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Measuring gravitational waves from binary black hole coalescences.
II. The waves’ information and its extraction, with and without templates
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We discuss the extraction of information from detected binary black hole~BBH! coalescence gravitational
waves by the ground-based interferometers LIGO and VIRGO, and by the space-based interferometer LISA.
We focus on the merger phase that occurs after the gradual inspiral and before the ringdown. Our results are
~i! if numerical relativity simulations have not produced template merger waveforms before BBH events are
detected, one can study the merger waves using simple band-pass filters. For BBHs smaller than about 40M (

detected via their inspiral waves, the band-pass filtering signal-to-noise ratio indicates that the merger waves
should typically be just barely visible in the noise for initial and advanced LIGO interferometers.~ii ! We derive
an optimized maximum-likelihood method for extracting a best-fit merger waveform from the noisy detector
output; one ‘‘perpendicularly projects’’ this output onto a function space~specified using wavelets! that
incorporates our~possibly sketchy! prior knowledge of the waveforms. An extension of the method allows one
to extract the BBH’s two independent waveforms from outputs of several interferometers.~iii ! We propose a
computational strategy for numerical relativists to pursue, if they successfully produce computer codes for
generating merger waveforms, but if running the codes is too expensive to permit an extensive survey of the
merger parameter space. In this case, for LIGO-VIRGO data analysis purposes, it would be advantageous to do
a coarse survey of the parameter space aimed at exploring several qualitative issues and at determining the
ranges of the several key parameters which we describe.~iv! A complete set of templates could be used to test
the nonlinear dynamics of general relativity and to measure some of the binary’s parameters via matched
filtering. We estimate the number of bits of information obtainable from the merger waves~about 10–60 for
LIGO-VIRGO, up to 200 for LISA!, estimate the information loss due to template numerical errors or sparse-
ness in the template grid, and infer approximate requirements on template accuracy and spacing.
@S0556-2821~98!06208-0#

PACS number~s!: 04.80.Nn, 04.25.Dm, 04.30.Db, 95.55.Ym
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I. INTRODUCTION AND SUMMARY

A. Gravitational waves from binary black holes

With ground-based gravitational-wave observatories s
as the Laser Interferometric Gravitational Wave Observat
~LIGO! @1#, VIRGO @2#, and GEO600@3# expected to be
taking data within the next few years, and with the spa
based Laser Interferometer Space Antenna~LISA! @4–6# in
planning and development, much effort is currently goi
into understanding gravitational-wave sources and assoc
data analysis issues. One potentially interesting and im
tant source is the coalescences of binary black holes~BBHs!.
Such systems will be detectable to large distances by gro
based interferometers~factors of the order of 10 further tha
binary neutron star systems! and over a wide range o
masses. If the birthrates of BBH systems are not too l
they could be the most commonly detected type of comp
binary gravitational-wave source.

The evolution of BBH systems and their emitted gravi
tional waves can be roughly divided into three epochs@7#: an
adiabaticinspiral, in which the evolution is driven by radia
tion reaction, terminating roughly at the innermost stable
cular orbit@8,9#; a violent, dynamicmerger; and a finalring-
down in which the emitted radiation is dominated by thel
5m52 quasinormal mode of the final Kerr black hol
570556-2821/98/57~8!/4566~22!/$15.00
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Gravitational waves from the merger epoch could be r
with information about relativistic gravity in a highly nonlin
ear, highly dynamical regime which is poorly understo
today.

Depending on the system’s mass, some BBH coalesce
events will be most easily detected by searching for the
spiral waves, others by searching for the ringdown, and o
ers by searching for the merger. In paper I of this series@7#,
we analyzed the prospects for detecting BBH events us
these three different types of searches, for initial and
vanced LIGO interferometers and for LISA. Once a BB
event has been detected, the location of the three diffe
phases of the waves in the data stream will be known t
fair approximation, although it will not necessarily be th
case that all three phases will be detectable.

Waveform models or templates for the three epochs w
be useful both for searches for BBH events using matc
filtering, and also for interpreting and extracting informatio
from the observed waveforms. At present, there is a reas
ably good theoretical understanding of the waves gener
during the inspiral and the ringdown@7,10#, whereas the
merger is very poorly understood: no merger templates e
as yet. Theoretical understanding of merger dynamics
eventually come from numerical relativity. One rather lar
effort to compute the dynamics of BBH mergers is t
4566 © 1998 The American Physical Society
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American Grand Challenge Alliance, an NSF funded c
laboration of physicists and computer scientists at eight
stitutions @11,12#; similar efforts are underway elsewher
Modeling BBH mergers is an extremely difficult task; th
numerical relativists who are writing codes for simulati
BBH mergers are beset with many technical difficulties.

When the first BBH coalescences are detected, our th
retical understanding of BBH mergers could be in one
four possible states:~i! No information:supercomputer simu
lations have not yet successfully evolved any BBH merge
and so no information about merger waves is available.~ii !
Information limited in principle: some information abou
BBH mergers is available, but numerical relativists are u
able to produce arbitrary merger templates. For example
percomputer codes might only be able to simulate some
cial class of BBH mergers~e.g., those with vanishing initia
spins or equal mass BBHs!, or it could be that it is not
possible to produce accurate waveforms, but more qua
tive information about the merger~such as its duration! is
available. ~iii ! Information limited in practice: accurate
waveforms can be obtained for fully general BBH merge
but each run of the codes to produce a template is so ex
sive in terms of computer time and cost that only a sm
number of representative template shapes can be comp
and stored.~The total number of template shapes required
cover the entire range of behaviors of BBH mergers is lik
to be in the range of thousands to millions or more.! ~iv! Full
information: a complete set of templates has been compu
and is available for data analysis. This possibility see
rather unlikely in the time frame of the first detections
BBH coalescences.

Concomitant to these four states are three possible
narios for data analysis of the waves from the merger epo
The first possibility@corresponding to state~i! above# is that
numerical computations provide no input to a
gravitational-wave data analysis. With no templates to gu
the interpretation of the measured waveform, it will not
possible to obtain information about the BBH source
about strong-field general relativity from the merger wav
One’s goal will simply be to measure as accurately as p
sible the merger waveform’s shape. For this waveform sh
measurement, one should make use of all possible prio
formation obtainable from analyses of the inspiral and
ringdown signals, if they are detectable~see Sec. I B below!.

Second@states~ii ! and~iii ! above#, if only a few represen-
tative simulations and associated templates are available
might simply perform a qualitative comparison between
measured waveform and templates in order to deduce q
tative information about the BBH source. For instance, sim
lations might demonstrate a strong correlation between
duration of the merger~in units of the total mass of the
system! and the spins of the binary’s black holes; a measu
ment of the merger’s duration would then give some inf
mation about the binary’s spins, without having to find
template that exactly matched the measured waveform
this scenario, when reconstructing the merger wavefo
from the noisy data, one should use any prior informat
from the measured inspiral and/or ringdown waves, and
addition the prior information~for example the expecte
range of frequencies! one has about the merger waveform
behaviors from representative supercomputer simulation
-
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The third scenario consists of matched filtering the d
stream with merger templates in order to measure the par
eters of the binary and to test general relativity. This w
certainly be feasible if one has a complete set of mer
templates@state~iv!#. It may also be feasible when informa
tion about BBH mergers is ‘‘limited in practice’’@state~iii !#:
it may be possible to perform several runs of the superco
puter code, concentrated in the appropriate small region
parameter space compatible with one’s measurements
the inspiral and ringdown waves, in an effort to match t
observed waveforms.

B. What can be learned from BBH waves

Different types of information will be obtainable from th
three different phases of the gravitational-wave signal. If
inspiral and ringdown phases are strong enough to be m
surable, they will be easier to analyze than the merger ph
and the information they yield via matched filtering will b
used as ‘‘prior information’’ in attempting to analyze th
merger. Matched filtering of the inspiral will allow measur
ments of the~redshifted! masses of the two black holes, th
direction to the source, the arrival time, direction of orbi
angular momentum, and orbital phase at some fiducial
quency, the luminosity distance to the source, and some
formation about the black holes’ spins. See, for examp
Refs. @13–18# for estimates of anticipated measurement
curacies for these parameters@19#. From the ringdown
waves, one can measure the massM and dimensionless spin
parametera of the final merged black hole, with an accura
of roughly @16,17#

Da.
6~12a!1.06

~S/N!ringdown
,

DM

M
.

2~12a!9/20

~S/N!ringdown
, ~1.1!

where (S/N)ringdown is the ringdown’s measured matched fi
tering signal-to-noise ratio~SNR!. ~However, note that for
low mass BBH events which are detected via their insp
signals, the ringdown waves will be detectable only f
;1% of the events@20#!.

If merger templates are available, one could hope to
matched filtering to measure the system’s parameters an
test general relativity. If one has no prior information abo
the detected BBH system, one would simply filter the mer
data with all merger templates available, potentially a la
number. However, if the inspiral and/or the ringdown sign
have already been measured, some information of the
discussed in the previous paragraph will be available. In s
cases the total number of merger templates needed wil
reduced—one need consider only templates whose pa
eters are commensurate with the inspiral and ringdown m
surements. Such inspiral and ringdown information will
invaluable if our understanding of the merger waves is ‘‘lim
ited in practice,’’ as discussed in Sec. I A.

The primary goal when one attempts to match a mer
template with gravitational-wave data will be to provide
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4568 57ÉANNA É. FLANAGAN AND SCOTT A. HUGHES
test of general relativity rather than to measure parameter
good match between the measured waveform and a num
cal template would constitute a strong test of general rela
ity in the most extreme of domains: highly nonlinear, rapid
dynamical, highly non-spherical spacetime warpage.
would also provide the oft-quoted unambiguous detection
black holes.~Such an unambiguous detection could a
come from a measurement of quasi-normal ringing.! A close
match between measured and predicted waveforms for B
mergers might constrain theories of gravity that genera
general relativity. The inspiral portion of the waveform f
neutron-star–neutron-star mergers will strongly constrain
dimensionless parameterv of Brans-Dicke theory@21#. Un-
fortunately, the most theoretically natural class of gener
zations of general relativity compatible with known expe
ments ~‘‘scalar-tensor theories’’ @22#! may not be
constrained by BBH measurements, since black holes, un
neutron stars, cannot have any scalar hair in such theo
@23#.

