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lonization via high-Rydberg states with multiple V-type resonances
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We study an extended model of intense-laser ionization of the hydrogenlike atom from a low excited state
via a band of high Rydberg states. The essence of the extension is that the population from the directly excited
low-angular-momentum Rydberg band is allowed to migrate resonantly toward Rydberg bands of higher
angular momenta through a sequenc&dfpe degenerate Raman transitions. Edelype transition exploits,
as a resonant intermediary, the state of the same principal quantum number as that of the initial state but of a
different angular momentum number. We find an analytical limit to this model, and obtain for it a closed-form
solution for arbitrary length of the chain of thétype transitions. This solution implies that, through the chain
of V-type resonances, the population initially localized in a single state can be spread over a number of bound
states of much higher angular momenta. The main result of the model is that, at high intensities, no population
is left in high Rydberg states, but the population not released to the continuum is shared between the initial
state and the higher-angular-momentum states of the same energy as that of the initial state. This sharing
depends on the pulse duration, and, for the duration approaching one Kepler period of the resonantly excited
high Rydberg state, the initial state was found to be completely depleted. This particular result emphasizes the
effect of the orbital degeneracy of the initial level avidype resonances on the high-intensity hydrogen-atom
stabilization.[S1050-294{@8)00608-3

PACS numbd(s): 42.50.Hz, 32.80.Rm

I. INTRODUCTION suggest that the migration of population toward higher-
bound stategboth low and high via a sequence d¥-type
The paper is an extension of the discussion we presentd@sonances can be non-negligible provided that the pulse du-
in Sec. Il C of our previous papédt], in which we intro-  ration is not too short when compared to the classical Kepler
period of the high Rydberg states directly excited from the

duced a model of nominal two-photon ionization by a stron - . .
P y gIow initial state. If the pulse is short, the model predicts that

light pulse of the hydrogenlike atom from an isolated initial

state via a band of high Rydberg states. The interesting el []e ir]itial state has the property of surv_iving it even if itis of
ment was the inclusion of resonant migration of the populal igh intensity. A substantial difference is found in the behav-

tion from the directly excited Rydberg band of a given ior of the population between high Rydberg states and low

angular-momentum quantum number toward the Rydber tates of the same energy as th? initial one but of high(_ar
band of an angular momentum quantum number higher by _ngular momenta. At high intensities, the former are practi-
The channel of migration was ¥-type degenerate Raman ca!ly completely depopulgteq, but Fhe Iattgrl trap some popu-
transition between the two Rydberg bands via a state of thlﬁ,’?‘t'on' As a result, the high-intensity stabilization occurring

principal quantum number the same as that of the initial stat@1gainSt ionization is Seen as an interplay be_twe.en the initial-
but of a different angular momentum quantum number. state survival and trapping some population in highstates

Previously[1] we allowed only oneV-type resonance, of the same energy as that of 'the injtial state. All this sug-
and now we wish to generalize this simplest model to in-9€sts that S|r_npler models not |nclu_d|ng the coupled/pe
clude a sequence df-type resonances linked in a chain. Due resonances, if allowed by the selection rules, may not always

to its orbital degeneracy, the hydrogen atom allows a numbe?'Ve reliable results. We ﬂr_]d, ho"VeV?F that predlcuons_ of
of such coupled resonances, particularly when the initiaPu’ extended model are highly sensitive to the atom-field
state is of a relatively high principal quantum number and, a{:oupllng parameters. .

the same time, of a low angular momentum quantum num- The paper 1S organized as follows. Sechon I.I present; a
ber. The main questions we raise in the framework of thé;eneralyzed model and th_e scheme_of its solution, forming
generalized model conce(a) the efficiency of the migration the basis _for future ’_‘“me”ca' analysis. In Se(_:. i, we_focus
of the population toward the bound states of angular mo?" @ part|c_ular version of our mogiel, for which we find a
menta much higher than that of the initial stata, the abil- fully gpalytl_cal solution _for an _arbltrary ngmber .M-type

ity of the initial state to survive the laser pulde) the pos- tran5|t!0ns in the co_upllng chain. As.an lllustration of our
sibility for bound states different from the initial one to trap analytlca_l solution, in Sec. IV we discuss results for the
population, andd) the effect of stabilization against ioniza- model with threev_-type resonances. We end the paper with
tion. We find answers to these questions considering a full)g short summary in Sec. V.

