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Evaluating surface tension using grand-canonical transition-matrix Monte Carlo simulation
and finite-size scaling
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This Brief Report describes an approach for determining the surface tension of a model system that is
applicable over the entire liquid-vapor coexistence region. At the heart of the method is a technique for
determining coexistence properties that utilize transition probabilities of attempted Monte Carlo moves during
a grand canonical simulation. Finite-size scaling techniques are implemented to determine the infinite system
surface tension from a series of finite-size simulations. To demonstrate the method, the surface tension of the
Lennard-Jones fluid is determined at temperatures ranging from the triple point to the critical point.
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The interfacial tension of fluids plays a key role in ma
industrial processes and scientific phenomena. Example
clude the development of protective coatings and the s
assembly of amphiphilic polymers. Although the scienti
and industrial importance of the interfacial tension has b
realized for some time, the development of a robust met
for calculating the surface tension of a model system us
molecular simulation techniques that is applicable over
entire liquid-vapor coexistence region has proven to be p
ticularly challenging. There are two computational tec
niques that are commonly used for determining interfac
tensions. In one, the surface tension is calculated using
ments of the pressure tensor evaluated during a molec
dynamics or Monte Carlo simulation in which an explic
interface is formed@1–7#. This approach is most appropria
at moderate to low reduced temperatures. As the critical t
perature is approached, it becomes difficult to maintain
interface. Moreover, the results are known to be highly s
sitive to the procedure used for truncating the potential
the size of the system simulated@8,9#. A second technique
utilizes the finite-size scaling formalism introduced
Binder @10#. In this approach, grand canonical@11# or
isothermal-isobaric@12# simulations are used to evaluate t
free-energy barrier between the liquid and vapor phase f
series of system sizes, after which finite-size scaling is u
to extrapolate the infinite system value. This method has
joyed success for calculations performed at temperat
close to the critical point. However, at lower temperatur
the calculations necessary to negotiate the liquid-vapor f
energy barrier become intractable.

This paper describes an approach for directly determin
the liquid-vapor phase coexistence, including the free-ene
barriers, of a model system at any temperature along
coexistence line. The method relies on transition ma
Monte Carlo ideas@13–17#. In particular, Monte Carlo tran
sition dynamics and variance reduction techniques, de
oped by Fitzgeraldet al. @16,17#, are implemented. The tran
sition matrix algorithms were originally developed for a
investigation of discrete systems. Here the concepts are
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corporated with the grand canonical ensemble to provid
framework for determining the thermodynamic properties
continuous systems. The method utilizes information fro
the attemptedtransitions between states along the Marko
chain as opposed to tracking the number of times the ch
visits a given state. The data collection scheme for the p
posed technique is highly efficient; at no point is any of t
data discarded. Determination of surface tensions is c
pleted using the finite-size scaling formalism of Binder@10#.
This approach provides a means to estimate the behavio
the infinite system from finite-size calculations. The metho
presented in this paper are general. To illustrate the conce
the surface tension of the Lennard-Jones fluid is determi
at temperatures ranging from slightly above the triple po
to slightly below the critical point.

Consider a system in the grand canonical ensemble@18#,
where the volumeV, temperatureT, and chemical potentia
m are fixed and the number of particlesN and energyE
fluctuate. For such a system, the Markov chain visits a gi
microstate s5s(r1 ,r2 ,...,rN) with probability

ps5
1

J

VNs

L3NsNs!
exp~2bEs!exp~bmNs!, ~1!

whereb denotes the inverse temperature (b51/kBT, kB is
the Boltzmann factor!, L is the de Broglie wavelength, an
J is the partition function, defined such that(sps51. For
phase coexistence calculations, one must determine the p
ability PN of finding the system with themacrostatevariable
N, given byPN5(s,Ns5Nps . To obtain an estimate ofPN ,
a standard grand canonical simulation is performed wit
simple bookkeeping scheme that enables one to deduce
transition probabilitiesPN,N8 , which indicate the probability
of moving to stateN8 given that the current state isN. The
algorithm consists of three parts@17#:

~1! For each Monte Carlo step, propose a move to a
crostates8 from the current microstates with probability
qs,s8 @19#.

~2! Accept the proposed configuration with probabili
as,s85min$1,ps8 /ps%.

~3! Regardless of whether the move is accepted, upda
matrix CN,N8 as follows:
©2003 The American Physical Society02-1
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CN,N85CN,N81as,s8 , ~2a!

CN,N5CN,N112as,s8 . ~2b!