Matched filtering of the merger waves could also be u
ful in measuring some of the system’s parameters, suc
the total massM or the spin parametera of the final black
hole @24#. These measurements could provide additional
formation about the source, over and above that obtain
from the inspiral and ringdown signals. For instance, in so
cases the total mass of the system may be largely un
strained from an inspiral measurement, while the ringdo
may not be detectable; in such cases the total mass migh
extractable from the merger waves.

C. Extracting the waves’ information:
Our analyses, suggested tools, and results

The principal purposes of this paper are~i! to suggest a
data analysis method that can be used in the absence of
plates to obtain from the noisy data stream a ‘‘best-fi
merger waveform shape and~ii ! to provide input to numeri-
cal relativity simulations by deriving some requirements t
numerical templates must satisfy in order to be as usefu
possible for data analysis purposes and by highlighting
kinds of information that such simulations can provide, oth
than merger templates, that can aid BBH merger data an
sis.

We first consider analysis of a detected merger with
templates from numerical relativity. In this case, observ
will likely resort to simple band-pass filters to study th
merger waves. The first question to address in this conte
whether the merger signal is likely to even bevisible, that is,
whether the signal will stand out above the background no
level in the band-pass filtered detector output. In Sec. III
estimate band-pass filtering signal to noise ratios~SNRs! for
the merger waves using the results of paper I. We find
for BBHs that have been detected via their inspiral wav
these band-pass filtering SNRs are of order unity for ini
and advanced LIGO interferometers; thus the merger sig
will typically be just barely visible above the noise if at a
Only the somewhat rarer, close events will have easily v
ible merger signals. For LISA, by contrast, we estimate t
band-pass filtering SNRs will typically be*400, and so the
merger waves will be easily visible.

When templates are not available, one’s goal will be
reconstruct as well as possible the merger waveform fr
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the noisy data stream. In Sec. IV we use Bayesian statis
and the framework of maximum likelihood estimation
sketch an optimized method for performing such a rec
struction. The method is based on a ‘‘perpendicular proj
tion’’ of the observed signal onto an appropriate functi
space that encodes all of our~possibly sketchy! prior knowl-
edge about the waveforms. We argue that the best typ
‘‘basis functions’’ to use to specify this function space a
wavelets, functions which allow simultaneous localization
time and frequency. We develop the reconstruction te
nique in detail using the language of wavelets, and also sh
that the operation of ‘‘perpendicular projection’’ onto th
function space is a special case of Wiener optimal filteri
In Appendix A, we describe an extension of the method t
network of several gravitational-wave detectors, which
lows one to reconstruct the two independent polarizati
h1(t) and h3(t) of the merger waves. This method for
network is an extension and generalization of a method p
viously suggested by Gu¨rsel and Tinto@25#.

Our waveform reconstruction algorithm comes in tw
versions: a simple version incorporating the above m
tioned ‘‘perpendicular projection,’’ described in Sec. IV A
and a more general and powerful version that allows one
build in more prior information, described in Sec. IV B.
one’s prior information consists only of the signal’s ban
width, then the best-fit reconstructed waveform is just
band-pass filtered data stream. However, one can also b
in as input to the method the expected duration of the sig
the fact that it must match up smoothly to the measu
inspiral waveform, etc.; in such cases the reconstruc
waveform differs from the band-pass filtered data stream

In Sec. V, we discuss the types of information that rep
sentative supercomputer simulations could provide, shor
providing a complete set of merger templates@i.e., in states
~ii ! and ~iii ! above#, that would be useful for data analysi
Such qualitative information about BBH merger waveform
would be useful in two ways: as prior information for sign
reconstruction and as a basis for comparisons with the re
structed waveforms in order to make qualitative deductio
about the BBH source, as mentioned above.

We turn next to issues concerning the use of numer
relativity templates in data analysis. Using matched filteri
templates can be used to make measurements of the bin
physical parameters~masses, vectorial spin angular m
menta, etc.! which are independent of any such measu
ments from the inspiral and ringdown waves, and to ma
quantitative tests of general relativity. These measurem
and tests will be possible with modest accuracy with LIG
VIRGO and with extremely high accuracy with LISA~for
which the merger matched filtering SNRs are typically*104

@7#!. To be useful for such purposes, the merger templa
must satisfy certain accuracy requirements. In Sec. VI
derive an approximate accuracy criterion@Eq. ~6.2!# that nu-
merical relativists can use to ensure that the waveforms t
produce are sufficiently accurate. This formula is deriv
from two requirements: first, that template inaccuracies ca
a loss in event rate of no more than 3% when searching
merger waves with matched filtering, and second, when m
suring the BBH parameters, that the systematic errors du
template inaccuracies be smaller than the statistical er
from detector noise.
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In Sec. VII we re-address the issue of template accur
and also the issue of the spacing of templates in param
space in the construction of a grid of templates, using
mathematical machinery of information theory. In inform
tion theory, a quantity called ‘‘information’’ can be assoc
ated with any measurement: it is simply the base 2 logari
of the number of distinguishable measurement outcom
@26,27#. We specialize the notions of information theory
gravitational-wave measurements, and define two differ
types of information:~i! a ‘‘total’’ information I total, the base
2 logarithm of the total number of waveform shapes t
could have been distinguished by the measurement, and~ii ! a
‘‘source’’ information I source, the base 2 logarithm of the
total number of waveform shapes that could have been
tinguished by the measurementand that could have been
generated by BBH mergers~i.e., the number of BBH source
that the measurement could have distinguished!.

We give precise definitions ofI total and I source@Eqs.~7.2!
and ~7.11!# in Sec. VII. In Appendix B, we derive simple
analytic approximations forI total andI source, expressing them
in terms of the merger’s matched filtering SNRr, the num-
ber of independent data points,Nbins, in the observed signal
and the number of parameters,Nparam, on which merger tem-
plates have a significant dependence. In Sec. VII C, we e
mate the lossdI sourcein source information that would resu
from template inaccuracies@Eq. ~7.20!#; demanding that
dI source&1 then allows us to re-derive the criterion for th
template accuracy requirements obtained in Sec. VI. We
estimate the loss in informationdI source that would result
from having insufficiently closely spaced templates in a te
plate grid@Eq. ~7.24!#, and we deduce an approximate crit
rion for how closely templates must be spaced.

II. NOTATION AND CONVENTIONS

In this section we introduce some notation that will
used throughout the paper. We use geometrized unit
which Newton’s gravitational constantG and the speed o
light c are unity. For any function of timea(t), we will use
a tilde to represent that function’s Fourier transform:

ã~ f !5E
2`

`

dt e2p i f ta~ t !. ~2.1!

The output strain amplitudes(t) of a detector can be written

s~ t !5h~ t !1n~ t !, ~2.2!

whereh(t) is the gravitational wave signal andn(t) is the
detector noise. Throughout this paper we will assume,
simplicity, that the noise is stationary and Gaussian. T
statistical properties of the noise determine an inner prod
on the space of waveformsh(t), given by

~h1uh2!54 ReE
0

`

d f
h̃1~ f !* h̃2~ f !

Sh~ f !
; ~2.3!

see, for example, Refs.@28,13#. In Eq. ~2.3!, Sh( f ) is the
one-sided power spectral density of strain noisen(t) @29#.

For any waveformh(t), the matched filtering SNRr is
given by
y
ter
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r25~huh!54E
0

`

d f
u h̃~ f !u2

Sh~ f !
. ~2.4!

On several occasions we shall be interested in fin
stretches of data of lengthT, represented as a vector of num
bers instead of as a continuous function. IfDt is the sam-
pling time, this vector is

s5~s1,...,sNbins! ~2.5!

where Nbins5T/Dt, sj5s@ tstart1( j 21)Dt#, 1< j <Nbins,
andtstart is the starting time. The quantityNbins is the number
of independent real data points~number of bins! in the mea-
sured signal. The gravitational wave signalh(t) and the
noisen(t) can similarly be represented in this way, so th
s5h1n. We adopt the geometrical viewpoint of Dhurandh
and Schutz@30#, regardings as an element of an abstra
vector spaceV of dimensionNbins, and the sample pointssj

as the components ofs on a time domain basis$e1 ,...,eNbins
%

of V:

s5 (
j 51

Nbins

sjej . ~2.6!

Taking a finite Fourier transform of the data stream can
regarded as a change of basis ofV. Thus, a frequency do
main basis$dk% of V is given by the finite Fourier transform

dk5 (
j 51

Nbins

ej exp$2p i jk /Nbins%, ~2.7!

where2(Nbins21)/2<k<(Nbins21)/2. The corresponding
frequenciesf k5k/T run from 21/(2Dt) to 1/(2Dt) @31#.

More generally, if we band-pass filter the data stre
down to a frequency interval of lengthD f , then a stretch of
band-pass filtered data of durationT will have

Nbins52TD f ~2.8!

independent real data points. In this case also we regard
set of all such stretches of data as an abstract linear spaV
of dimensionNbins.

On an arbitrary basis ofV, we define the matricesG i j and
S i j by

^ninj&[S i j , ~2.9!

G i j S
jk5dk

i ; ~2.10!

i.e., the matricesG andS are inverses of each other. In E
~2.9! the angular brackets mean expected value. On the t
domain basis$e1 ,...,eNbins

% we have

S jk5Cn~ t j2tk!, ~2.11!

wheret j5tstart1( j 21)Dt, andCn(t)5^n(t)n(t1t)& is the
noise correlation function given by

Cn~t!5E
0

`

d f cos@2p f t#Sh~ f !. ~2.12!

We define an inner product on the spaceV by
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4570 57ÉANNA É. FLANAGAN AND SCOTT A. HUGHES
~h1uh2!5G i j h1
i h2

j . ~2.13!

This is a discrete version of the inner product~2.3!: the two
inner products coincide in the limitDt→0, for waveforms
which vanish outside of the time interval of lengthT @16#.