analytically solvable limiting case of the model, i.e., when Il. MODEL AND SOLUTION SCHEME

bound-bound and bound-free matrix elements of the atom-

field couplings are roughly assumed to be independent of the Let the hydrogen atom be initially in the staje=1)
angular momentum quantum numberThe results obtained =|n,,1,>0, m;=1,—1) (the black dot in Fig. §, which is a
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the corresponding angular momentum quantum numbers
=1,+2j—1. By B,;, we label the time-dependent Schro
X JS AR £ , dinger amplitude for theith Rydberg state in theth band,
and byB,,; we label the appropriate Laplace transform. Fi-
nally, we take(), ,; to denote the resonance Rabi frequency
for the transition from the. state to then state in thg band,
=N andD; /; to denote the Raman coupling via the continuum
between any pair of Rydberg states from the same Ifalhd
Dnj.njr» With j'=j =1 are set equal to zero throughout the
=1 =2 =3 A=N paper due to their negligibility when compared to the reso-
k>0 meteD) nant Raman couplings via thestateq 1]). It is well known
D B S B s B s e [2] that, forn>1, bothQ, ,; andD,; ,; scale as the appro-
priate powers of the principal quantum number of high Ry-
dberg stategn~*2and (1n’) ~? respectively. Thus we are
—1) state via higm Rydberg states, extended to include resonanta”C'Wed to base our solution scheme on the facto_rlzatlon an-
Raman migration of the population from the directly excited Ryd- S&Z2x nj=fnllyj @ndDy; nrj=f,fy Dy, with f, being the
berg band {=1) toward highei- Rydberg bandsj=2—N) via  Scaling factor. With this ansatz, we write the coupled alge-

states\ =2,3,...N of the same energy as the initial state but differ- Praic equations for the Laplace transforms of the S_atimg)er
ent angular momenta. amplitudes of the discrete states of the model in Fig. 1. In the

standard rectangular pulse and rotating-wave approxima-

_ tions, and with the neglect of the continuum-continuum tran-
low excited state of nonzero angular momentum and a spe -~

o L >Msitions, the equation fob, , obtained along the line pre-
cifically chosen projection of the angular momentum. Bemgsented in Ref[1], is
in this state, the atom is exposed to a laser beam of linear ’
polarization along the axis, and a frequency that ensures a
band_of hlgh-Ryd_berg states are excited by one-photon _ab- Sb=6,,—10, 1K, 1—1Q) Ky, (1)
sorption. These high Rydberg states are then one photon ion-

ized well above the threshold. Due to the choicé 00, the  where

directly excited Rydberg bands are specified by the angular

momentum quantum numbers—1 andl;+ 1, respectively,

but these two bands evolve further along different lines. Be- ~ )

cause of the assumption af;=1,—1, the population from KJ:; foBnj  (J=A—=1), @

the I;—1 band is(by the selection ruléAm=0) forbidden

from migrating toward Rydberg bands of angular momentuns is the Laplace variable, ané} ; is the Kronecker symbol
numbers lower tharl;—1. However, migration from the reflecting the initial condition for the state populations. Un-
otherl;+1 band toward a Rydberg band of a higher angularder the same approximations, the appropriate equation for
momentum number is allowed, namely, toward that of the"E';nj looks like

numberl,+ 3, through the resonant state nf=n; and |

=[,+2. If ny andl,, the quantum numbers of the initial

state, are chosen propefselatively highn,, relatively low ~ —fn o~ ~

l;), multiple Raman resonances will take place through Bnj=g7a - (10 +iQ44jbj 1+ DKy, (3)
which the population from the directly excited Rydberg band "

of the angular momentum numblgr+ 1 will migrate toward  with the restriction that)q,=0 andQy.y=0 due to the
Rydberg bands of much higher angular momenta. For innonexistence of the =0 and\=N+1 states in our model
stance, ifn; =8 andl, =1 [the case of the (m;=0) initial  (see Fig. 1 Moreover,A,; is the detuning of the laser fre-
state is to be considered in detail laterd,cene encounters as quency from the transition frequency between the initial state
many as three such Raman resonances which give the oppeind then state in theg band. It is independent gfin a real
tunity for population migration from the Rydberg band of an hydrogen atom due to the actual degeneracy with regard to
angular momentum quantum number equal to 2 to higher-the angular momentum quantum number.

Rydberg bands of=4, 6, and 8. In this case the resonant In the first step, we multiply Eq3) by f,,, and then sum
intermediares are the states sharing the saywe8, but dif-  the result over all Rydberg states in a given band, which
fering in angular momentum numberswhich are 3, 5 and  gives

7, respectively.

