent with the p
dictions resulting from central force models@7–9#. Here, we
only consider networks where bond stretching forces a
angle bending forces are both present.

In the case of a random network of elastic bonds a
totally rigid bonds, i.e., bonds for which both types of for
constantsk, m are infinite,~such mixtures are often charac
terized by using the abbreviated adjective ‘‘superelastic’’! the
macroscopic elastic stiffness moduli diverge when the fr
tion of rigid bonds approaches its percolation thresholdpc
from below. This can be compared with the behavior of
similar network of normal conducting bonds and perfec
conducting or superconducting bonds,~such mixtures are of-
ten termed ‘‘superconducting’’ for brevity! where the macro-
scopic conductivity diverges when the fraction of the lat
bonds approachespc from below. Denoting the fraction o
rigid or superconducting bonds byp, and usingDp[p2pc
,0, the critical behaviors of the macroscopic moduli in 2
random networks are

se}uDpu2s, Ce}uDpu2S, s5t>1.30.

The fact thats5t exactly is a consequence of classical d
ality @10,11#.

Interestingly, the best numerical value obtained forT in
simulations of 2D random networks, namely,T53.96
60.04 @4#, is in excellent agreement with the best numeric
value for the upper bound, namely,t12n53.96460.007.
This naturally raises the challenge to try and see wheth
rigorous equalityT5t12n can be proven to hold. Such
proof is presented in this paper. While the conjecture thaT
©2002 The American Physical Society24-1
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DAVID J. BERGMAN PHYSICAL REVIEW E 65 026124
5t12n exactly has been expressed before@12,13#, a con-
vincing proof has never been formulated, as far as I kno

Results for the critical exponentS were also obtained
from numerical simulations. When a 2D random netwo
model with bond stretching and angle bending forces w
used, the results wereS>s51.3060.01 @14#. This approxi-
mate equalityS>s of the superelastic and superconducti
exponents again raises the challenge to try and see whet
rigorous equalityS5s can be proven. Such a proof is als
presented in this article.

Simulations of another superelastic network model, wh
flat circular disks are placed on a square lattice and c
nected by springs in such a way that the 2D rigidity thresh
coincides with the percolation threshold, yielded a differe
result, namely,S51.0260.07 @15#, which is less than the
previous result by about 4 standard deviations. Another se
simulations, using a network model much like the one u
in Ref. @14#, yielded S51.2360.03 @16#. Although this is
closer to the best value fors51.29760.007 @17–19#, it is
still lower than that value by about 2 standard deviatio
These discrepancies have not been resolved until now.

A detailed discussion of elastic network models, mos
based on the Koch curve fractal, has led Limat to conclu
that the conjecturesT5t12n andS5s are incorrect@20#. In
contrast with that conclusion, I believe that the results p
sented here show that those equalities should hold ge
cally in the case of 2D networks, i.e., for a percolating n
work as well as for other types of fractal networks.

In parallel with the numerical studies described abo
further light was shed on these problems starting with
pioneering work of Kantor and Webman@21#. They showed
that, in a percolating network with both bond stretching a
angle bending forces, the bond stretching becomes unim
tant and irrelevant close topc . All the macroscopic moduli
then depend only on the angle bending force constants.
is due to the fact that, aspc is approached, the percolatin
cluster becomes increasingly tenuous. Consequently,
kind of macroscopic strain can be produced with incre
ingly greater efficiency~i.e., at a decreasing relative cost
energy! by bending of interbond angles as compared
stretching of individual bonds. This picture also leads to
rigorous lower bound forT, namely@21#

11dn<T, ~1!

whered is the dimensionality of the network andn is the
percolation correlation length critical exponent

j}Dp2n,

which is equal to 4/3 in 2D systems@22,23#. It is noteworthy
that the concept of ‘‘singly connected bonds~SCB!’’ plays an
important role in derivations of Eq.~1! @21,24# ~an SCB
between any two connected sites of a diluted network
bond that, when deleted, severs the connection betw
those sites!.

Somewhat later, an upper bound forT was found, namely
@25#

T<t12n. ~2!
02612
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A rigorous derivation of this inequality for the case of 2
networks appears in Sec. II below.