Throughout this paper we shall use interchangeably
notationsh(t) andh for a gravitational waveform. We sha
also for the most part not need to distinguish between
inner products~2.3! and ~2.13!. Some generalizations o
these notations and definitions to a network of several de
tors are given in Appendix A.

For any detector outputs5h1n, we define

r~s![A~sus!, ~2.14!

which we call themagnitudeof the stretch of datas. From
Eqs.~2.9! and ~2.13! it follows that

^r~s!2&5r21Nbins, ~2.15!

wherer2 is the matched filtering SNR squared~2.4! of the
signalh, and that

A^@Dr~s!2#2&5A4r212Nbins, ~2.16!

whereDr(s)2[r(s)22^r(s)2&. Thus, the magnituder~s! is
approximately the same as the matched filtering SNRr in
the limit r@ANbins ~large SNR squared per frequency bin!,
but is much larger thanr whenr!ANbins. The quantityr~s!
will be of most use in our information theory calculations
Sec. VII and Appendix B.

The spaceV equipped with the inner product~2.13! forms
a Euclidean vector space. We will also be concerned w
sets of gravitational waveformsh~u! that depend on a finite
numbernp of parametersu5(u1,...,unp). For example, in-
spiral waveforms form a set of this type, whereu are the
parameters describing the binary source. We will denote
S the manifold of signalsh~u!, which is a submanifold of
dimensionnp of the vector spaceV. We will adopt the con-
vention that Roman indicesi , j ,k,... will run from 1 toNbins,
and that a symbol such asv i will denote some vector in the
spaceV. Greek indicesa, b, g will run from 1 to np , and a
vectorva will denote a vector field on the manifoldS. The
inner product~2.13! induces a natural Riemannian metric o
the manifoldS given by

ds25S ]h

]ua U ]h

]ub Dduadub. ~2.17!

We shall denote this metric byGab and its inverse bySab,
relying on the index alphabet to distinguish these quanti
from the quantities~2.9! and~2.10!. For more details on this
geometric picture, see, for example, Ref.@13#.

We shall use the worddetectorto refer to either a single
interferometer or a resonant mass antenna and the ph
detector networkto refer to a collection of detectors operat
in tandem. Note that this terminology differs from th
adopted in, for example, Ref.@28#, where a detector networ
is called a detector.

Finally, we will use boldfaced vectors likea to denote
either vectors in three dimensional space, or vectors in
Nbins-dimensional spaceV, or vectors in thenp dimensional
e

e

c-

h

y

s

ase

e

space of signal parameters. In Appendix A, we will use
rowed vectors (aW ) to denote elements of the linear space
the output of a detector network.

III. ANALYSIS OF MERGER WAVES WITHOUT
TEMPLATES: VISIBILITY OF THE MERGER

AFTER BAND-PASS FILTERING

We first consider merger wave data analysis wh
matched filtering is not possible. One’s primary goal in th
case will be to reconstruct a ‘‘best-guess’’ estimate of
merger waveform@32# from the measured data. If some~per-
haps very few! supercomputer templates are available, it m
then be possible to interpret the reconstructed waveform
obtain some qualitative information about the source.

One very simple procedure that could be used to estim
the waveform shape is simply to band-pass filter the d
stream according to our prior prejudice about the freque
band of the merger waves. However, even after such ba
pass filtering, the merger signal may be dominated by de
tor noise and may not be visible.

In this section, we estimate the visibility of the merg
signal after band-pass filtering by calculating band-pass
tering SNRs using the results of Ref.@7#. A signal will be
visible if its band-pass filtering SNR is large compared
unity @7#. We consider only signals that are detected via th
inspiral waves, i.e., low-mass BBH systems. We first co
sider the visibility of the last few cycles of the inspiral. B
continuity, one might expect that if the last few inspir
cycles are visible, then at least the early part of the mer
signal will be as well. We then consider the visibility of th
merger signal itself.

A. Visibility of inspiral waveform

If a BBH event has been detected via its inspiral signa
follows that the matched filtering inspiral SNR must be*6
@33#. It does not follow, however, that the inspiral is visib
in the data stream. For neutron-star–neutron-star binaries
reverse is usually the case: the amplitude of the signal is
than the noise, and the signal would be invisible witho
matched filtering.

The dominant harmonic of the inspiral waveform can
written as

h~ t !5hamp~ t !cos@F~ t !#, ~3.1!

where the amplitudehamp(t) and instantaneous frequenc
f (t) @given by 2p f (t)5dF/dt# are slowly evolving. For
such waveforms, the SNR squared obtained using band-
filtering is approximately given by the matched filtering SN
squaredper cycle@cf. Eq. ~2.10! of Ref. @7##:

S S

ND
band-pass

2

'S S

ND
matched, per cycle

2

5Fhamp@ t~ f !#

hrms~ f ! G2

. ~3.2!

In Eq. ~3.2!, t( f ) denotes the time at which the frequency
f , andhrms( f )[Af Sh( f ). Note that the band-pass filterin
SNR ~3.2! is evaluated at a specific frequency; when o
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discusses matched filtering SNRs, an integral over a
quency band has been performed. We next insert the valu
hamp@ t( f )#2 for the leading-order approximation to the in
spiral waves and take an rms average over source orie
tions and polarizations@34,7#, which yields

S S

ND
band-pass

2

5
4p4/3@~11z!M #10/3f 4/3

25D~z!2hrms~ f !2 . ~3.3!

Here, M is the binary’s total mass,z its cosmological red-
shift, andD(z) its luminosity distance. We have also speci
ized to equal masses.

In Eq. ~4.1! of Ref. @7# we introduced an analytic formul
for a detector’s noise spectrum, which, by specialization
its parameters, could describe to a good approximation ei
an initial LIGO interferometer, an advanced LIGO interfe
ometer, or a space-based LISA interferometer. We now
sert that formula into Eq.~3.2!, and specialize to the fre
quency

f 5 f merge5
gm

~11z!M
, ~3.4!

wheregm50.02. The frequencyf merge is approximately the
location of the transition from inspiral to merger, as es
mated in Ref.@7#. This yields

S S

ND
band-pass

2

'
4p4/3@~11z!M #5gm

25/3a3f m
3

5D~z!2hm
2 , ~3.5!

wherea, hm and f m are the parameters used in Ref.@7# to
describe the noise curve. Equation~3.5! is valid only when
the redshifted mass (11z)M is smaller thangm /a f m .

For initial LIGO interferometers, appropriate values
hm , f m and a are given in Eq.~4.2! of Ref. @7#. Inserting
these values into Eq.~3.5! gives

S S

ND
band-pass

;1.1F200 Mpc

D~z! GF ~11z!M

20M (
G5/2

. ~3.6!

This result is valid for (11z)M&18M ( . Now, the SNR
obtained by matched filtering the inspiral signal is appro
mately @7#

S S

ND
matched

;2.6F200 Mpc

D~z! GF ~11z!M

20M (
G5/6

, ~3.7!

and the SNR~3.7! must be*6 @33#, since, by assumption
the inspiral has been detected. By eliminating the lumino
distanceD(z) between Eqs.~3.6! and ~3.7! we find that the
band-pass filtering SNR for the last few cycles of inspiral
detected binaries satisfies

S S

ND
band-pass

*2.5F ~11z!M

20M (
G5/3

. ~3.8!

Therefore, the last few cycles of the inspiral should be in
vidually visible above the noise for BBH events with 5M (

&M&20M ( detected by initial LIGO interferometers.
We now repeat the above calculation with the values

hm , f m , anda appropriate for advanced LIGO interferom
e-
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eters, given in Eq.~4.3! of Ref. @7#. The band-pass filtering
SNR for advanced interferometers is

S S

ND
band-pass

;1.6F1 Gpc

D~z! GF ~11z!M

20M (
G5/2

, ~3.9!

and the SNR obtained by matched filtering the inspiral sig
is

S S

ND
matched

;16F1 Gpc

D~z! GF ~11z!M

20M (
G5/6

, ~3.10!

for (11z)M&37M ( @7#. With the assumption tha
(S/N)matched*6, we find

S S

ND
band-pass

*0.6F ~11z!M

20M (
G5/3

~3.11!

for (11z)M&37M ( . Thus the last few cycles of BBH in
spirals with (11z)M&37M ( should typically be just barely
visible above the noise for advanced LIGO interferomete
depending on the binary’s total mass.

Although we do not explore here larger mass BBHs,
many cases for these systems also the last few cycle
inspiral will be visible; this can be seen by combining E
~3.2! with Figs. 4 and 5 of Ref.@7#.

For LISA, Eq. ~3.5! combined with Eq.~4.4! of Ref. @7#
yields

S S

ND
band-pass

;400F1 Gpc

D~z! GF ~11z!M

105M (
G5/2

~3.12!

for (11z)M&105M ( , with larger values for 105M (&(1
1z)M&33107M ( . Individual cycles of inspiral should be
clearly visible with LISA.

B. Visibility of merger waveform

Consider now the merger waveform itself. In Ref.@7# we
showed that

S S

ND
band-pass, merger

'
1

ANbins
S S

ND
matched, merger

, ~3.13!

whereNbins52TD f is as discussed in Sec. II. We also es
mated@Eq. ~3.26! of Ref. @7## that, for the merger waves,

ANbins;5, ~3.14!

although there is a large uncertainty in this estimate.
Consider the band-pass filtering SNR for the merger

events that have been detected via matched filtering of
inspiral. For initial LIGO interferometers, combining Eq
~B4! and ~B10! of Ref. @7# Eqs. ~3.13! and ~3.14!, and the
threshold for detection@33#,

S S

ND
matched, inspiral

*6, ~3.15!

yields
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S S

ND
band-pass, merger

*0.8F ~11z!M

20M (
G5/3

~3.16!

for (11z)M&18M ( . Repeating this analysis for advance
LIGO interferometers@using Eqs.~B5! and ~B11! of Ref.
@7## yields

S S

ND
band-pass, merger

*0.2F ~11z!M

20M (
G5/3

~3.17!

for (11z)M&37M ( @35#.
The SNR values~3.16! and~3.17! indicate that for typical

inspiral-detected BBH systems withM&20M( ~initial inter-
ferometers! or M&40M ( ~advanced interferometers!, the
merger signal will not be easily visible in the noise, and th
only relatively rare, nearby events will have easily visib
merger signals. This conclusion is somewhat tentative
cause of the uncertainty in the estimates ofNbins and of the
energy spectra discussed in Ref.@7#. Also the actual visibility
will probably vary considerably from event to event. How
ever, our crude visibility argument suggests that the pr
pects for accurately recovering the merger waveform
good only for the stronger detected merger signals.