LetA=1,2,3,...N number the initial stateN=1) and the _ ~

states orbitally degenerated with it, employed in the process Kj=—iP;G;(Qjjb;+Qj,1jbj+1), (4)
(A=2—N). If 1;>0 is the angular momentum quantum

number of the initial state, the angular momentum of a giverivhere

\ state is determined by =1;+2(A—1). We introduceb,
for the time-dependent Schtimger population amplitude of
the \ state, and, for the corresponding Laplace transform. P:E
By j=0,1,2,..N, we denote the excited Rydberg bands of A s—iAy

CONTINUUM

FIG. 1. Model of two-photon ionization of the hydrogen atom
by light linearly polarized from thdA=1)=|ny,l,>0, m;=1,

®)
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and

1

Si=17pp," ©
In terms ofK; andP;, Eq.(3) reads
~ fn K;

In the next step, we substituk, of Eq. (4) into Eq. (1),
and convert the latter equation into the oneligralone. The
resulting equation fob, appears to be of the matrix form
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not encountered in the past. However, irrespective of what
A,—s and B, are, the matrixM of Eq. (12) satisfies the
known[3] recurrence relation

My=AM,_1-BF M, (13)
(Mp=1, M_;=0, By=0), whereM, denotes the principal
minor of rankA=1,2,...N, i.e., a determinant obtained from
the main determinanly=detM by leaving inM the first

N\ rows and columns. This relation is made proved by the
application of the Laplace expansion procedure to the last
column of My . It can be conveniently used to create the
main determinanMy, which is a common denominator in

the expressions fdp, solving Eq.(8).

The last step is to find, frorVy=0, the poles contribut-

ing to the inverse Laplace transformatibp—b, . In gen-
(8) eral, this is a cumbersome tagkumerical, in principlg due
to the large dimensionality of the employed basis of states
and the actuas dependence of bothA, —s andB, . Fortu-
nately, having found the time-dependent originhjs one
can apply the Borel convolution theordd] when searching
the time-dependent amplitud&g; . This is possible because
Eq. (7) for the Laplace transforrB,,; is recognized as being
composed of the products of two different Laplace trans-
forms, one beingy, and the othe'ltj:Gj/(s—iAnj). If by
—b, andg—g, then the inverse Laplace transform of the
productb, g is known to be equal to the convolutitig«g of
the originalsb, andg, namely,

E My by =651,
N =AAEL

with the matrix elements
Myr-1=Pr-1Gho1i Q-1 -1 (A=2), (9
My =5+Py_1Gy-105 1+ PLG Q5 =A,, (10

My r+1= PGy 10 =By (A=N-1). (1)

This means that th&l XN matrix M=[M ,z] is of a tridi-
agonal form, i.e., a form with nonzero elements only on the
main diagonal and two neighboring diagonals, one above and
the other below the main diagonal. It is easy to see that, by a
formal replacement — X +1 in Eq.(9), the right-hand side We will find this convolution theorem very useful through-
of the transformed equatiof®) is made equal to the right- out the rest of this paper.

hand side of Eq(11). Thus the matrixM appears to be not
only tridiagonal but also symmetric. In terms Af andB, ,
defined by Eqgs(10) and (11), respectively, this matrix is
represented as

~ t
b.G-byeg= [ butigt-thar. a4

IIl. ANALYTICAL LIMIT OF THE MODEL
A. Approximation of |-independent couplings

We now idealize the model to find some illustrative fully
"A. B analytical solutions. Analytical solutions to the problems of
1 B; el . : .

guantum dynamics in idealized model systems provide quali-
Bi Az B tative insight into the behavior of real systems. Only with

0 B, A these solutions are we often able to understand the results of
the ab initio numerical calculations performed for real sys-
tems. The idealization we make is that the Rabi frequencies
,; and the Raman coupling3;; are set independent of the
angular momentum quantum numbler2,;= and D,
=D). This idealization is knowf5] to overestimate the cou-
plings in the case of largenumbers. WithP;=P in the
hydrogen atom(due to the level degeneratiprthe above
assumption leads to a univergaindependenG=G;. As a
The above matrix significantly differs from the formally result, all the diagonal elements in the matixof Eq. (12)
similar tridiagonal matrices which appeared many times inbecome  equal A;=A,=---=Ay=A=s+2PG?=s
the past in the study of different quantum-mechanical and+2B), and the same holds for all the off-diagonal elements
classical problem§3]. The difference is that, instead of be- (B;=B,=:--=By_;=PGQ2=B). This allows us to adapt
ing certain constants, ouk, —s andB, still depend on the to our aims the solution line invented in Ref8] and[5] in
Laplace variable. This will be the origin of serious trouble the context of different problems. We define