The fact that the bond stretching force constantk is irrel-
evant was confirmed by numerical simulations, whi
showed that the macroscopic elastic response near the p
lation threshold depends only on the angle bending fo
constantm @3,4#. It should, however, be remembered that, f
any value ofDp, this ceases to be true if the ratiok/m is too
small. In that case, the critical behavior presumably cros
over to a different universality class. We will assume that
usual universality class, wherek is irrelevant, is appropriate
whenever the total bond stretching energy is less than
total angle bending energy.

In the case of the superelastic and superconducting cri
exponents, a discussion by Milton@26# can be extended to
yield the following inequality, which is valid for arbitraryd:

S<s. ~3!

It is noteworthy that all of the numerical results quot
above forS satisfy this inequality. A rigorous derivation o
this inequality also appears in Sec. II below.

The rest of this paper is organized as follows. Section
reviews the previously known results regarding the relat
between the critical exponentsT andt, as well as the relation
betweenSands. This includes the variational principle use
to obtain Eq.~2! for d52, as well as the variational argu
ment used to obtain Eq.~3!. In Sec. III another variationa
principle is used to obtain results similar to those equatio
but with the< inequality sign replaced by the opposite>
inequality sign. Section IV discusses the possibility of ge
eralizing the results obtained for 2D systems to arbitrary v
ues ofd.

II. REVIEW OF PREVIOUSLY KNOWN RESULTS

The analysis presented in this paper is based on the
lowing representation for the potential energyEL of a 2D
network of elastic bonds,

2EL5(
i

ki~dbi !
21 (

( i , j )5nn
mi j ~dw i2dw j !

2. ~4!

Heredbi is the change in length of the bondi while dw i is
the change in its absolute 2D orientation, i.e., a rotat
angle in the system plane. The second summation ran
over all pairs of nearest neighbor bonds, i.e., bonds that
joined at a network site. This representation was first used
Kantor and Webman, who derived a bound on the criti
behavior of the macroscopic stiffness moduli of such a n
work when it is diluted by random removal of bonds until
approaches its percolation threshold@21#. In this way they
obtained the lower bound of Eq.~1! for T, which reads as
follows for the 2D case:

T>112n511/3.

Somewhat later, the upper bound of Eq.~2! for T was
found by Roux@25#, namely,
4-2
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EXACT RELATIONS BETWEEN CRITICAL EXPONENTS . . . PHYSICAL REVIEW E 65 026124
T<t12n.

Another derivation of this bound for the 2D case was la
given by the present author@24#, based on the expression~4!
and on the variational property of the following expressi
for the Joule heat production rateWL of a network of con-
ducting bonds:

WL5 (
( i , j )5nn

gi j ~Vi2Vj !
2. ~5!

HereVi is the potential at sitei of the network andgi j is the
electrical conductance of the bond (i , j ), which connects the
nearest neighbor sitesi, j.

The above expression is tantalizingly similar to the s
ond sum of Eq.~4!, leading to the idea that a corresponden
might be established between the elastic network prob
and the conducting network problem. However, in order
establish such a correspondence we need to implement t
two problems on networks that are related but different. T
conductivity problem will be considered on thecovering net-
work of the elastic network, and the latter will also be r
ferred to as theoriginal network: The covering network is
constructed by replacing each bond of the original netw
by a site, and connecting two such sitesi and j by a bond
( i , j ) if and only if the original bonds were nearest neighbo
@27#. Clearly, the covering network percolates if and only
the original network percolates. Furthermore, the cover
network presumably belongs to the same universality c
of percolation as the original network, at least as far as
pological and simple electrical conductivity properties a
concerned. Therefore, the relevant critical exponents
also have the same values. The sum in Eq.~5! is now similar
to the second sum in Eq.~4!, since each site of the coverin
lattice corresponds to a bond of the original lattice and e
bond of the covering lattice corresponds to an angle betw
nearest neighbor bonds of the original lattice. The corresp
dence becomes even stronger if the bond conductancegi j
are chosen to equal the angle bending force constantsmi j of
the corresponding interbond angles.

In a network of conductors, if the potentialsVi are fixed at
some partial set of sites, which can be considered as ‘‘sur
sites,’’ then the expression forWL of Eq. ~5! attains its
unique absolute minimum value when all theVi ’s assume
their correct physical values. Therefore, if we assumegi j
5mi j for all the bonds of the covering network, then th
solution dw i of the elastic problem on the original netwo
provides a trial set of values forVi on the covering network
if the boundary values ofdw i and Vi are the same. Conse
quently, we can then write

WL, (
( i , j )5nn

mi j ~dw i2dw j !
2

,(
i

ki~dbi !
21 (

( i , j )5nn
mi j ~dw i2dw j !