This conclusion only applies to low mass BBH syste
which are detected via their inspiral waves. For higher m
systems which are detected directly via their merger an
ringdown waves, the merger signal should be visible ab
the noise after appropriate band-pass filtering~cf. Figs. 4 and
5 of @7#, dividing the matched filtering SNRs presented the
by ANbins;5!. Moreover, most merger events detected
LISA will have band-pass filtering SNRs@1, as can be see
from Fig. 6 of Ref.@7#, and thus should be easily visible.

IV. ANALYSIS OF MERGER WAVES WITHOUT
TEMPLATES: A METHOD OF EXTRACTING

A BEST-GUESS WAVEFORM
FROM THE NOISY DATA STREAM

In the absence of templates we would like to reconstr
from the data a best-guess estimate of the merger wavef
Any waveform-reconstruction method should use all av
able prior knowledge about the waveform. We will hopefu
know from representative simulations and perhaps from
measured inspiral or ringdown the following: the appro
mate starting time of the merger waveform, the fact tha
starts off strongly~smoothly joining on to the inspiral! and
eventually dies away in quasinormal ringing, and its appro
mate bandwidth and duration. When both the inspiral and
ringdown are strong enough to be detectable, the duratio
the merger waveform will be fairly well known, as will th
frequencyf qnr of the ringdown onto which the merger wav
form must smoothly join.

In this section, we suggest a method for reconstructing
waveform which uses such prior information, based on
technique of maximum likelihood estimation@36,37#. We
shall describe this method in the context of a single detec
However, in a few years there will be in operation a netwo
of detectors~both interferometers@1–3# and resonant mas
antennae!, and from the outputs of these detectors one wo
like to reconstruct the two polarization componentsh1(t)
and h3(t) of the merger waves. In Appendix A we exten
t
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this section’s waveform-estimation method to an arbitra
number of detectors, which yields a method of reconstruct
the two waveformsh1(t) andh3(t).

The use of maximum likelihood estimators has been d
cussed extensively by many authors in the context of gra
tational waves of a known functional form, depending on
on a few parameters@28,13,14,38,39#. Here we consider their
application to wave bursts of largely unknown shape. T
resulting data analysis methods which we derive are clos
related mathematically to the methods discussed previo
@28,13,14,38,39#, but are considerably different in opera
tional terms and in implementation.

A. Derivation of data analysis method

Suppose our prior information includes the fact that t
merger waveform lies inside some time interval of durati
T and inside some frequency interval of lengthD f . We de-
fineNbins52TD f ; cf. Sec. II above. We assume that we a
given a stretch of data of durationT8.T and with sampling
time Dt,1/(2D f ). These data lie in a linear spaceV of
dimension

N bins8 5T8/Dt. ~4.1!

Thus,N bins8 is the number of independent data points, a
Nbins is the number of independent data points in that sub
of the data which we expect to contain the merger sign
Note that these definitions modify the conventions of Sec
where the dimension ofV was denotedNbins; we will use,
unmodified, the other conventions of Sec. II.

In our analysis, we will allow the basis of the vector spa
V to be arbitrary. However, we will occasionally speciali
to the time-domain and frequency-domain bases discusse
Sec. II. We will also consider wavelet bases. Wavelet ba
can be regarded as any set of functionswi j (t) such that
wi j (t) is approximately localized in time at the timet i
5tstart1( i /nT)T8 and in frequency at the frequencyf j
5( j /nF)(Dt)21; their advantage is that they simultaneous
encode time domain and frequency domain information. T
index i runs from 1 tonT and j from 2(nF21)/2 to (nF
21)/2. Clearly the number of frequency binsnF and the
number of time binsnT must satisfynTnF5N bins8 , but oth-
erwise they can be arbitrary; typicallynT;nF;AN bins8 .
Also, the functionswi j usually all have the same shape,

wi j ~ t !}w@ f j~ t2t i !#, ~4.2!

for some functionw. For our considerations, the shape ofw is
not of critical importance. Note that families of wavele
discussed in the literature are often overcomplete; here
are considering bases of the vector spaceV, which by defi-
nition are simply complete.

Let p(0)(h) be the probability distribution function~PDF!
that summarizes our prior information about the wavefor
A standard Bayesian analysis shows that the PDF ofh given
the measured data streams is @28,16#

p~hus!5Kp~0!~h!exp@2G i j ~hi2si !~hj2sj !/2#, ~4.3!

where the matrixG i j is defined in Eq.~2.10! and K is a
normalization constant. In principle this PDF gives comple
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information about the measurement. Maximizing the P
gives the maximum likelihood estimator for the merg
waveform h. This estimator,h~s!, will in general will be
some non-linear function ofs. The effectiveness of the re
sulting waveform estimator will depend on how much pr
information about the waveform shape can be encoded in
prior PDFp(0).

One of the simplest possibilities is to takep(0) to be con-
centrated on some linear subspaceU of the spaceV and to be
approximately constant inside this subspace. A multivar
Gaussian with widths very small in some directions and v
broad in others would accomplish this to a good approxim
tion. For such choices of the prior PDFp(0), the resulting
maximum likelihood estimator@the function h5h(s) that
maximizes the PDF~4.3!# is simply the perpendicular pro
jection PU of s into U:

hbest-fit~s!5PU~s!, ~4.4!

where

PU~s![ (
i , j 51

nU

ui j ~uj us!ui . ~4.5!

Here,u1 ,...,unU
is an arbitrary basis ofU, nU is the dimen-

sion of U, ui j ujk5d j
i andujk5(uj uuk).

The method of filtering~4.4! is a special case of Wiene
optimal filtering: it is equivalent to matched filtering wit
templates consisting of linear combinations of the basis fu
tionsui . ~The equivalence between maximum likelihood e
timation and Wiener optimal filtering in more general co
texts has been shown by Echeverria@40#.! To show this,
define a family of template waveforms that depends on
rametersa1 ,...,anU

by

h~ t;aj !5(
j 51

nU

ajuj~ t !, ~4.6!

whereuj (t) are the functions of time corresponding to t
basis elementsuj of U. Now the SNR for any templateh(t)
with the data streams(t) is

S

N
@h~ t !#[

~hus!

A~huh!
. ~4.7!

The best-fit signal given by the optimal filtering method
the template which maximizes the SNR~4.7!, i.e., the tem-
plateh(t;â j ) such that

S

N
@h~ t;â j !#5 max

a1 ,...,anU

S

N
@h~ t;aj !#. ~4.8!

From Eqs.~4.5!–~4.7! it follows that PU(s)5h(t;â j ). Thus,
computing the perpendicular projection~4.5! of s into U is
equivalent to matched filtering with the template fam
~4.6!.

To summarize, the maximum likelihood estimator~4.4!
gives a general procedure for specifying a filtering algorit
adapted to a given linear subspaceU of the space of signals
V. We now discuss some general issues regarding the ch
F
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he
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y
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-
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of U. At the very least, we would like our choice to effe
truncation of the measured data stream in both the time
frequency domains, down to the intervals of time and f
quency in which we expect the merger waveform to lie. B
cause of the uncertainty principle, such a truncation can
be done exactly. Moreover, for fixed specific intervals
time and frequency, there are different, inequivalent ways
approximately truncating the signal to these intervals@41#.
The differences between the inequivalent methods are es
tially due to aliasing effects. Such effects cannot always
neglected in the analysis of merger waveforms, because
duration T;10M – 100M @7# of the waveform is probably
only a few times larger than the reciprocal of the high
frequency of interest.

The simplest method of truncating in frequency, ban
pass filtering, is to a good approximation a projection of t
type ~4.4! that we are considering. Letdk @cf. Eq. ~2.7!# be a
frequency domain basis ofV. For a given frequency interva
@ f char2D f /2,f char1D f /2#, let U be the subspace ofV
spanned by the elementsdj with u f char2 f j u,D f /2, i.e., the
span of the basis elements that correspond to the given
quency interval. Then the projection operationPU is to a
moderate approximation just the band-pass filter:

PUF (
j 51

N bins8

sjdj G'( 8 5sjdj , ~4.9!

where the notation(8 means that the sum is taken only ov
the appropriate range of frequencies. The relation~4.9! fol-
lows from the fact that the basisdj is approximately orthogo-
nal with respect to the noise inner product~2.13!: different
frequency components of the noise are statistically indep
dent up to small aliasing corrections of the order
;1/( f charT8). Thus, if our a priori information is that the
signal lies within a certain frequency interval, then the ma
mum likelihood estimate of the signal is approximately giv
by passing the data stream through a band-pass filter.

Truncating in the time domain, on the other hand, is no
projection of the type~4.4!. If our prior information is that
the signal vanishes outside a certain interval of time, th
simply discarding the data outside of this interval will n
give the maximum likelihood estimate of the signal. This
because of statistical correlations between sample points
inside and just outside of the time interval: the measured d
stream outside the interval gives information about what
noise inside the interval is likely to be. These correlati
effects become unimportant in the limitT fchar→`, but for
BBH merger signalsT fchar is probably&20 @7#. The correct
maximum likelihood estimator of the waveform, when o
prior information is that the signal vanishes outside of a c
tain time interval, is given by Eq.~4.5! with the basis
$u1 ,...,unU

% replaced by the appropriate subset of the tim

domain basis$e1 ,...,eN
bins8 %.

Our suggested choice of subspaceU and corresponding
specification of a filtering method is as follows. Pick a wav
let basis wi j of the type discussed above.~The filtering
method will depend only weakly on which wavelet basis
chosen.! Then, the subspaceU is taken to be the span of
suitable subset of this wavelet basis, chosen according to
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prior information about the bandwidth and duration of t
signal. The dimension ofU will be nU5Nbins52TD f .