. (12

AN—l
BNfl

BN—l
An
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N A
¢= arcco% A arcco% 1+ S (15 (—1)M 1 E D+a+Bs, c+ 2, Rq i
2B 2B)’ = PR & 5 Sq/ S—Spk’
21

and, following Ref.[5], we write the solution to Eq8) as
Finally, applying the convolution theoreifiEq. (14)], one
converts the abovie, into the time-dependent amplitutg :

~ _(—1)Hl Sir{(N+1—)\)¢]_(—1))‘+l
Mo B sif(N+1)¢] B A "
16
(16 by=(—1) 1> > | D+a+pBspk
The poles ofF, are to be determined from Pkt
+2 Rqf (Sq—Spit) | Ch K, (22)
14— 5( KT | k12 1
28 tTag o NTr) KEL2eN QD ety = (- 1)ix.

To find the time-dependent amplitudBg; we recall Eq.
and if B was ans-independent constant, these poles would(7), and note that foj =0 andj=N (i.e., the first and last
be the only poles ob,, and the problem would become Rydberg bands in the modehis equation takes a structur-
mathematically similar to that in the above-mentioned papeally different form than for all othef=1,2,...N—1, due to
[5]. Qgp=0 andQy, 1n=0, respectively. Bearing this in mind

However, ouB depends ors throughP, and, for a given
k, Eq.(17) becomes an equation with respecstavhich has
p>1 solutions. We introducs,  to denote these solutions.
Then the reS|duur’RA « of F\ ats, is found to be

PG
N 02
Rpu=4 L GdP
“SBds)
S_Sp,k
1)K+ o ka | N+1—)\k
XD GFT SN NS N KT
=Q%Cy ., (18)

and applying thel-independent coupling approximation
[Egs. (15—(20)], we find, from Eqs(7) and (4), that, forj
_0,

giving the basis to the fractional decomposition of the func-

tion F, . On the other handB ™= (D+ P~ 1)/Q?, with

M (s—iAp)
S F2 s (5—

f1(s)

_1:
P g(s)’

iA) (19

i.e., a ratio of two polynomials with respect & with the

polynomial in the numerator being an order higher than the

polynomial in the denominator. We divide these polynomi-

als, with the result

fi(s)
g(s)

fa(s)
g(s)’

-1_

=

(20

where @« and B8 are somes-independent parameters, and
f,(s) is a polynomial of a lower order thag(s). Then,
denoting bys, the poles of the rational functiofy(s)/g(s),
and by R, the appropriate residua of this function at the

~ —-if,Q ~ o~
B“°:s—iA Gb=—if,QTu; (23
n
for j=N
~ —if Q , ~
nNT o_ A s—iA, GbN_ |an(_1)N+lTnN; (24)
and forj=1,2,..N—1,
~ —if,Q
Boj= 572 C(Di D)
= =i Q= 1) (T~ Ty jo), (25
where
- F, /02 1 N
N TAP 1A, o 2 | Ao
C)\
p.k
+§ ~ sq) sy (26)

As a result, the convolution theorem gives the following
time-dependent amplitudes;,; :

—ifQThy, (27)

above poles, we decompose the function in question in terms

of the elementary fractions. All this permits the following
representation fob, of Eq. (16):

Bon=—if Q(—DNTIT\, (29
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Bnj= —ian(—l)j+l(Tnj—Tn i+1), i=12,.N-1,
(29

where

N
gl (a+Bs, ) f(Spx—iAnt),

|A tz
p

+2

- Spkmsq A1),

—f(sp,k—iAn,t)]}cg,k (30)

Equations(22) and (27)—(30) provide us with a tool to
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As a result, the key equations of Sec. Il A, i.e., E@®2) and
(30) are recast to the following closed-form analytical ex-
pressions:

N
d
by=(—1)*le %2y C} X—n sinh(x,t/2) + cosh{x,t/2)
k=1 k
(34)
and

A

N
c
Th=2e %2> X sinhx,t/2). (35)
k=1 Xy

In the simplest case dfi=1, the last two expressions con-

study both the time and intensity effects in the redistributionvert into standard expressions of the model of resonant two-
of the initial population over different discrete states of thePhoton ionization from a nondegenerate level via a two fold-
model with|-independent couplings. By subtracting the glo-degenerate levelj&0,1) with the coupling via continuum
bal descrete-state population from 1, we have a way to capPetween thg =0 and 1 components ignored.