2

52EL . ~6!
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In order to obtain an upper bound forT, we can consider
an elastic network in the shape of a 2D circular ring whe
the inner radius isj and the outer radius is greater thanj by
a large but fixed factorg that is independent ofDp—see Fig.
1~a!. The bonds at the outer boundary are fixed, so t
dw i5dbi50 there, while the inner boundary is rotated ri
idly in the plane by an angledw0, so thatdbi50 anddw i
5dw0Þ0 for bonds at that boundary. For this kind of sy
tem, j is the only relevant length scale, beyond the ba
bond lengthb0. At the length scalej, we can already use th
macroscopic stiffnessCe to write an expression for the tota
elastic energy,

EL;Cej
2~dw0!2. ~7!

For the covering network of conductorsgi j 5mi j , with
boundary conditionVi50 at the outer boundary andVi
5dw0 at the inner boundary, the total production rate
Joule heat is then of order,

WL;se~dw0!2, ~8!

apart from a multiplicative logarithmic correction that w
ignore. The factorj2, which appears in the expression forEL

FIG. 1. ~a! Flat ring configuration of a percolating network ne
pc , where the inner boundary is a circle of radiusj, which is
rigidly rotated by an angledw05uu0u/j. Thus, each of the bond
that intersect that boundary has its orientation rotated bydw0, but
its length remains unchanged. The outer boundary is a conce
circle of radiusgj, whereg@1 is a large but fixed numerical fac
tor, i.e., it is independent ofDp, in contrast with the percolation
correlation lengthj. In the covering lattice, each bond is replac
by a site, and the sites on the inner boundary have a potential e
to dw0 applied to them. Both the potential and the planar displa
ments at the outer boundary are made to vanish.~b! j3j square
configuration of a rigid/normal network, nearpc of the rigid con-
stituent. A displacementu0 is applied at the upper boundary. Th
gray regions inside the system represent rigid clusters. Only s
of the normal~i.e., nonrigid! bonds are shown. In many cases, t
separation between the largest rigid cluster and the boundary
volves just one normal bond, or a small number of such bon
Consequently, many of the boundary bonds have their leng
changed by an amountdbi which is of orderudu0u, and their orien-
tations changed by an angledw i which is of orderdw0[uu0u/b0,
where b0 is the length of an elementary unstrained bond. In
covering network, the corresponding boundary sites will have
electric potential equal to that same valuedw i applied to them.
4-3
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DAVID J. BERGMAN PHYSICAL REVIEW E 65 026124
but is absent from the expression forWL , reflects the differ-
ent physical dimensions ofCe ~energy per unit area! andse
~conductance! in 2D systems. Using these expressions in
inequality ~6! we get

Cej
2.se⇒DpT22n.Dpt⇒T<t12n. ~9!

We note that if the inner radius of the ringL were much
greater thanj, then instead of Eq.~7! we would haveEL
;CeL

2(dw0)2, while Eq. ~8! for WL would remain un-
changed. In that case the inequality of Eq.~6! would be
satisfied in a trivial fashion and become useless.

Numerical simulations of 2D percolating elastic networ
foundT53.9660.04@4#. This is consistent with the value 4
which is the exact value ofT in a six-dimensional percolat
ing medium@24#. It is also in excellent agreement with th
value t12n53.96460.007, which is based upont51.297
60.007@17–19# and on the exact resultn54/3 @22#.

In the case of a continuum composite, the macrosco
moduli ŝe , Ĉe have the property that, for any given volum
average electric fieldE0 or strainê0, the total rate of produc-
tion of Joule heat per unit volumeE0•se•E0 or twice the
total elastic potential energy per unit volumeê0•Ĉe• ê0 are
the absolute minimum values of the following quadra
functionals of the local electric potentialf(r ) and local dis-
placement fieldu(r ), respectively:

1

VEV
dV“f•ŝ•“f, ~10!

