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Evaluating surface tension using grand-canonical transition-matrix Monte Carlo simulation
and finite-size scaling
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This Brief Report describes an approach for determining the surface tension of a model system that is
applicable over the entire liquid-vapor coexistence region. At the heart of the method is a technique for
determining coexistence properties that utilize transition probabilities of attempted Monte Carlo moves during
a grand canonical simulation. Finite-size scaling techniques are implemented to determine the infinite system
surface tension from a series of finite-size simulations. To demonstrate the method, the surface tension of the
Lennard-Jones fluid is determined at temperatures ranging from the triple point to the critical point.
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The interfacial tension of fluids plays a key role in many corporated with the grand canonical ensemble to provide a
industrial processes and scientific phenomena. Examples ifkamework for determining the thermodynamic properties of
clude the development of protective coatings and the selfeontinuous systems. The method utilizes information from
assembly of amphiphilic polymers. Although the scientificthe attemptedransitions between states along the Markov
and industrial importance of the interfacial tension has beeghain as opposed to tracking the number of times the chain
realized for some time, the development of a robust methodisits & given state. The data collection scheme for the pro-
for calculating the surface tension of a model system using©S€d technique is highly efficient; at no point is any of the
molecular simulation techniques that is applicable over th&lata discarded. Determination of surface tensions is com-

entire liquid-vapor coexistence region has proven to be pai!€ted using the finite-size scaling formalism of Bing&@].
ticularly challenging. There are two computational tech-Th'S. a_pproach provides ameans to estimate the behavior of
nigues that are commonly used for determining interfaciafhe infinite system from finite-size caIcu!anns. The methods
tensions. In one, the surface tension is calculated using el resented in this paper are general. To illustrate the concepts,

. he surface tension of the Lennard-Jones fluid is determined
ments of the pressure tensor evaluated during a molecul%r

dynamics or Monte Carlo simulation in which an explicit t temperatures ranging from _shghtly above the triple point
) : : . . to slightly below the critical point.
interface is formed1-7]. This approach is most appropriate

. Consider a system in the grand canonical ensefiag
at moderate to low reduced temperatures. As the critical temzhere the volume/ temperaturel, and chemical potential

perature is approached, it becomes difficult to maintain th% are fixed and the number of particléé and energyE

interface. Moreover, the results are known to be highly senfjyctuate. For such a system, the Markov chain visits a given
sitive to the procedure used for truncating the potential anghjcrostate s=s(ry,r,...,ry) with probability

the size of the system simulat¢#l,9]. A second technique

utilizes the finite-size scaling formalism introduced by 1 WNs
Binder [10]. In this approach, grand canonicfll] or Ts== Wexq—BEs)exp(,B,u,Ns), (D)
Ll S-

isothermal-isobari¢12] simulations are used to evaluate the
free-energy barrier between the liquid and vapor phase for a , )
series of system sizes, after which finite-size scaling is use§here 8 denotes the inverse temperatulg<(1/kgT, kg is

to extrapolate the infinite system value. This method has erf’€ Boltzmann factor A is the de Broglie wavelength, and
joyed success for calculations performed at temperatures IS the partition function, defined such thagms=1. For
close to the critical point. However, at lower temperaturesPnase coexistence calculations, one must determine the prob-
the calculations necessary to negotiate the liquid-vapor fregability ITy of finding the system with thmacrostatevariable
energy barrier become intractable. N, given byHN=ES,NS:Nws. To obtain an estimate df,

This paper describes an approach for directly determining standard grand canonical simulation is performed with a
the liquid-vapor phase coexistence, including the free-energgimple bookkeeping scheme that enables one to deduce the
barriers, of a model system at any temperature along th&ransition probabilitied ., which indicate the probability
coexistence line. The method relies on transition matrixof moving to stateéN’ given that the current state i The
Monte Carlo idea$13—17. In particular, Monte Carlo tran- algorithm consists of three pait&7]:
sition dynamics and variance reduction techniques, devel- (1) For each Monte Carlo step, propose a move to a mi-
oped by Fitzgeraleét al.[16,17], are implemented. The tran- crostates’ from the current microstats with probability
sition matrix algorithms were originally developed for an qs¢ [19].
investigation of discrete systems. Here the concepts are in- (2) Accept the proposed configuration with probability