culate the ionization probability in our model. Below, we

confine the application of Eqg22) and (27)—(30) to the

cases when Eq(17) gives simple analytical solutions for

Spk-

B. Analytically soluble cases
1. The case of B=f2/(s—iA,)
According to Eq.(5), this choice ofP corresponds to

leaving only one state in each Rydberg band, the state closest

to resonance. By taking the reciprocal Bf from Eq. (20)
we identify a=—iA,/f2, B=1/f2 and f,(s)/g(s)=0
[f2(s)/g(s) =0 results inR,=0]. Then Eq.(17) turns out to
lead to a quadratic equation with respectstdhaving the
solutions

Sp k:%[_dn_'—(_l)pxk]! p:1!21

km
Xe=\d2—802a,, ak=1—cos(m >0,
d,=D,—iA,, D,=Df2 Q,=0f,. (32)

With the aboves, , andP, Eq. (18) for C,ﬁlk is found to be
equivalent to

2

pf_ A
Ch=(-1P " C, (32

where

ko
N+1

C[N+1-\
sm( kw).

2
N 1yk+1
C=-D7 % 15'”( N+ 1
(33

2. The case of B=s(f $+f3)/(s—iA;)(s—iAy)

This form of P is specific for a pair of states left in each
Rydberg band and a laser frequency fixed in such a way that
A.f3+A,f3=0. By taking into account thah,=A;—A,
where A is the pair separation, one finds the specific fre-
quency to be the one ensuring the detunings

A (folfq)?
Al_1+(f2/f1)2" Ap= 1+(f,/f)? A (39
The opposite sign of these detunings means that a virtual
state is reached from the initial state of the process lying
somewhere inbetween the pair of Rydberg states. In the par-
ticular case of equal Rabi frequenciefs € f5), this virtual
state is localized just in the gravity center of the doublet. It is
the advantage of such specifically chosen frequency that,
only for this frequency, Eq(l7) again converts into a qua-
dratic equation, now with the solutions

Spk=3[—d+(—DPy], p=1.2,

Y= Va2 —8(QI+ Q%) a+ 44,4,

d=D1+D2_i(A1+A2), (37)
leading to
=(-1 Ck. 38
pk =(—1° yk k (39
Moreover, now P~ 1= a+,8$+(R1/s) with a=—i(A;

+A2)/(f 2412), B=1(f3+f3), Ri=Rq=—24;A,/(f1 2
+f2), ands; =s;=0. As a result, we convert Eq&2) and
(30) into relatlvely simple analytical forms
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N
d
by=(—1)}le 2y Cﬁ( " sinhy,t/2) + coshy,t/2)
=1 K

A,A
- % e f(Sppr t) — F(Syye t>]) (39)
and
T or
Ta=€4 > — X (—1)P|[Spr—i(Ay+Ay)]
k=1 Yk p=1
. AqA, .
Xf(Spx—iApt)— S [f(Spk—iAn 1)
p.k
—f(—iAn,t)]}, (40
wheren=1,2.

3. The case of B (z/A)f2

The aboveP is the first term in the expansion d?®
=(77/A)f§ coth(ws/A)=(#/A)(1+w)/(1—w) in a power se-
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for j=N,
Q.02 t
— 2_ Nomr N~N * -
WN (277) |1+(’T[‘DO/A)|2 kJEZl CkC| f Zk+Z|, . ,
(45)
and forj=1,2,..N—1,
(Qg/A)2 N _
= 2__ 977 i _ it
W] (277) |1+(7TDO/A)|2 21 (Ck Ck )
x(Cl-c™Hi z:+z.,;), (46)

where z,=2ms, /A, Ch is given by Eq.(33), and f(z,t")
was defined after Eq22).

IV. RESULTS AND DISCUSSION

To exemplify the analytical solutions obtained, we focus
on the model withN=4. This model could imitate the pro-
cess starting from, e.g., tHg =1)=|n4l;m;)=|8 1 0) ini-

ries of p=exp(-2ms/A). This coth representation results tjg| state. In this case, the states degenerated with the initial
from Eq.(5) when one approximates the real Rydberg bandg)ne  engaged in the process, axe=2)=|830), [\=3)

by the Bixon-Joertner band&\,=nA, n=0,£1,+=2,...f,

=[850), and|]\=4)=|8 7 0). On the other hand, the Ry-

=fo) of states which are equidistant and coupled to othegperg bands directly excited from the initial state are those
states of the model with-independent strengths. It is known \yith | =0 and 2, while the higherbands to which the popu-
[1] that the inclusion of only the first term in the expansion ation partly migrates via thk states are determined by: 4,
implies that the Schudinger population amplitudes to be ob- g angd 8. According to Fig. 1,=0, 1, 2, 3, and 4 are pre-
tained are valid for the interaction timesiot longer than the  gcribed to these Rydberg bands, respectively.