1

VEV
dV ê•Ĉ• ê, eab[

1

2 S ]ua

]r b
1

]ub

]r a
D , ~11!

subject to the conditions thatf(r )52(r•E0) and u(r )
5 ê0•r at the system boundaries. Hereŝ(r ) is the local elec-
trical conductivity, a second rank tensor,Ĉ(r ) is the local
elastic stiffness, a fourth rank tensor, andê(r ) is the local
strain, a second rank tensor.

We assume that the local response is isotropic, henceŝ is
a position dependent scalar andĈ depends on just two posi
tion dependent Lame´ coefficientsl andm

Cabgv5ldabdgv1m~dagdbv1davdbg!. ~12!

These coefficients satisfy the following relations:

Cabab[m.0 for aÞb,

Caaaa[C11[l12m5rvs
2.0,

k[l1
2

d
m5C1122

d21

d
m.0,

wherek is the bulk modulus,m is the shear modulus,C11 is
another one of the elastic stiffness moduli, written in Voig
notation,vs is the longitudinal sound velocity, andr is the
02612
e

ic

mass density of the solid. The minimizing functionsf(r )
andu(r ) are the correct local physical potential and displa
ment fields.

The solutionf(r ) of an appropriate conductivity problem
in the volumeV can be used to construct trial functions f
the elastic energy functional: Following Milton@26#, we take
u(r )5fa(r )eb as a trial function, wherefa(r )52r a at the
boundary andeb denotes the unit vector alongr b . Using this
trial function we easily get

êĈê5~l12m!S ]fa

]r b
D 2

1m (
gÞb

S ]fa

]r g
D 2

,~l12m!~“fa!25C11~“fa!2,

and applying this inequality to the integrand of Eq.~11!, we
get the following results forê0 and Ĉe :

eba
(0)5eab

(0)52 1
2 ~11dab!, all the otheregv

(0)50, ~13!

Cabab
(e) <

1

VEV
dV C11~“fa!25saa

(e)@s~r !#, ~14!

s~r ![C11~r ![l~r !12m~r !5k~r !12
d21

d
m~r !.

~15!

This means that the macroscopic conductivities of a hete
geneous medium, where the local conductivitys(r ) is equal
to the local stiffness coefficientC11(r ), provide upper
boundsfor some of the macroscopic stiffness moduli. In pa
ticular, if we are dealing with a composite medium that h
an isotropic microstructure, whereŝe[se is a scalar andĈe
has the form of Eq.~12!, then

me<se@s~r !#, ~16!

C11
(e)5le12me<se@s~r !#, ~17!

ke5C11
(e)22

d21

d
me . ~18!

Applying the inequalities of Eqs.~16! and~17! in the case
of a rigid/normal mixture, we immediately obtain Eq.~3!. In
the case of a percolating~diluted! network, these inequalities
lead toT>t, which is a much weaker lower bound onT than
the inequality of Eq.~1!.

III. NEW BOUNDS FOR T AND S

We now invoke another variational principle, whereby t
expression~4! is minimized only whendbi and dw i attain
their correct equilibrium physical values, subject to fix
given values at some surface bonds and to certain c
straints, which are described below. We then try to use
exact solutionVi of the electrical conductivity problem on
the covering network as trial values fordw i .

In order to succeed, this approach needs to overcome
problems:~a! In order to be acceptable as trial values f
4-4
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EXACT RELATIONS BETWEEN CRITICAL EXPONENTS . . . PHYSICAL REVIEW E 65 026124
dw i , theVi ’s need to satisfy constraints that are absent in
electrical conductivity problem. These constraints arise
cause any closed loop of elastic bonds must remain a clo
loop even after the bonds are distorted.~b! Even if those
constraints are satisfied, we would still only have a tr
value for the second sum in Eq.~4!, whereas we are seekin
an upper bound for the entire elastic potential energyEL .