asg =minfl, g [}
(3) Regardless of whether the move is accepted, update a
*Electronic address: jerring@buffalo.edu matrix Cy - as follows:
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Caun=Cnntase, (2a) mined from the first moment of the corresponding liquid and
vapor peaks of thdI® distribution. If the zero-particle
Cyn=Cuyntl-ag - (2b)  limit is sampled during the simulation, the vapor pressure is

determined using the ideal gas as a reference R2at23:
This bookkeeping scheme is superior to earlier techniques
that required one to update tl&g, y matrix by either zero or _ coex 1 coex
one after each stefl3]. At any point during the simulation, ppV=In % Iy
an estimate of the transition probabilities is obtained as

—In(2). (6)

Finally, the liquid-vapor free energy barriErfor a system

Can with box lengthL [24] is obtained from the maximum prob-

Sy Crnr 3 abilities in the liquidIT{9 . and vapodl)?"  phases and the
' minimum probabilityITy v, in the region enclosed by the

where the tilde(~) is used to indicate aestimateof the  two maxima[25]:
transition probabilities. After obtaining an estimateRgf - ,
the Monte Carlo detailed balance expression is employed to
find the macrostate probabilitid$y;:

PN,N’:

1
IBFLZE(lnnlll\lqmax_l_ln Hxlarg]ag_lnHN min - (7)

NPy N =Ty Py - (4) The finite-size scaling formalism of BindgtQ] is used to
determine the liquid-vapor surface tension. According to this
In the above expression, the transition maffiy- is a sto- method, the finite-size interfacial tensiop of a three-
chastic matrix with a stationary solution &fy. For the dimensional system is given by
grand canonical simulation with a single-particle creation or
annihilation proposal mechanism, the transition maixy BFL 1 InL
ByL=%5z=Ciiz +Coyo T BY, ®

is banded with three bands. This greatly simplifies the deter- 2L L L

mination of Il . An iterative scheme can be used to deter- . o . ) )
mine the macrostate probabilities: wherey is the infinite system interfacial tension, andand

C, are constants. The expression suggests that the term
In Tl ;= In T+ NPy et Prsin). (5  BFL/2L? becomes linear in the scaling variableLji(* as
' ’ the system size approaches infinity. The formalism enables
To traverse the region between coexisting liquid and vaone to extrapolate the infinite system size interfacial tension
por phases, the system has to visit low probability states thdtom a series of finite system calculations.
are often inadequately sampled during a conventional grand The Lennard-Jones flui@6] has been selected to demon-
canonical simulation. To address this problem, a simulatiorstrate our approach. The energy of interactidmetween any
is often biased such that all macrostates within a specifievo particles in the system separated by a distarisegiven
interval are sampled with equal probability. This so-calledby
multicanonical sampling20] is accomplished by assigning
each macrostate a weight, that is inversely proportional to u(r)=4e[(o/r)**=(alr)°], ©

the frequency of observing the macrostate during a convenyneres and o are energy and size parameters, respectively.
tional simulation,7y=—InTly. The acceptance probab|l|ty From this point forward, all quantities are nondimensional-
in step  (2) above now becomes aS o ized usinge ando as characteristic energy and length scales,
=min{1,e” mg /e"™mg}. During the simulation, the weight- respectively. For example, temperature is reduced: kg
ing function is reevaluated at regular intervals. The succesand the interfacial tension by/o?. The method outlined
of the current approach lies in the efficiency of the techniqueabove is used to evaluate the liquid-vapor interfacial tension
Although a bias in the sampling has been introduced, thet temperatures off=0.70, T=0.85, T=1.10, and T
update scheme foCy s remains the same, i.e., after each =1.30. Grand canonical transition matrix Monte Carlo simu-
Monte Carlo trial,Cy y is incremented by the probability lations are carried out with systems ranging in size fiom
that the proposed move would be accepted inahsenceof =6 to 14 using as many as 20 billion Monte CatMC)
multicanonical sampling. This simplification allows one to steps with the weighting function updated every one million
periodically update the weighting function without having to MC steps. The potential cutoff is set at one-half the box
eliminate the previous data. Over time, the weighting funcdength and standard tail corrections are app|i2d|.
tion evolves and eventually the entire macrostate interval of The density distributions at coexistence for various sys-
interest is sampled. The run is terminated when the weighttem sizes withT=0.85 are displayed in Fig. 1. The results
ing function, and thus the particle number probability distri-indicate that probabilities as low as 1%° are accessible
bution, converges. using the transition matrix approach. This range of probabili-
Once the macrostate probabilities have been determinedes is significantly greater than possible when using multi-
the coexistence properties are calculated in a straightforwarcanonical methods that implement a visited states strategy
manner. Histogram reweightin®1] is used to locate the [11].
chemical potential that provides coexistence at the given Figure 2 shows the liquid-vapor interfacial tension as a
temperature. The coexisting densities are subsequently detdunction of the scaling variable for the four temperatures
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TABLE I. Coexistence properties of the Lennard-Jones fluid.