characteristic Kepler period=27/A (t/7<1). The results
obtained in theP=(7/A)f2 approximation[a=A/(wf2),
B=0,Rq=0, s, x=s¢], thus restricted to/7<1, are

N

by=(—1)*"*> Cre¥ (41)
k=1
and
gldnt N
— A i
T =15 (#D.78) 2 Cif(s—idnt), (42
where
PN (Qo/A)? 43
S T ETA T T ID/A) “3)

andQ,=Qf,, D,=Df 2. Then, summing squared modulus

of the amplitudesB,,; [Egs. (27)—(29)] over alln, one ob-

tains the fractiorW; of the population transferred to the sub-

sequent Bixon-Joertner bands: For 0,

(Qo/8)2 &

_ 2 11
Wo=(2m)?* G5 TP (2, CkCl

zi +z, ! ;
-

(44)

We assume the linearly polarized light pulse to have its
frequency resonant to the atomic transition from the initial
8p(m;=0) state to the Rydberg state with=40. As the
representative Rabi frequency we choose the one corre-
sponding to the transition@m=0)—40d(m=0) (with ac-
curacy to the factor of 1.94 i.e., Q,=Qf,=Q/(40)%?
=101Y2, wherel is laser intensity expressed in W/énThe
bound-bound radial integral required was calculated by us
exactly using the recent recipe of Réb] based on the
Laplace-transform approach. We checked, however, that the
quasiclassical approximation of Ref2], exploiting the
WKB functions, gives nearly the same result. On the other
hand, the representative Raman coupling between different
Rydberg states from the sanheband is approximated by
Dy =Dnn=Dn=Df2=D/40*= (1+iq) y/2=20(1+i20)I.
Here y is (with accuracy to the factor of 1.4%he arithmetic
average of the two partial ionization rates from the directly
excited 4@ Rydberg state tp andf continua, at the above
assumed frequency, whikg is taken in analogy to Ref5].

Also in this bound-free case the ex46{ and quasiclassical
[2] d—f radial integrals were checked to be close to each
other. In the case of the Bixon-Joertner structure, weAset
=6.5x 10" s corresponding to the frequency separation of
then=40 level from the nearest neighbor. This leads to the
representative Kepler period of the band of excited Rydberg
states equal te=27/A=9.7 ps. For the above atomic pa-
rameters(Q),, D,, andA) and three pulse durations, none
exceeding the Kepler peridt! 7=0.08, 0.5, and )1 we show

in Figs. 2—4 the results obtained from the model with only
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with N=4 and only one state included in each Rydberg be®)d (
for the pulse duration=0.08r, with 7=9.7 ps being the Kepler
period of the resonantly excited Rydberg statenef40.

FIG. 3. Same as in Fig. 2, but for 0.57.

states(a), the Rydberg band&), and the atomic continuum

(c). We have refrained from presenting the appropriate fig-
one state included in each Rydberg band, while in Figs. 5-tres obtained from the model with a pair of states in each
the corresponding results obtained from the model with theRydberg band, because they resemble to a great extent Figs.
excited Rydberg bands approximated by the Bixon-Joertne2—4. Figures 2—7 provide a basis to formulate the following
structure. In these two opposite limits as to the number ofnain conclusions.
states included in each Rydberg band, the figures in question Irrespective of the number of states included in the ex-
show the effect of laser intensity on the population of Xhe cited Rydberg bands, the initial state of the process reveals
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berg bandgb) and atomic continuunic), obtained from the model
hwith N=4 and each Rydberg band approximated by the Bixon-

FIG. 4. Same as in Fig. 2, but foe=17.

the tendency to survive the laser pulse even if it is of hig ; :

intensity. However, the residual high-intensity population of 0" structureR-J) for the pulse durationt=0.08r, with 7

the initial state becomes smaller and smaller when the pulsétgt'7 pfs‘ tie"l%g the Kepler period of the resonantly excited Rydberg

duration increases, and drops practically to zero if the pulsé ate omn=42.