The first problem is overcome if values fordbi can be
found that satisfy all the constraints whendw i5Vi . The
question whether it is possible to satisfy those constrai
for a given set ofdw i , by an appropriate choice ofdbi

depends on the types of closed loops found in the netw
Clearly, a triplet of simple triangular loops, whose circum
ference is also a simple triangular loop@see Fig. 2~a!#, does
not allow those constraints to be satisfied in general. O
could argue that, in the vicinity ofpc , such compact cluster
of bonds are unimportant or irrelevant. Alternatively, we c
limit ourselves to networks that have a more open mic
structure, even when they are undiluted. For example, if
consider a honeycomb network, as in Fig. 2~b!, then, even in
the undiluted network, values ofdbi can always be found
that satisfy all the constraints. This can be seen by consi
ing the addition of an entire column of bonds~represented by
dashed lines! to an existing honeycomb network that is ri
idly connected to two parallel rigid plates, as shown in F
2~b!. Thesedbi are all of orderb0dw05b0V0, whereb0 is
the length of an undistorted bond anddw05V0 is the mac-
roscopic potential difference that is applied across the en
sample.

Using the trial valuesdw i5Vi , and dbi as determined
from them by the constraints, in an elastic network wh
mi j [g andki[k, ~the bonds withki5mi j 50 are simply not

FIG. 2. ~a! Compact cluster of 6 bonds where, if the orientatio
of the bonds are assigned arbitrarily, it is usually impossible to fi
any consistent bond lengths. For example, if the two small trian
on the left side are both isoceles with identical anglesa, as shown,
then the third small triangle must also be isoceles, which leave
freedom in choosing the orientation of the rightmost bond.~b! Hon-
eycomb network rigidly connected to two parallel rigid plate
When a single column of~dashed! bonds withpreassigned arbi-
trary orientationsis added to the network, it is always possible
find consistent bond lengths, which leave all the loops intact, if
orientations are not too different from those of the ideal honeyco
structure. Moreover, sufficient freedom remains in the choice of
dbi ’s, of the bonds in each elementary hexagon, to allow the s
( i(dbi)

2 in each hexagon to be minimized.
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included in the explicit summations! we get the following
upper bound for 2EL :

2EL,k(
i

~dbi !
21g (

( i , j )5nn
~Vi2Vj !

2. ~19!

We would now like to assign a value to the bond stretch
constantk that will make the first sum not greater than th
second sum, which is equal toWL of the covering network.
However, in general, the first sum depends on the total
of the system, as well as onDp, while the second sum de
pends only onDp, due to the dimensionalityd52. @This is
literally true for the ring geometry of Fig. 1~a!; for other 2D
sample geometriesWL can depend on details of the macr
scopic shape.# In order to determine a value ofk that will
satisfy the above requirement for all the samples that
need to consider, we assume that the system is again
shaped, as in Fig. 1~a!, with inner radius equal toj and a
much larger outer radiusgj. In that case, both sums depen
only onDp. The second sum is of ordergDpt(dw0)2, i.e., it
decreaseswhenDp decreases. By contrast, the first sum is
orderNLkb0

2(dw0)2, whereNL is the total number of bonds
in the independent closed loops of the ring. That is beca
the density of loops of size~i.e., gyration radius! much less
thanj does not change whenDp is decreased further, while
the total area of the ring increases; also, more bonds
appear in the loops of size comparable to or greater thaj,
sincej itself increases.NL is thus a quantity thatincreases
whenDp decreases. Thus, if we choosek by requiring that

k(
i

~dbi !
25g (

( i , j )5nn
~Vi2Vj !

25WL ~20!

for a given positive valueDp0 of Dp, then the left hand side
of this equation will be less than the right hand side for a
larger value ofDp.

We now letdw i anddbi vary, subject to the constraints, i
order to seek the minimum value of the elastic energy. Wh
that minimum is attained, the sumg( ( i , j )5nn(dw i2dw j )

2

will have increasedto a value that is greater thanWL . At the
same time, the sumk( i(dbi)

2 will have decreased, by an
even greater amount, to less than the valueWL that it had
whendbi were determined, by the constraints, from the
signeddw i5Vi . This is dictated by the fact that the sum
those two sums will have decreased to its minimum val
subject to the constraints, hence it must be less than 2WL .
Therefore, the two sums will now satisfy

k(
i

~dbi !
2,g (

( i , j )5nn
~dw i2dw j !

2, ~21!

2EL5k(
i

~dbi !
21g (

( i , j )5nn
~dw i2dw j !

2,2WL ,

~22!

wheneverDp.Dp0. Note that the inequality of Eq.~22! is
not inconsistent with the inequalityWL,2EL of Eq. ~6!. We
also note that the inequality of Eq.~21! should suffice to
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ensure that the elastic network under consideration is in
universality class wherek is irrelevant.