This bookkeeping scheme is superior to earlier techniq
that required one to update theCN,N8 matrix by either zero or
one after each step@13#. At any point during the simulation
an estimate of the transition probabilities is obtained as

P̃N,N85
CN,N8

(N9CN,N9
, ~3!

where the tilde~;! is used to indicate anestimateof the
transition probabilities. After obtaining an estimate ofPN,N8 ,
the Monte Carlo detailed balance expression is employe
find the macrostate probabilitiesPN :

PNPN,N85PN8PN8,N . ~4!

In the above expression, the transition matrixPN,N8 is a sto-
chastic matrix with a stationary solution ofPN . For the
grand canonical simulation with a single-particle creation
annihilation proposal mechanism, the transition matrixPN,N8
is banded with three bands. This greatly simplifies the de
mination of PN . An iterative scheme can be used to det
mine the macrostate probabilities:

ln P̃N115 ln P̃N1 ln~ P̃N,N11 / P̃N11,N!. ~5!

To traverse the region between coexisting liquid and
por phases, the system has to visit low probability states
are often inadequately sampled during a conventional gr
canonical simulation. To address this problem, a simula
is often biased such that all macrostates within a speci
interval are sampled with equal probability. This so-call
multicanonical sampling@20# is accomplished by assignin
each macrostate a weighthN that is inversely proportional to
the frequency of observing the macrostate during a conv
tional simulation,h̃N52 ln P̃N . The acceptance probabilit
in step ~2! above now becomes as,s8

h

5min$1,ehN8ps8 /ehNps%. During the simulation, the weight
ing function is reevaluated at regular intervals. The succ
of the current approach lies in the efficiency of the techniq
Although a bias in the sampling has been introduced,
update scheme forCN,N8 remains the same, i.e., after ea
Monte Carlo trial,CN,N8 is incremented by the probabilit
that the proposed move would be accepted in theabsenceof
multicanonical sampling. This simplification allows one
periodically update the weighting function without having
eliminate the previous data. Over time, the weighting fu
tion evolves and eventually the entire macrostate interva
interest is sampled. The run is terminated when the weig
ing function, and thus the particle number probability dist
bution, converges.

Once the macrostate probabilities have been determi
the coexistence properties are calculated in a straightforw
manner. Histogram reweighting@21# is used to locate the
chemical potential that provides coexistence at the gi
temperature. The coexisting densities are subsequently d
01210
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mined from the first moment of the corresponding liquid a
vapor peaks of thePN

coex distribution. If the zero-particle
limit is sampled during the simulation, the vapor pressure
determined using the ideal gas as a reference state@22,23#:

bpV5 lnS (
N

PN
coex/P0

coexD 2 ln~2!. ~6!

Finally, the liquid-vapor free energy barrierF for a system
with box lengthL @24# is obtained from the maximum prob
abilities in the liquidPN max

liq and vaporPN max
vap phases and the

minimum probabilityPN min in the region enclosed by th
two maxima@25#:

bFL5
1

2
~ ln PN max

liq 1 ln PN max
vap !2 ln PN min . ~7!

The finite-size scaling formalism of Binder@10# is used to
determine the liquid-vapor surface tension. According to t
method, the finite-size interfacial tensiongL of a three-
dimensional system is given by

bgL5
bFL

2L2 5c1

1

L2 1c2

ln L

L2 1bg, ~8!

whereg is the infinite system interfacial tension, andc1 and
c2 are constants. The expression suggests that the
bFL/2L2 becomes linear in the scaling variable ln(L)/L2 as
the system size approaches infinity. The formalism enab
one to extrapolate the infinite system size interfacial tens
from a series of finite system calculations.

The Lennard-Jones fluid@26# has been selected to demo
strate our approach. The energy of interactionu between any
two particles in the system separated by a distancer is given
by

u~r !54«@~s/r !122~s/r !6#, ~9!

where« ands are energy and size parameters, respectiv
From this point forward, all quantities are nondimension
ized using« ands as characteristic energy and length scal
respectively. For example, temperature is reduced by«/kB
and the interfacial tension by«/s2. The method outlined
above is used to evaluate the liquid-vapor interfacial tens
at temperatures ofT50.70, T50.85, T51.10, and T
51.30. Grand canonical transition matrix Monte Carlo sim
lations are carried out with systems ranging in size fromL
56 to 14 using as many as 20 billion Monte Carlo~MC!
steps with the weighting function updated every one milli
MC steps. The potential cutoff is set at one-half the b
length and standard tail corrections are applied@27#.