In more detail, the filtering method would work as fo
lows. First, band-pass filter the data stream and truncate
time, down to intervals of frequency and time that are seve
times larger than are ultimately required, in order to redu
the number of independent data pointsN bins8 to a manageable
number. Second, for the wavelet basiswi j of this reduced
data set, calculate the matrixwi ji 8 j 85(wi j uwi 8 j 8). Recall that
the index i corresponds to a timet i and the indexj to a
frequencyf j @cf. the discussion preceding Eq.~4.2!#. Third,
pick out the sub-blockw̄i j i 8 j 8 of the matrixwi ji 8 j 8 for which
the times t i and t i 8 and frequenciesf j and f j 8 lie in the
required intervals. Invert this matrix to obtainw̄i j i 8 j 8. The
best-fit waveform is then given by

hbest-fit5(
i j

8 (
i 8 j 8

8 w̄i j i 8 j 8~suwi 8 j 8!wi j , ~4.10!

where (8 means the sum over the required time and f
quency intervals.

B. Extension of method to incorporate other types
of prior information

A waveform reconstruction method more sophistica
than ~4.4! can be obtained by generalizing the above ana
sis. Suppose that the prior PDFp(0)(h) is a general multi-
variate Gaussian inh, such as

p~0!~h!}expF2
1

2 (
i j

~hi j 2h̄i j !
2

a i j
2 G , ~4.11!

wherehi j are the expansion coefficients of the signalh on
some fixed wavelet basiswi j . By making suitable choices o
the parametersh̄i j anda i j , such a PDF could be chosen
encode the information that the frequency content of the
nal at early times is concentrated nearf merge, that the signal
joins smoothly onto the inspiral waveform, that at the end
merger the dominant frequency component is that of qu
normal ringing, etc. For any such prior PDF, it is straightfo
ward to calculate the corresponding maximum likelihood
timator. If the prior PDF has expected valueh0 and variance-
covariance matrixS0 , then the estimator is

hbest-fit~s!5@S211S0
21#21

•@S21
•s1S0

21
•h0#.

~4.12!

Such an estimator could be calculated numerically.

V. USING INFORMATION PROVIDED BY
REPRESENTATIVE SUPERCOMPUTER SIMULATIONS

In this section we propose a computational strategy
numerical relativists to pursue, if they successfully produ
computer codes capable of simulating BBH mergers, bu
running such codes is too expensive to permit an exten
survey of the merger parameter space. In this case, for
analysis purposes, it would be very useful to do a coa
survey of the BBH parameter space, with the aim of answ
ing several qualitative questions and determining the ra
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of several key parameters. Below we discuss several s
issues, and describe how an understanding of them may
pact data analysis.

One of the most important questions is, what is the
proximate duration of the merger signal, and how does
depend on parameters such as the initial spins of the b
holes and the mass ratio? The range of merger signal d
tions will be an important input to algorithms for searchin
for merger waves~the ‘‘noise-monitoring’’ technique de-
scribed in Refs.@7, 42#! and algorithms for reconstructing th
waveform from the data~see Sec. IV!, particularly for cases
in which the ringdown and/or inspiral signals are too weak
be seen in the data stream. Moreover, the duration of
waveform~together with its bandwidth! approximately deter-
mines the amount by which the SNR from band-pass filter
is lower than the matched filtering SNR obtained w
merger templates@cf. Eq. ~3.13!#. If it turns out that the du-
ration is long~or, more relevantly, ifNbins is greater than our
estimate of;30!, then the merger SNR will be badly de
graded if templates are not available. Although the noi
monitoring technique will likely be useful for detectin
merger waves, it will be difficult to reconstruct the wavefor
if Nbins is too large.

A similar question is the frequency bandwidth in whic
most of the merger waves’ power is concentrated. In Ref.@7#
we assumed that when one excises in the time domain
ringdown portion of the signal, the remaining signal has
significant power at frequencies above the quasi-normal r
ing frequency of the final Kerr black hole. However, th
assumption may not be valid; if it is not, signal searches a
waveform reconstruction methods will need to incorpor
this high-frequency power. As with the signal’s duration, t
range of bandwidths of merger waveforms will be an input
algorithms for reconstructing the merger waveform from t
noisy data~see Sec. IV!.

Another issue is how much energy is radiated in t
merger compared to the energy radiated in the ringdo
Operationally, this question reduces to asking what prop
tion of the total waveform produced during the coalesce
can be accurately fit by the ringdown’s decaying sinusoid
paper I we argued that if the spins of the black holes
large and aligned with one another and the orbital angu
momentum, then the system has too much angular mom
tum for it to be lost solely through the ringdown, so th
ringdown waves should not dominate the merger. On
other hand, if the spins of the black holes are small or
aligned, most of the radiated energy might well come ou
ringdown waves. It may turn out that the ratio of ener
radiated in the merger to that in the ringdown is small for
but a small set of merger parameters, which could hav
great influence on BBH event searches.

It would be useful to know if the waveforms contain
strong signature of an ‘‘innermost stable circular orbi
~ISCO! @8,9,43#, as has commonly been assumed. In the
treme mass ratio limitm!M , there is such an orbit; when
the smaller black hole reaches it, there is a sharp drop in
radiated energy per unit logarithmic frequencydE/d ln f
@44#. However, there may not be such a sharp feature in
dE/d ln f plot in the equal-mass case, especially if the tim
scale over which the orbital instability operates is comp
rable to the radiation reaction time scale.
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Finally, it would be useful to know how much of th
merger can be described as higher order quasi-normal r
ing ~QNR! modes. By convention, we have been calling th
phase of the coalescence which is dominated by the m
slowly damped,l 5m52 mode the ringdown phase, but b
fore this mode dominates, QNR modes with different valu
of l and/orm are likely to be present. After the merger h
evolved to the point when the merged object can be ac
rately described as a linear perturbation about a station
black hole background, there might or might not be any s
nificant subsequent period of time before the higher or
modes have decayed away so much as to be undetectab
simulations predict that higher order QNR modes are str
for a significant period of time, then these higher order QN
modes should be found by the normal ringdown search of
data stream; no extra search should be needed.

VI. ACCURACY REQUIREMENTS
FOR MERGER WAVEFORM TEMPLATES

For the remainder of the paper, we consider data anal
of merger waves using supercomputer templates. These
plates will unavoidably contain numerical errors: if th
physical waveform for some source ish(t;u), where the
components ofu5(u1,...,unp) are the various paramete
upon which the waveform depends, then numerical simu
tions will predict the waveformh(t;u)1dh(t;u). One
would like the numerical errordh(t;u) to be small enough
not to have a significant effect on signal searches, param
extraction or any other types of data analysis that might
carried out using the template waveforms. In this section
suggest an approximate rule of thumb@Eq. ~6.2!# for estimat-
ing when numerical errors are sufficiently small, and disc
its meaning and derivation.

A. Accuracy criterion and implementation

The accuracy criterion can be simply expressed in te
of the inner product introduced in Sec. II above@which is
defined by Eq.~2.3! or alternatively by Eqs.~2.10!–~2.13!#:
for a given templateh(t), our rule of thumb is that the nu
merical errordh(t) should be small enough that the quant

D[
1

2

~dhudh!

~huh!
~6.1!

satisfies

D&0.01. ~6.2!

~The fractional loss in event detection rate in signal searc
is ;3D, and so the value 0.01 corresponds to a 3% los
event rate; see Sec. VI B.! If the errors at each data poin
hj5h(t j ) are uncorrelated, then Eq.~6.2! translates into a
fractional accuracy for each data point of about 0.01/ANbins.
If the errors add coherently in the integral~6.1!, the frac-
tional accuracy requirement will be more stringent.

It should be straightforward in principle to ensure th
numerical templates satisfy Eq.~6.2!. Let us schematically
denote a numerically generated template ashnum(t,«), where
« represents the set of tolerances~grid size, size of time
steps, etc.! that govern the accuracy of the calculation.~Rep-
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resenting this set of parameters by a single tolerance« is an
oversimplification but is adequate for the purposes of
discussion.! One can then iterate one’s calculations varying«
in order to obtain sufficiently accurate templates, using
following standard type of procedure: First, calculate t
template hnum(t,«). Second, calculate the more accura
templatehnum(t,«/2). Third, make the identifications

h~ t ![hnum~ t,«/2!,

dh~ t ![hnum~ t,«/2!2hnum~ t,«!,
~6.3!

and insert these quantities in Eq.~6.1! to calculateD. This
allows one to assess the accuracy of the templatehnum(t,«).
Finally, iterate until Eq.~6.2! is satisfied.

B. Derivation and meaning of accuracy criterion

The required accuracy of numerical templates depend
how and for what purpose they are used. As discussed in
Introduction, merger templates might be used in several
ferent ways:~i! They might be used as search templates
signal searches using matched filtering. Such searches
probably not be feasible, at least initially, as they wou
require the computation of an inordinately large number
templates.~ii ! For BBH events that have already been d
tected via matched filtering of the inspiral or ringdow
waves, or by the noise-monitoring detection technique@7,42#
applied to the merger waves, the merger templates migh
used for matched filtering in order to measure the binar
parameters and test general relativity.~iii ! If only a few,
representative supercomputer simulations and their ass
ated waveform templates are available, one might sim
perform a qualitative comparison between the measu
waveform and templates in order to deduce qualitative inf
mation about the BBH source. In this section we estimate
accuracy requirements for the first two of these uses
merger templates.

Consider first signal searches using matched filtering. T
expected SNRr obtained for a waveformh(t) when using a
templatehT(t) is @45#

r5
~huhT!

A~hTuhT!
. ~6.4!

SubstitutinghT(t)5h(t)1dh(t) into Eq. ~6.4! and expand-
ing to second order indh, we find that the fractional loss in
SNR produced by the numerical errordh(t) is

dr

r
5D11O@~dh!3#, ~6.5!

where

D1[
1

2 F ~dhudh!

~huh!
2

~dhuh!2

~huh!2 G . ~6.6!

Note that the quantityD1 is proportional to (dh1udh1),
wheredh1 is the component ofdh perpendicular toh. Thus,
a numerical error of the formdh(t)}h(t) will not contribute
to the fractional loss in SNR. This is to be expecte
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since the quantity~6.4! is independent of the absolute no
malization of the templateshT(t).