From Eqs.~7! and ~8! we now get

EL}DpT22n, WL}Dpt, EL,WL⇒T>t12n.
~23!

Together with Eq.~9!, this leads to the result

T5t12n. ~24!

It is generally believed that, even with networks of diffe
ent topologies, the critical behaviors of randomly diluted v
sions of such networks are characterized by the same un
sal values of the critical exponents@23#. It follows that Eq.
~24! should hold in all of those cases.

The network variational principles can also be applied
rigid/normal mixtures, so that we again obtain Eq.~6!. How-
ever, in order to usefully apply this inequality to such a n
work that is near its rigidity threshold, we need to look a
different type of macroscopic boundary value problem: W
consider a network of sizej3j which is tied by normal
bonds to a rigid or controlled boundary, as shown in F
1~b!. That boundary is displaced by an amount which is
linear function of positionu05 ê0•r , so that the macroscopi
or average strain isê0. Because of its size, the system w
typically consist of one large main rigid cluster which
connected to the boundary by a small number of normal~i.e.,
nonrigid! bonds. In fact, it was rigorously proven that th
average total number of ‘‘singly disconnecting bon
~SDB!,’’ between any two sites of the network separated b
distancej, ~an SDB between two given sites of a rigi
normal or superconducting/normal conducting network i
normal bond that, when made rigid or superconducti
makes the connection between those sites rigid or super
ducting; obviously, SDB in superelastic networks is t
counterpart of SCB in diluted networks! is proportional to
1/uDpu @28#, i.e., it is large. Those SDB’s will undergo lengt
distortions which are comparable to the overall macrosco
displacement at the upper boundary of the system of
1~b!, i.e.,db;uu0u;«0j, where«0 represents the magnitud
of the imposed macroscopic or average strainê0, and the
angles adjacent to those SDB’s will change by an amoun
order dw0[«0j/b0. The total elastic potential energy wi
then be of order

EL;Cej
2«0

25Ceb0
2~dw0!2. ~25!

This differs from Eq.~7! in that the elementary unstresse
bond lengthb0 appears instead of the diverging percolati
correlation lengthj. For the covering network of conductor
gi j 5mi j , with boundary conditionVi50 at the lower bar
andVi5dw i;dw0 at many other sites on the boundary, t
total production rate of Joule heat is then of order

WL;se~dw0!2, ~26!

which is identical with Eq.~8!. Using these estimates in th
inequality ~6! we now get

Ceb0
2.se⇒uDpu2S.uDpu2s⇒S>s. ~27!
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Together with Eq.~3!, this leads to the result

S5s. ~28!

As in the case of the diluted elastic network, rigid/norm
networks of different topologies are expected to belong
the same universality class. Thus Eq.~28! should hold for all
of them.

IV. SUMMARY AND DISCUSSION

The equalitiesT5t12n, S5s, which were strongly in-
dicated previously by numerical calculations ofT, and by
some numerical calculations ofS, using 2D random networks
with both bond stretching and angle bending forces, and
numerical calculations oft5s in 2D random conducting net
works, have now been proven rigorously, using variatio
principles for such networks. Although these equalities h
been conjectured earlier, and were supported by some o
numerical simulations, a convincing proof was lacking un
now. These results now join the set of other exact results
2D percolating systems.

The bounds onT for diluted networks of arbitrary dimen
sionality d, namely,@see Eqs.~1! and ~2!#,

11dn<T<t12n,

are actually quite tight ford52,3,4,5, and the interval tha
they define actually shrinks to 0 whend56 @24#. The result
T5t12n, therefore, holds exactly both whend52 and
whend56, and at least to a good approximation for valu
of d in between those two. It is natural to wonder wheth
T5t12n, and alsoS5s, might perhaps be true for all val
ues ofd. Although the variational properties of the expre
sions forEL andWL of networks extend to arbitrary dimen
sionality, the detailed form of the expression forEL becomes
more complicated, since the orientation of a bond is de
mined by d21 angles in the general case, and since
elastic potential energy must then depend also on angles
tween further than nearest neighbor bonds. That is why
are currently unable to generalize the derivation of the n
lower bound forT @Eq. ~23!# to other values ofd. This re-
mains a challenge for future studies. By contrast, it appe
that the new lower bound forS @Eq. ~27!# can be extended to
arbitrary values ofd @29#.