The density distributions at coexistence for various s
tem sizes withT50.85 are displayed in Fig. 1. The resul
indicate that probabilities as low as 102200 are accessible
using the transition matrix approach. This range of probab
ties is significantly greater than possible when using mu
canonical methods that implement a visited states stra
@11#.

Figure 2 shows the liquid-vapor interfacial tension as
function of the scaling variable for the four temperatur
2-2
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examined. One of the more striking features of the plot is
precision of the calculations. For example, atT50.85 the
uncertainty in the interfacial tension is less than 0.5% of
mean for all system sizes@28#. As expected, the data poin
do not collapse onto a straight line as a function of the s
ing variable, but rather display a small degree of curvatu
The best method for extrapolating the infinite system int
facial tension from the finite-size data is not clear@12#. In
this work, the infinite system interfacial tension was es
mated from a straight line fit using data points withL>9.
Note that the infinite system values become more sensitiv
the extrapolation technique as the temperature increases
example, atT50.70 theL512 interfacial tension is within
3.9% of the infinite system result, whereas the equiva

FIG. 1. The probability of observing a system with a giv
density while at coexistence withT50.85 for a range of system
sizes.

FIG. 2. The system size dependence of the effective sur
tension. The plots from top to bottom are forT51.30, 1.10, 0.85,
and 0.70. The circles represent simulation data and the dashed
provide an extrapolation to infinite system size using data fr
systems withL>9.
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value atT51.30 is 42%. The infinite system surface tensio
and the corresponding coexistence properties are collecte
Table I.

The surface tensions obtained in this study, along w
those from previous investigations, are displayed as a fu
tion of temperature in Fig. 3. The agreement among the d
sets is excellent. At low temperatures, the results gener
using the transition matrix approach are consistent with
investigations of Meckeet al. @5# and Chenet al. @7#, where
techniques that require an explicit interface were employ
The approach presented here has a number of advan
over explicit interface methods:~i! the technique is straight
forward to use, requiring just slightly more overhead
implement than a standard grand canonical simulation;~ii !
the precision of the results from this work appears to
superior to that of data from previous investigations;~iii !
there exists a well-developed framework to describe how
interfacial tension scales as a function of system size;
~iv! the method does not fail at near-critical temperatures.
expected, the current results are also consistent with thos
Potoff and Panagiotopoulos@11#, who utilized grand canoni-
cal ensemble simulations coupled with the visited sta
technique for obtaining multicanonical weights. The limit
tions of the visited states method prevented the authors f
obtaining surface tensions belowT50.95. The current study
demonstrates that adopting the transition matrix approach
lows one to probe the entire liquid-vapor coexistence regi

ce

es

TABLE I. Coexistence properties of the Lennard-Jones fluid.

T pa r liq
a rvap

a g

0.70 0.001367~2! 0.8424~13! 0.001992~2! 1.182~10!

0.85 0.007618~5! 0.7760~10! 0.009611~9! 0.837~2!

1.10 0.04592~5! 0.6410~7! 0.05485~5! 0.343~2!

1.30 0.1212~1! 0.4271~13! 0.2096~13! 0.0050~5!

aCalculated using a system size ofV51000.

FIG. 3. The surface tension of the Lennard-Jones fluid a
function of temperature. This work~filled circles!, Meckeet al. @5#
~squares!, Chenet al. @7# ~triangles!, and Potoff and Panagiotopou
los @11# ~diamonds!. The dashed line serves as a guide to the ey
2-3
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In summary, a general method has been presented fo
rectly locating the phase coexistence of a model system
given temperature. Implementation of the method requ
the addition of a simple bookkeeping scheme that tracks
transition probabilities for addition and deletion of particl
during a grand canonical simulation. The method is ap
cable over the entire liquid-vapor coexistence region a
does not appear to be limited by system size. It is straig
forward to couple the technique to the finite-size scal
framework of Binder for accurate determination of interf
cial tensions.

The outlook for the approach presented in this pape
bright. The results from this study indicate that, for a sing
component system containing spherically symmetric p
ticles, our method is just as straightforward to implement a
lin

J.

m

et
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potentially more accurate than equivalent Gibbs ensem
@29# calculations. Whether this conclusion holds true f
more complicated systems will be addressed in future inv
tigations. The overall performance of transition matrix me
ods has been remarkable. In addition to the current stu
they have been used with equal success to determine s
liquid phase coexistence and free energies of solvation
nonpolar molecules in water@30#.
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