T pa pliqa Pvapa Y

- 0.70 0.0013672) 0.8424(13) 0.001992(2) 1.182(10)
0.85 0.0076185) 0.7760(10) 0.009611(9) 0.837(2)
1.10 0.045925) 0.6410(7)  0.05485(5)  0.343(2)
- 1.30  0.12121) 0.4271(13 0.2096(13)  0.0050(5)

-100

-200

In HN

Calculated using a system size o= 1000.

-300
value atT=1.30 is 42%. The infinite system surface tensions

and the corresponding coexistence properties are collected in

_400 |- - Table 1.
S v B v v-am—y The surface tensions obtained in this study, along with
p=N/V those from previous investigations, are displayed as a func-

tion of temperature in Fig. 3. The agreement among the data

FIG. 1. The probability of observing a system with a given Sets is excellent. At low temperatures, the results generated

density while at coexistence witfi=0.85 for a range of system USing the transition matrix approach are consistent with the
sizes. investigations of Mecket al. [5] and Cheret al.[7], where

techniques that require an explicit interface were employed.

examined. One of the more striking features of the plot is thel "€ @pproach presented here has a number of advantages

precision of the calculations. For example, Tat0.85 the ~ OVer explicit interface methodsi) the technique is straight-
uncertainty in the interfacial tension is less than 0.5% of théorV\I/ard to lﬁse’ requw:jngdjust s(l}:ghtly ”.‘Orle pve:he_f_ald. to
mean for all system sizd28]. As expected, the data points ”r:‘p ement t anf ahstan arl gfran ?]z_anomczl: simulation; o
do not collapse onto a straight line as a function of the scall"€ Precision of the results from this work appears to be

ing variable, but rather display a small degree of curvatureSUPerior to that of data from previous investigatiofis;)

The best method for extrapolating the infinite system inter-f[here e>§ists a vyell-developed framework to describe ,hOW the
facial tension from the finite-size data is not cléag]. In interfacial tension scales as a function of system size; and

this work, the infinite system interfacial tension was esti_(iv) the method does not fail at near-critical temperatures. As
mated from a straight line fit using data points with9 expected, the current results are also consistent with those of

Note that the infinite system values become more sensitive tBOtOﬁ and Panagiotopoulds1], who utilized grand canoni-

the extrapolation technique as the temperature increases. Ihensemfble Z|m.ullat|ons lgoupleq V‘Il'th .thﬁ v?_ltt_]edl'stgtes
example, afT=0.70 theL =12 interfacial tension is within technique for obtaining multicanonical weights. The limita-

3.9% of the infinite system result, whereas the equivalentt'ons_ qf the visited stat_es method prevented the authors from
obtaining surface tensions beldw=0.95. The current study