We note that the arguments and proofs presented her
not rely on the fact that the fractal percolating cluster
produced by a random assignment of the network bond
two different classes. Therefore they should also be ap
cable to other fractal systems, such as the one discusse
Ref. @20#, which is based on the fractals known as Ko
curves.

ACKNOWLEDGMENTS

A useful conversation with R. Blumenfeld is grateful
acknowledged. This research was supported, in part,
grants from the US-Israel Binational Science Foundation
the Israel Science Foundation.
4-6



y

s.

v

ci.

B

v.

ci

. B

ty
,

07

EXACT RELATIONS BETWEEN CRITICAL EXPONENTS . . . PHYSICAL REVIEW E 65 026124
@1# S. Feng and P.N. Sen, Phys. Rev. Lett.52, 216 ~1984!.
@2# D.J. Bergman and Y. Kantor, Phys. Rev. Lett.53, 511 ~1984!.
@3# D.J. Bergman, Phys. Rev. B31, 1696~1985!.
@4# J.G. Zabolitzky, D.J. Bergman, and D. Stauffer, J. Stat. Ph

44, 211 ~1986!.
@5# M.A. Lemieux, P. Breton, and A.-M.S. Tremblay, J. Phy

~France! Lett. 46, L1 ~1985!.
@6# A.R. Day, R.R. Tremblay, and A.-M.S. Tremblay, Phys. Re

Lett. 56, 2501~1986!.
@7# L. Benguigui, Phys. Rev. Lett.53, 2028 ~1984!; J. Vareille,

ibid. 57, 1189~1986!; L. Benguigui,ibid. 57, 1190~1986!.
@8# L. Benguigui, Phys. Rev. B34, R8176 ~1986!; J. Wu, E.

Guyon, A. Palevski, S. Roux, and I. Rudnick, C.R. Acad. S
Ser. II: Mec., Phys., Chim., Sci. Terre Univers305, 323
~1987!.

@9# L.C. Allen, B. Golding, and W.H. Haemmerle, Phys. Rev.
37, 3710~1988!.

@10# J.P. Straley, Phys. Rev. B15, 5733~1977!.
@11# D.J. Bergman and D. Stroud, Solid State Phys.45, 147~1992!.
@12# S. Feng, P.N. Sen, B.I. Halperin, and C.J. Lobb, Phys. Re

30, 5386~1984!.
@13# S. Roux, C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., S

Terre Univers301, 367 ~1985!.
@14# D.J. Bergman, Phys. Rev. B33, 2013~1986!.
02612
s.

.

,

B

.

@15# S. Feng, Phys. Rev. B32, R510~1985!.
@16# S. Arbabi and M. Sahimi, Phys. Rev. Lett.65, 725 ~1990!.
@17# H.J. Herrmann, B. Derrida, and J. Vannimenus, Phys. Rev

30, 4080~1984!.
@18# J.G. Zabolitzky, Phys. Rev. B30, 4077~1984!.
@19# C.J. Lobb and D.J. Frank, Phys. Rev. B30, 4090~1984!.
@20# L. Limat, Phys. Rev. B40, 9253~1989!.
@21# Y. Kantor and I. Webman, Phys. Rev. Lett.52, 1891~1984!.
@22# B. Nienhuis, J. Phys. A15, 199 ~1982!.
@23# A. Aharony and D. Stauffer,Introduction to Percolation

Theory, 2nd ed.~Taylor & Francis, London, 1992!.
@24# D.J. Bergman, inNonclassical Continuum Mechanics, edited

by R.J. Kuops and A.A. Lacey, London Mathematics Socie
Lecture Notes Series Vol. 122~Cambridge University Press
Cambridge, England, 1987!, p. 166.

@25# S. Roux, J. Phys. A19, L351 ~1986!.
@26# G.W. Milton, in Physics and Chemistry in Porous Media, ed-

ited by D.L. Johnson and P.N. Sen, AIP Conf. Proc. No. 1
~AIP, New York, 1984!, P. 66–77.

@27# V.K.S. Shante and S. Kirkpatrick, Adv. Phys.20, 325 ~1971!.
@28# D. Wright, D.J. Bergman, and Y. Kantor, Phys. Rev. B33, 396

~1986!.
@29# D.J. Bergman~unpublished!.
4-7