duration becomes equal to the Kepler period of the Rydberg

state resonantly excited from the initial state. reaches a relatively high level if the pulse is not too short.
The initially empty N states ofA=2—N, degenerated Each\ state ofA=2—N exhibits the property of trapping

with the initial state of the process\&1), are populated the population in an amount which becomes constant after

after the pulse. The population sent to differentstates the intensity crosses some threshold value. This seems to be
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g FIG. 7. Same as in Fig. 5, but for=17.

the normal picture when the population trapped in a state
with a smaller\ is |arger than the popu|ation trapped in a | bands. The Striking difference is that the Rydberg bands are
state with a highek. However, an abnormal picture is pos- made practically empty at high intensities, i.e., they do not
sible as well, particularly at longer pulses, when the populatrap population in this intensity limit. A substantial popula-
tion is cumulated in highx rather than lowx stategcompare tion of the Rydberg bands is reached only at intermediate
the case ot/r=1 with that oft/7=0.5). intensities, particularly at the intensity for which the popula-
Quialitatively different from the behavior of thestates is  tion of the initial state drops to its main minimum. For these
the behavior of the total population in Rydberg bands, bothintensities, a non-negligible migration of population from the
in bands directly coupled to the initial state and in the highedirectly excited Rydberg bands to higheRydberg bands
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necessity of having a largg parameter for obtaining a sta-

B-J bilization in our model of ionization via high Rydberg states.
0.8 4 tr=1 This result of the above model of ionization via high Ryd-
1=10"> W/cm?

berg states agrees qualitatively with the result of two models

5 0.6 - (numerical[7] and analytical8]) of the so-called interfer-
= ence stabilization, i.e., when ionization starts from a high
é Rydberg state that is directly one photon coupled to the con-
g 0.4 4 tinuum. As a matter of fact, it was shown in Reffg, 8] that
- a nonzerog parameter enhances the interference stabiliza-
0.2 4 tion.
Of direct relevance to our model of ionization via the high
0 Rydberg state is the recent model of Fedorov and Poluektov

[9] of interference stabilization. In this model, a resonance
was allowed between the initially populated high Rydberg
q PARAMETER state and a much lower-lying state, but no migration of popu-
lation to higher-angular-momentum discrete states was in-
cluded. This model was considered from the point of view of
the competition between-type(i.e., via the continuupmand
V-type (i.e., via the lower resonant stateedistributions of
the population over large number of high Rydberg states
neighboring the initially populated one. An interesting con-
via the \ states of\=2 takes place if the pulse duration is clusion derived by Fedorov and Poluektov was that, applying
not too short. pulses much longer than the classical Kepler period of the
A direct consequence of the above-described behavior dhitial high Rydberg state, one can expect stabilization in
population in discrete states is the observed stabilization ofveaker fields determined by the conditifiy=A instead in
the ionization at a level lower than unity at high intensities.stronger fields determined by either Rg(=A or Re(,)
The high-intensity stabilization has its origin in two =0 (in our case, the critical intensities resulting from these
effects—the effect of survival of the initial state, and the conditions are 4.2 10°, 3.3x10° and 2.5¢< 10 Wicn?,
effect of trapping of the population in the states orbitally respectively. The origin of the above shift of the threshold
degenerated with the initial state of the process. The pulsgf stabilization toward lower intensities lies in the pro-
duration determines which of the two effects dominates: fomouncedv-type redistribution, in accordance with, e.g., Fig.
short pulses, it is the effect of survival of the initial state, 8 in Ref.[10]. A question arising in this context is if an
while for longer pulses, the initial state is made greatly de-analogous effect of lowering the stabilization threshold
pleted and the trapping of population in thestates ofA  emerges from our model of ionization via high Rydberg
=2 is the prevailing effect. states when pulses much longer than the Kepler period are
The above conclusions were derived from the analysis ogonsidered. In the case of the Bixon-Joertner approximation
Figs. 2—7 prepared under a specifically chosen imaginargf Rydberg bands, the answer to this question can be found
part in the representative Raman coupling paramBigr by taking into account a few terni@nstead of the first one
=(1+iqnn ) VYnYnl2=Dn=(1+iq,) y/2=20(1+iq)l, only) in the expansion oP 1= (A/)(1—u)/(1+ ) in a
namely,q=20 in analogy to Ref[5]. We have varied the power series ofu=exp(—2xs/A) [10]. With this expansion,
parameterg over a wide range, and found that its changeEq. (17) will be converted to include the Laplace variable in
substantially affected the shape of some curves from Figshe argument of the exponential function as well. Unavoid-
2—7. The curves most resistant to the changg tfrned out  ably, numerical procedures will have to be applied to find the
to be those of the total population of Rydberg bafparts poless, . Having these poles, we will be able to find the
(b) in Figs. 2—7. However, the population in both states  time-dependent amplitudés, from Eq.(16) by applying the
[parts(a) in Figs. 2—7 and atomic continuunjparts(c) in  translation theorem[if f(s)—f(t), then e 25f(s)—f(t
Figs. 2—1 exhibited remarkable sensitivity to the change of —a)®(t—a), where®(x) is the step Heaviside functign
g. The general tendency we observed was that, with dimintn a similar way we can find the time-dependent amplitudes
ishingq, less and less population survived in the initial stateB,; applying both the translation and convolution theorems
(A=1) and less and less population was trapped in ather to the first part of Eq.26). As seen, a different solution
states when the pulse intensity increased. In the limig of procedure from that developed in the present paper is needed
—0 no population was left in any of the states at high to consider pulses longer than the Kepler period in the
intensities. A direct consequence was a complete ionizatioframework of the model in which high Rydberg bands are
in the limit of high intensities (1& W/cn?), i.e., no evi- approximated by the Bixon-Joertner structure. If, however, a
dence of the effect of stabilization whegr-0. To emphasize large but finite number of states in each Rydberg band is
this result, in Fig. 8 we present the ionization probability by considered, the procedure developed is applicable for longer
a pulse of high intensity (28 W/cn?) and the duratio/~  pulses as well, but, again, numerical solutions to Bdq)
=1 in its dependence on parametgr for the model with  and equatiorg(s) =0, with g(s) as defined by Eq.20), are
N=4 and the Bixon-Joertner approximation of Rydbergunavoidable. Numerical investigation along the above lines,
bands. A curve similar to that of Fig. 8 is obtained when onlycovering pulses longer than the characteristic Kepler period
one state in each Rydberg band is left. Figure 8 points to thef the excited Rydberg bands, will be undertaken, and the