The event detection rate is proportional to the cube of
SNR, and hence the fractional loss in event rate resul
from template inaccuracies is approximately 3dr/r @45#. If
one demands that the fractional loss in event rate be
than, say, 3% one obtains the criterion@46#

D1<0.01. ~6.7!

From Eqs.~6.1! and~6.6!, D1<D, and so the condition~6.7!
is less stringent than the condition~6.2!. The justification for
imposing the more stringent criterion~6.2! rather than~6.7!
derives from the use of templates for parameter extract
We now turn to a discussion of this issue.

In principle, one could hope to measure all of the
parameters on which the merger waveforms depend by c
bining the outputs of several detectors with a complete b
of templates~although in practice the accuracy with whic
some of those 15 parameters can be measured is not like
be very good!. In the next few paragraphs we derive an a
proximate condition onD @Eq. ~6.13!# which results from
demanding that the systematic errors in the measured va
of all the parameters be small compared to the statist
errors due to detector noise.~We note that one would als
like to use matched filtering to test general relativity w
merger waves; the accuracy criterion that we derive for
rameter measurement will also approximately apply to te
of general relativity.!

Recall that we write the waveform ash(t;u). Let ûa, 1
<a<np , be the best-fit values ofua given by the matched
filtering process. The quantitiesûa depend on the detecto
noise and are thus random variables. In the high SNR lim
the variablesûa have a multivariate Gaussian distributio
with ~see, e.g., Ref.@13#!

^dûadûb&5Sab, ~6.8!

wheredûa[ûa2^ûa& and the matrixSab is defined after
Eq. ~2.17!. The systematic errorDua in the inferred values
of the parametersua due to the template errordh can be
shown to be approximately

Dua5SabS ]h

]ubUdhD . ~6.9!

From Eqs.~6.8! and ~6.9!, in order to guarantee that th
systematic error in each of the parameters is smaller t
some number« times that parameter’s statistical error, w
must have

idhii2[~dhiudhi!<«2. ~6.10!

Here dhi is the component ofdh parallel to the tangen
space of the manifold of signalsS discussed in Sec. II. It is
given by

dhi5SabS dhU ]h
aD ]h

b . ~6.11!

]u ]u
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The magnitudeidhii depends on details of the number
parameters and on how the waveformh(t,u) varies with
these parameters. However, a strict upper bound is

idhii<idhi . ~6.12!

If we combine Eqs.~6.1!, ~6.10! and ~6.12!, we obtain

D<
«2

2r2 . ~6.13!

Inserting reasonable estimates forr and « ~r.7, «.1! we
recover the criterion~6.2! @47#. In Sec. VII we give an alter-
native derivation of Eq.~6.13! using information theory.

The valuer.7 leading to the criterion~6.2! is appropri-
ate for ground based interferometers@7#. However, much
higher SNRs are expected for LISA; see, e.g., Ref.@7#. Thus,
numerical templates used for testing relativity and measu
parameters with LISA data will have to be substantially mo
accurate than those used with data from ground-based in
ments.

VII. NUMBER OF BITS OF INFORMATION OBTAINABLE
FROM THE MERGER SIGNAL AND IMPLICATIONS

FOR TEMPLATE CONSTRUCTION

In information theory, a quantity called ‘‘information’
~analogous to entropy! can be associated with any measu
ment process: it is simply the base 2 logarithm of the num
of distinguishable measurement outcomes@26,27#. Equiva-
lently, it is the number of bits required to store the know
edge gained from the measurement. In this section we
cialize the notions of information theory to gravitation
wave measurements, and estimate the number of bits o
formation which one can gain in different cases.

A. Total information gain

First consider the situation in which templates are u
available. Suppose that our prior information describing
signal is that it lies inside some frequency band of lengthD f
and inside some time interval of durationT. We denote by
I total the base 2 logarithm of the number of waveformsh that
are distinguishable by the measurement, that are compa
with our prior information, and that are compatible with o
measurement of the detector output’s magnituder(s) @48#.
Note that the vast majority of these 2I total waveforms are
completely irrelevant to BBH mergers: the merger sign
are a small subset~the manifoldS! of all distinguishable
waveforms with the above characteristics. The quantityI total
characterizes the information gain in a measurement w
we do not have prior information about which waveforms a
relevant. Note also thatI total quantifies the information
gained from the measurement about the merger wavef
shape, but in the absence of templates, we do not learn
thing about the BBH source.

A precise definition of the total information gainI total is as
follows. Let T and D f be a priori upper bounds for the
durations and bandwidths of merger signals, and letV be the
vector space of signals with duration<T inside the relevant
frequency band. This vector spaceV has dimensionNbins

52TD f . Let p(0)(h) be the PDF describing our prior infor
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mation about the gravitational-wave signal@49#, and let
p(hus) denote the posterior PDF forh after the measuremen
i.e., the PDF forh given that the detector output iss. A
standard Bayesian analysis shows thatp(hus) will be given
by

p~hus!5Kp~0!~h!exp@2~s2hus2h!/2# ~7.1!

where K is a normalization constant@16#. Finally, let
p@hur(s)# be the PDF ofh given that the magnitude ofs is
r(s). We defineI total to be

I total[E dh p~hus!log2F p~hus!
p@hur~s!#G . ~7.2!

By this definition, I total is the relative informationof the
PDFsp@hur(s)# and p(hus) @27#. In Appendix B we show
that the quantity~7.2! in fact represents the base 2 logarith
of the number of distinguishable wave shapes that co
have been measured and that are compatible with the m
nituder(s) of the data stream@48#. Thus, one learnsI total bits
of information about the waveformh when one goes from
knowing only the magnituder(s)5isi of the detector outpu
to knowing the actual detector outputs.

We also show in Appendix B that in the limit of no prio
information other thanT andD f , we have

I total5
1

2
Nbins log2@r~s!2/Nbins#1O@ ln Nbins#. ~7.3!

The formula~7.3! is valid in the limit of largeNbins for fixed
r(s)2/Nbins, and moreover applies only when

r~s!2/Nbins.1; ~7.4!

see below for further discussion of this point.
There is a simple and intuitive way to understand

result~7.3!. Fix the gravitational waveform,h, considered as
a point in theNbins-dimensional Euclidean spaceV. What is
measured is the detector outputs5h1n, whose location in
V is displaced fromh. The direction and magnitude of th
displacement depend upon the particular instance of
noisen. However, if we average over an ensemble of no
realizations, the displacement due to the noise is in a ran
direction and has rms magnitudeANbins ~since on an appro
priate basis each component ofn has rms value 1!. There-
fore, all points $h8% lying inside a hypersphere of radiu
ANbins centered onh are effectively indistinguishable from
each other. The volume of such a hypersphere is

CNbins
~ANbins!

Nbins, ~7.5!

whereCNbins
is a constant whose value is unimportant. Wh

we measure a detector outputs with magnituder~s!, the set
of signalsh that could have given rise to an identical me
suredr~s! will form a hypersphere of radius;r(s) and vol-
ume

CNbins
r~s!Nbins. ~7.6!
ld
g-

e

e
e
m

n

-

The number of distinguishable signals in this large hyp
sphere will be approximately the ratio of the two volum
~7.5! and~7.6!; the base 2 logarithm of this ratio is the qua
tity ~7.3!.

Equation~7.3! expresses the information gain as a fun
tion of the magnitude of the measured detector outputs. We
now re-express this information gain in terms of propert
of the gravitational-wave signalh. For a givenh, Eqs.~2.15!
and ~2.16! show that the detector output’s magnituder~s!
will be approximately given by

r~s!2'r21Nbins6ANbins. ~7.7!

Here r25ihi2 is the SNR squared~2.4! that would be
achieved if matched filtering were possible~if templates
were available!. We user as a convenient measure of sign
strength; in this context, it is meaningful even in situatio
where templates are unavailable and matched filtering ca
be carried out. The last term in Eq.~7.7! gives the approxi-
mate size of the statistical fluctuations inr(s)2. We now
substitute Eq.~7.7! into Eq. ~7.3! and obtain

I total5
1

2
Nbins log2@11r2/Nbins#F11OS ln Nbins

Nbins
D

1OS 1

ANbins
D G . ~7.8!

Also, the condition~7.4! for the applicability of Eq.~7.3!,
when expressed in terms ofr instead ofr~s!, becomes

r2

Nbins
6

1

ANbins

>0, ~7.9!

which will be satisfied with high probability whenr
@N bins

1/4 @50#. In the regimer&N bins
1/4 , the condition~7.4! is

typically not satisfied and the formula~7.3! does not apply;
we show in Appendix B that in this case the information ga
~7.2! is usually very small, depending somewhat on the pr
PDF p(0)(h). @In contexts other than BBH merger wave
forms, the information gain can be large in the regimer
!N bins

1/4 if the prior PDFp(0)(h) is very sharply peaked. Fo
example, when one considers measurements of binary
tron star inspirals with advanced LIGO interferometers,
information gain in the measurement is large even thou
typically one will haver!N bins

1/4 , because we have ver
good prior information about inspiral waveforms.#

As an example, a typical detected BBH event might ha
a merger SNR ofr;10, andNbins might be 30@7#. Then,
Eq. ~7.8! tells us that;33109'232 signals of the same
magnitude could have been distinguished; thus the infor
tion gained is;32 bits. More generally, for ground base
interferometers we expectr to lie in the range 5&r&100
@7#, and therefore 10 bits&I total&120 bits, and for LISA we
expectr to typically lie in the range 103&r&105 so that
200 bits&I total&400 bits.

B. Source information gain

Consider next the situation in which a complete family
accurate theoretical template waveformsh~u! is available for
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the merger. Without templates, we gainI total bits of informa-
tion about the shape of the waveform in a measurem
With templates, some—but not all—of this information c
be translated into information about the BBH source. F
instance, suppose in the example considered above tha
number of distinguishable waveforms that could have co
from BBH mergers and that are distinguishable in the de
tor noise is 225. ~This number must be less that the to
number ;232 of distinguishable waveform shapes, sin
waveforms from BBH mergers will clearly not fill out th
entire function spaceV of possible waveforms.! In this ex-
ample, by identifying which template best fits the detec
output, we can gain;25 bits of information about the BBH
source~e.g., about the black holes’ masses or spins!. We will
call this number of bits of informationI source; clearly I source
<I total always.