demonstrates that adopting the transition matrix approach al-

0.010 o 1 lows one to probe the entire liquid-vapor coexistence region.
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FIG. 2. The system size dependence of the effective surface
tension. The plots from top to bottom are f6=1.30, 1.10, 0.85, FIG. 3. The surface tension of the Lennard-Jones fluid as a
and 0.70. The circles represent simulation data and the dashed lin&sction of temperature. This worffilled circles, Meckeet al. [5]
provide an extrapolation to infinite system size using data from(squarel Chenet al.[7] (triangleg, and Potoff and Panagiotopou-
systems withL=9. los [11] (diamond$. The dashed line serves as a guide to the eye.
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In summary, a general method has been presented for dpotentially more accurate than equivalent Gibbs ensemble
rectly locating the phase coexistence of a model system at[29] calculations. Whether this conclusion holds true for
given temperature. Implementation of the method requiresnore complicated systems will be addressed in future inves-
the addition of a simple bookkeeping scheme that tracks thgigations. The overall performance of transition matrix meth-
transition probabilities for addition and deletion of particlesgds has been remarkable. In addition to the current study,
during a grand canonical simulation. The method is applithey have been used with equal success to determine solid-

cable over the entire liquid-vapor coexistence region angiquid phase coexistence and free energies of solvation of
does not appear to be limited by system size. It is Stra'ght'nonpolar molecules in watéBo].

forward to couple the technique to the finite-size scaling

framework of Binder for accurate determination of interfa- | thank Professor David Kofke for helpful discussions and

cial tensions. comments on the manuscript. Financial support for this
The outlook for the approach presented in this paper iproject was provided by startup funds from the University at

bright. The results from this study indicate that, for a single-Buffalo. Computational resources were provided in part by

component system containing spherically symmetric parthe University at Buffalo Center for Computational Re-

ticles, our method is just as straightforward to implement andearch.

[1] M. Rao and D. Levesque, J. Chem. Ph§5, 3233(1976. [16] M. Fitzgerald, R. R. Picard, and R. N. Silver, Europhys. Lett.
[2] G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlin- 46, 282(1999.
son, J. Chem. Soc., Faraday Trans/3 1133(1977. [17] M. Fitzgerald, R. R. Picard, and R. N. Silver, J. Stat. Pi9gs.
[3] M. Rao and B. J. Berne, Mol. Phy37, 455(1979. 321 (2000.
[4] M. J. P. Nijmeijer, A. F. Baker, C. Bruin, and J. H. Sikkenk, J. [18] G. E. Norman and V. S. Filinov, High Temf, 216 (1969.
Chem. Phys89, 3789(1988. [19] In this work, new microstates are generated such that
[5] M. Mecke, J. Winkelman, and J. Fisher, J. Chem. Phy¥, =g s-
9264 (1997). [20] B. A. Berg and T. Neuhaus, Phys. Rev. Lé&8, 9 (1992.

[6] M. P. Moody and P. Attard, J. Chem. Phyld5 8967(2001). [21] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. L&df.
[7] B. Chen, J. I. Siepmann, K. J. Oh, and M. L. Klein, J. Chem. 2635(1988.

Phys.115 10 903(2002. [22] J. R. Errington and A. Z. Panagiotopoulos, J. Chem. P1§3.
[8] A. Trokhymchuk and J. Alejandre, J. Chem. Ph¥%1, 8510 1093(1998.
(1999. [23] The In(2) correction appears due to the summation over both
[9] C. D. Holcomb, P. Clancy, and J. A. Zollweg, Mol. Phy8, the liquid and vapor phases.
437 (1993. [24] In all cases the simulation cell is cubic.
[10] K. Binder, Phys. Rev. 25, 1699(1982. [25] All probabilities are evaluated at coexistence.
[11] J. J. Potoff and A. Z. Panagiotopoulos, J. Chem. PAg2, [26] J. E. Lennard-Jones, Proc. R. Soc. London, Set0A 441
6411 (2000. (1924); 106, 463 (1924).
[12] J. E. Hunter and W. P. Reinhardt, J. Chem. PH@3 8627  [27] M. P. Allen and D. J. TildesleyComputer Simulation of Lig-
(1995. uids (Clarendon, Oxford, 1987
[13] G. R. Smith and A. D. Bruce, J. Phys.28, 6623(1995. [28] Uncertainties were determined as the standard deviation of
[14] J. S. Wang, T. K. Tay, and R. H. Swendsen, Phys. Rev. Lett.  four independent runs.
82, 476 (1999. [29] A. Z. Panagiotopoulos, Mol. Phy&1, 812 (1987.

[15] J. S. Wang and R. H. Swendsen, J. Stat. Ph98, 245(2002. [30] J. R. Errington(unpublishegl

012102-4