-50 -30 -10 10 30 50

FIG. 8. lonization by the high-intensity pulse (foV/cn?) of
the durationt/7=1 vs parameteq, for the model with a Bixon-
Joertner structure of Rydberg bands awe 4 (threeV-type reso-
nances



PRA 58 IONIZATION VIA HIGH-RYDBERG STATES WITH . .. 1345

results will be presented elsewhere. We hope that these nthe dynamics of transitions in multistate systems exposed to
merical results will answer the question raised at the end ofin intense electromagnetic field.

the present paper, whose spirit was analytical in principle.  As an illustration, our analytical solution was applied to a
system with threeV-type resonances. For this system, we

V. SUMMARY studied the effects of intensity and pulse duration on the

survival of the initial state of the process, on the migration of

We presented a generalized model of nhominal two-photomopulation to bound states of higher angular momenta, and
ionization of the hydrogenlike atom via a band of high Ry-on stabilization against ionization. Probably the most impor-
dberg states. The generalization consisted of the inclusion d¢&nt conclusion was that in the limit of high intensities no
the resonant migration of the population from the directlypopulation was left in high Rydberg states, and, thus, the
excited Rydberg band toward higher-angular-momentum Rystabilization was the result of both the initial-state survival
dberg bands througN-type degenerate Raman transitions,and trapping of some population in higher-angular-

engaging, as resonant intermediares, states of the principdlomentum states of the same energy as the initial state. In
quantum number the same as that of the initial state but df!iS high-intensity limit, the duration of the light pulse was

different angular momentum quantum numbers. In the mode}OWn to0 be decisive as to where the population was pre-
considered, many/-type resonances were allowed which dominantly left in the ator_n—e|ther in the |n|t|al state, when

were linked in a chain of a length dependent on the quantunqj.e pulse. was short, or in the states orbitally degenerated
numbers of the initial state. This chain was the eIemeanIth the initial state, when the pulse was longer. It was

which differentiated the generalized model presented fron'?hown’ however.,'that the effect of stabi.lizatipn in our mOdeI
the one described earlier in Refl], and from other ap- was highly sensitive to the value of the imaginary part in the

proaches to ionization via high Rydberg statés—15. The parameteD,,,, of nonresonant Raman coupling between dif-

generalized model was considered in detail in the idealizedfrent high Rydberg states from the salvisand.
limiting case, permitting a completely analytical solution to
be found even for an arbitrary length of the chain of the
V-type couplings. Though found for the idealized case, our We gratefully acknowledge support from the Polish Com-
solution seems to be nontrivial, since closed-form analyticahnittee for Scientific Researc{Grant No. 2 PO3B 078 12
solutions are known to be not often obtained when studyinghat made this research possible.
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