What of the remainingI total2I sourcebits of information~7
bits in the above example!? If the detector output is close t
one of the template shapes, this closeness can be regard
evidence in favor of the theory of gravity~general relativity!
used to compute the templates; so theI total2I sourcebits can be
viewed as information about the validity of general relativi
If one computed templates in more general theories of g
ity, one could in principle translate thoseI total2I source bits
into a quantitative form and obtain constraints on the para
eters entering into the gravitational theory. However, w
only general-relativistic templates at one’s disposal, the
formation contained in theI total2I sourcebits will simply result
in a qualitative confirmation of general relativity, in th
sense that one of the general relativistic templates will fit
data well.

A precise definition ofI source is as follows. Letp(uus)
denote the probability distribution for the source parame
u given the measurements. This PDF is given by a formula
analogous to Eq.~7.1! @16#:

p~uus!5Kp~0!~u!exp@2„s2h~u!us2h~u!…/2#,
~7.10!

wherep(0)(u) is the prior PDF foru andK is a normaliza-
tion constant. Letp@uur(s)# be the posterior PDF foru given
that the magnitude of the measured signal isr(s). Then we
define

I source[E dup~uus!log2F p~uus!
p@uur~s!#G . ~7.11!

The number of bits~7.11! gained about the source wi
clearly depend on the details of how the gravitational wa
forms depend on the source parameters, on the prior
pected ranges of these parameters, etc. In Appendix B
argue that to a rather crude approximation,I sourceshould be
given by the formula~7.8! with Nbins replaced by the numbe
of parametersNparam on which the waveform has a signifi
cant dependence:

I source'
1

2
Nparamlog2@11r2/Nparam#. ~7.12!

Note that the quantityNparam should be bounded above b
the quantitynp discussed in Sec. II, but may be somewh
t.
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smaller thannp . This will be the case if the waveform de
pends only very weakly on some of the parametersua.
Equation~7.12! is only valid whenNparam<Nbins. For BBH
mergers we expectNparam&15, which from Eq.~7.12! pre-
dicts thatI source lies in the range;10 bits to;70 bits for
SNRsr in the range 5–100~the expected range for groun
based interferometers@7#! and;100 bits to;200 bits forr
in the range 103– 105 expected for LISA@7#.

C. Loss of source information due to template inaccuracies
or to sparseness in the lattice of templates

As discussed in Sec. VI, templates will contain unavo
able numerical errors. We now analyze how such errors
fect the source information gained, and use this analysi
infer the maximum allowable template error. We write

hT~u!5h~u!1dh~u!, ~7.13!

whereh~u! denotes the true waveform,hT(u) the numerical
template, anddh~u! the numerical error. Clearly, the numer
cal error will reduce the information~7.11! one obtains abou
the source. To make an estimate of the reduction, we mo
the numerical error as a random process with

^dhidhj&5Ci j , ~7.14!

where for simplicity we takeCi j 5lG i j for some constantl.
HereG i j is the matrix introduced in Eq.~2.10!. The expected
value of (dhudh) is then given by, from Eq.~2.13!,

^~dhudh!&5S i j ^dhidhj&

5S i j lG i j 5lNbins,
~7.15!

where we have used Eq.~2.9!. We can writel in terms of the
quantityD discussed in Sec. VI by combining Eqs.~6.1! and
~7.15!, yielding

l52D
r2

Nbins
. ~7.16!

The informationI source8 which one obtains when measurin
with inaccurate templates can be calculated by treating
sum of the detector noisen and the template numerical erro
dh as an effective noisen(eff). This effective noise is charac
terized by the covariance matrix

^ni
~eff!nj

~eff!&5G i j 1lG i j . ~7.17!

Thus, in this simplified model, the effect of the numeric
error is to increase the noise by a factorA11l. The new
information gainI source8 is therefore given by Eq.~7.12! with
r replaced by an effective SNRr8, where

~r8!25
r2

11l
. ~7.18!

If we now combine Eqs.~7.12!, ~7.16! and ~7.18!, we find
that the loss in information due to template inaccuracy,

dI source5I source2I source8 , ~7.19!
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is given by

dI source5r2S r2

Nparam1r2D SNparam

Nbins
DD1O~D2!. ~7.20!

To ensure thatdI source&1 bit, we therefore must have

D&
1

r2 SNparam1r2

r2 D S Nbins

Nparam
D . ~7.21!

This condition is a more accurate version of the condit
~6.13! that was derived in Sec. VI. It approximately reduc
to Eq. ~6.13! for typical BBH events~except in the unrealis
tic limit r2!Nparam!, sinceNparam;10 and 10&Nbins&100
@7#.

Turn next to the issue of the required degree of finenes
a template lattice, that is, how close in parameter space
cessive templates must be to one another. We paramet
the fineness by a dimensionless parameter«grid : the lattice is
required to have the property that for any possible true sig
h~u!, there exists some templateh(u* ) in the lattice with

„h~u!uh~u* !…

A„h~u!uh~u!…A„h~u* !uh~u* !…
>12«grid . ~7.22!

The quantity 12«grid is called the minimal match@45#. Sup-
pose that one defines a metric on the spaceV of templates
using the norm associated with the inner product~2.13!. It
then follows from Eq.~7.22! that the largest possible dis
tanceDmax between an incoming signalh~u! and some re-
scaled templateAh(u* ) with A.0 is

Dmax5A2«gridr, ~7.23!

wherer is the matched filtering SNR~2.4! of the incoming
signal.

We can view the discreteness in the template lattice
roughly equivalent to an ignorance on our part about
location of the manifoldS of true gravitational-wave signal
between the lattice points. The maximum distance any c
rect waveformh~u! could be away from where we may thin
it should be~where our guess is for example obtained
linearly extrapolating from the nearest points on the latti!
is of order Dmax. We can crudely view this ignorance a
equivalent to a numerical errordh in the templates of mag
nitudeidhi5Dmax. Combining Eqs.~6.1!, ~7.20! and~7.23!
shows that the loss of informationdI sourcedue to the discrete
ness of the grid should therefore be of order

dI source;r2S r2

Nparam1r2D SNparam

Nbins
D «grid . ~7.24!

The grid fineness«grid should be chosen to ensure th
dI source is small compared to unity, while also taking in
account that the fractional loss in event detection rate
signal searches due to the coarseness of the grid wil
&3«grid ; see Sec. VI B above and Refs.@45, 46#

VIII. CONCLUSIONS

Templates from numerical relativity for the merger pha
of BBH coalescences will be a great aid to the analysis
n
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detected BBH events. A complete bank of templates co
be used to implement a matched filtering analysis of mer
data, which would allow measurements of the binary’s p
rameters and tests of general relativity in a strong fie
highly dynamic regime. Such matched filtering may also
possible without a complete bank of templates, if iterat
supercomputer simulations are carried out in tandem w
data analysis. A match of the detected waves with such t
plates will be a triumph for the theory of general relativi
and an unambiguous signature of the existence of bl
holes. Qualitative information from representative superco
puter simulations will also be useful, both as an input
algorithms for extracting the merger waveform’s shape fr
the noisy interferometer data stream and as an aid to in
preting the observed waveforms and making deducti
about the waves’ source.

We have derived, using several rather different concep
starting points, accuracy requirements that numerical te
plates must satisfy in order for them to be useful as d
analysis tools. We first considered matched filtering sig
searches using templates; here the loss in event rate du
template inaccuracies is simply related to the degradatio
the SNR, and leads to a criterion on template accuracy.
proximately the same criterion is obtained when one
mands that the systematic errors in parameter extraction
small compared to the detector-noise induced statistical
rors. Finally, we quantified the information that is encoded
the merger waveforms using the framework of informati
theory, and deduced how much of the information is lost d
to template inaccuracies or to having insufficiently ma
templates. We deduced approximate requirements that
plates must satisfy~in terms both of individual template ac
curacy and of spacing between templates! in order that all of
the waveform’s information can be extracted.

The theory of maximum likelihood estimation is a usef
starting point for deriving algorithms for reconstructing th
gravitational waveforms from the noisy interferometer o
put. In this paper we have discussed and derived such a
rithms in the contexts both of a single detector and o
network of several detectors; these algorithms can be tailo
to build in many different kinds of prior information abou
the waveforms.

ACKNOWLEDGMENTS

We thank Kip Thorne for suggesting this project to u
and for his invaluable encouragement and detailed comm
on the paper. We thank David Chernoff for some help
conversations. This research was supported in part by N
Grants PHY-9424337, PHY-9220644, and PHY-95147
and NASA Grant NAGW-2897. S.A.H. gratefully acknow
edges the support of the National Science Foundation Gra
ate program, and E´ .F. likewise acknowledges the support
Enrico Fermi and Sloan Foundations.

APPENDIX A: WAVEFORM RECONSTRUCTION
WITH A DETECTOR NETWORK

In this appendix we describe how to extend the filteri
methods discussed in Sec. IV above from a single detecto
a network of an arbitrary number of detectors. The unde
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ing principle is again simply to use the maximum likelihoo
estimator of the waveform shape. We also explain the r
tionship between our waveform reconstruction method
the method of Gu¨rsel and Tinto@25#. Appendixes A 1 and
A 2 below overlap somewhat with analyses by Finn@51#.
Finn uses similar mathematical techniques to analyze m
surements of a stochastic background and waves of w
understood form with multiple detectors, applications wh
are rather different from ours.

We start by establishing some notation for a detector n
work; these notation and conventions follow those of App
dix A of Ref. @13#. The output of such a network can b
represented as a vectorsW(t)5@s1(t),...,snd

(t)#, wherend is

the number of detectors, andsa(t) is the strain amplitude
read out from theath detector@52#. There will be two con-
tributions to the detector outputsW(t)—the detector network
noise nW (t) ~a vector random process! and the true
gravitational-wave signalhW (t):

sW~ t !5hW ~ t !1nW ~ t !. ~A1!

We will assume that the detector network noise is station
and Gaussian. This assumption is not very realistic, but
derstanding the optimal method of waveform reconstruct
with this idealized assumptions is an important first step
wards more sophisticated waveform reconstruction al
rithms adapted to realistic detector noise. With this assu
tion, the statistical properties of the detector network no
can be described by the auto-correlation matrix

Cn~t!ab5^na~ t1t!nb~ t !&2^na~ t1t!&^nb~ t !&, ~A2!

where the angular brackets mean an ensemble average
time average. Twice the Fourier transform of the correlat
matrix is the power spectral density matrix

Sh~ f !ab52E
2`

`

dte2p i f tCn~t!ab . ~A3!

The off-diagonal elements of this matrix describe the effe
of correlations between the noise sources in the various
tectors, while each diagonal elementSh( f )aa is just the usual
power spectral density of the noise in theath detector. We
assume that the functionsSh( f )ab for aÞb have been mea
sured for each pair of detectors.

The Gaussian random processnW (t) determines a natura
inner product on the space of functionshW (t), which general-
izes the single-detector inner product~2.3!. The inner prod-
uct is defined so that the probability that the noise take
specific valuenW 0(t) is

p@nW 5nW 0#}e2~nW 0unW 0!/2. ~A4!

It is given by

~gW uhW ![4 ReE
0

`

d f g̃a~ f !* @Sh~ f !21#abh̃b~ f !. ~A5!

See, e.g., Appendix A of Ref.@13# for more details.
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Turn, now, to the relation between the gravitational wa
signalha(t) seen in theath detector and the two independe
polarization componentsh1(t) andh3(t) of the waves. Let
xa be the position andda the polarization tensor of theath
detector in the detector network. By polarization tensor
mean that tensorda for which the detector’s outputha(t) is
given in terms of the waves’ transverse traceless strain te
h(x,t) by

ha~ t !5da :h~xa ,t !, ~A6!

where the colon denotes a double contraction. A grav
tional wave burst coming from the direction of a unit vect
m will have the form

h~x,t !5 (
A51,3

hA~ t1m•x!em
A , ~A7!

whereem
1 andem

3 are a basis for the transverse traceless t
sors perpendicular tom, normalized according toem

A :em
B

52dAB. Combining Eqs.~A6! and~A7! and switching to the
frequency domain using the convention~2.1! yields

h̃a~ f !5Fa
A~m! h̃A~ f !e22p i f ta~m!, ~A8!

where the quantities

Fa
A~m![em

A :da , ~A9!

for A51,3, are detector beam-pattern functions for theath
detector@34# andta(m)[m•xa is the time delay at theath
detector relative to the origin of coordinates.

1. Derivation of posterior probability distribution

We now construct the PDFP@m,h1(t),h3(t)usW(t)# for
the gravitational waves to be coming from directionm with
waveformsh1(t) and h3(t), given that the output of the
detector network issW(t). Let p(0)(m) andp(0)@hA(t)# be the
prior probability distributions for the sky positionm ~pre-
sumably a uniform distribution on the unit sphere! and wave-
form shapeshA(t), respectively. A standard Bayesian ana
sis along the lines of that given in Ref.@16# and using Eq.
~A4! gives

P@m,hA~ t !usW~ t !#5Kp~0!~m!p~0!@hA~ t !#

3exp@2~sW2hW usW2hW !/2#, ~A10!

whereK is a normalization constant andhW is understood to
be the function ofm andhA(t) given by ~the Fourier trans-
form of! Eq. ~A8!.

We next simplify Eq.~A10! by reducing the argument o
the exponential from a double sum over detectors to a sin
sum over detector sites. In the next few paragraphs we c
out this reduction, leading to Eqs.~A18! and ~A19! below.
We assume that each pair of detectors in the network co
in one of two categories:~i! pairs of detectors at the sam
detector site, which are oriented the same way, and t
share common detector beam pattern functionsFa

A(m) ~for
example the 2 km and 4 km interferometers at the LIG
Hanford site!, or ~ii ! pairs of detectors at widely separate
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sites, for which the detector noise is effectively uncorrelat
Under this assumption we can arrange for the matrixSh( f )
to have a block diagonal form, with each block correspo
ing to a detector site, by choosing a suitable ordering
detectors in the list (1,...,nd). Let us denote the detecto
sites by Greek indicesa,b,g..., so thata runs from 1 tons ,
wherens is the number of sites. LetDa be the subset of the
detector list (1,...,nd) containing the detectors at theath site,
so that any sum over detectors can be re-written

(
a51

nd

5 (
a51

ns

(
aPDa

. ~A11!

Thus, for example, for a 3 detector network with 2 detecto
at the first site and 1 at the second,D15$1,2% and D2

5$3%. Let Fa
A(m) denote the common value of the bea

pattern functions~A9! for all the detectors at sitea. Let
Sa( f ) denote theath diagonal sub-block of the matri
Sh( f ). Then if we define

L5~sW2hW usW2hW ! ~A12!

@the quantity which appears in the exponential in Eq.~A10!#,
we obtain, from Eq.~A5!,

L5 (
a51

ns

4 ReE
0

`

d f (
a,bPDa

@ s̃a~ f !* 2 h̃a~ f !* #

3@Sa~ f !21#ab@ s̃b~ f !2 h̃b~ f !#. ~A13!

Next, we note from Eq.~A8! that the value ofh̃a will be
the same for all detectors at a given sitea. If we denote this
common value byh̃a , then we obtain, after some manip
lation of Eq.~A13!,

L5 (
a51

ns

4 ReE
0

`

d fH u s̃a~ f !2 h̃a~ f !u2

Sa
~eff!~ f !

1Da~ f !J .

~A14!

The meanings of the various symbols in Eq.~A14! are as
follows. The quantitySa

(eff)(f) is defined by

1

Sa
~eff!~ f !

[ (
a,bPDa

@Sa~ f !21#ab, ~A15!

and can be interpreted as the effective overall noise spec
for site a @53#. The quantitysa is given by

s̃a~ f ![Sa
~eff!~ f ! (

a,bPDa

@Sa~ f !21#abs̃b~ f !, ~A16!

and is, roughly speaking, the mean output strain amplitud
site a. Finally,

Da~ f ![ (
a,bPDa

s̃a~ f !* s̃b~ f !H @Sa~ f !21#ab2Sa
~eff!~ f !

3 (
c,dPDa

@Sa~ f !21#ac@Sa~ f !21#dbJ . ~A17!
.

-
f

m

of

The quantityDa is independent ofm andhA(t), and is there-
fore irrelevant for our purposes; it can be absorbed into
normalization constantK in Eq. ~A10!. This unimportance of
Da occurs because we are assuming that there is some s
present. The termDa is very important, however, in situa
tions where one is trying to assess the probability that so
signal ~and not just noise! is present in the outputs of th
detector network. In effect, it encodes the discriminati
power against noise bursts which is due to the presenc
detectors with different noise spectra at one site~e.g., the 2
km and 4 km interferometers at the LIGO Hanford site!. We
drop the termDa from now on.

The probability distribution for the waveform shapes a
sky direction is now given by, from Eqs.~A10!, ~A12! and
~A14!,

P@m,hA~ t !usW~ t !#5Kp~0!~m!p~0!@hA~ t !#e2L8/2,
~A18!

where

L85 (
a51

ns

4 ReE
0

`

d f
u s̃a~ f !2 h̃a~ f !u2

Sa
~eff!~ f !

. ~A19!

Finally, we express this probability distribution directly i
terms of the waveformsh1(t) andh3(t) by substituting Eq.
~A8! into Eq. ~A19!, which gives

L854 ReE
0

`

d f H (
A,B51,3

QAB~ f ,m!@ h̃A~ f !* 2 h̃̂A~ f !* #

3@ h̃B~ f !2 h̃̂B~ f !#1S~ f ,m!J . ~A20!

Here

QAB~ f ,m![ (
a51

ns Fa
A~m!Fa

B~m!

Sa
~eff!~ f !

, ~A21!

h̃̂A~ f ![QAB~ f ,m! (
a51

ns

Fa
B~m! s̃a~ f !e2p i f ta~m!,

~A22!

whereQAB is the inverse matrix toQAB, and

S~ f ,m!5(
a

u s̃a~ f !u22QABh̃̂A~ f !* h̃̂B~ f !. ~A23!

2. Estimating the waveform shapes and the direction
to the source

Equations~A18! and ~A20! constitute one of the main
results of this appendix, and give the final and general P
for m andhA(t). In the next few paragraphs we discuss
implications. As mentioned at the start of the appendix,
are primarily interested in situations where the directionm to
the source is already known. However, as an aside, we
briefly consider the more general context where the direc
to the source as well as the waveform shapes are unkno

Starting from Eq.~A18!, one could use either maximum
likelihood estimators or so-called Bayes estimato
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4582 57ÉANNA É. FLANAGAN AND SCOTT A. HUGHES
@13,54–56# to determine ‘‘best-guess’’ values ofm and
hA(t). Bayes estimators have significant advantages o
maximum likelihood estimators but are typically much mo
difficult to compute, as explained in, for example, Append
A of Ref. @13#. The Bayes estimator for the direction to th
source will be given by first integrating Eq.~A18! over all
waveform shapes, which yields

P@musW~ t !#5Kp~0!~m!D~m!expF22E
0

`

d f S~ f ,m!G ,
~A24!

whereD~m! is a determinant-type factor that is produced
integrating over the waveformshA(t). This factor encodes
the information that the detector network has greater se
tivity in some directions than in others and that, other thin
being equal, a signal is more likely to have come from
direction in which the network is more sensitive. The Bay
estimator ofm is now obtained simply by calculating th
expected value ofm with respect to the probability distribu
tion ~A24!. The simpler, maximum likelihood estimator ofm
is given by choosing the values ofm @and of hA(t)# which
maximize the probability distribution~A18! or, equivalently,
by minimizing the quantity

E
0

`

d f S~ f ,m!. ~A25!

Let us denote this value ofm by mML(sW). Note that the
quantity ~A25! encodes all information about time dela
between the signals detected at the various detector site
is well known, directional information is obtained primari
through time delay information@54#.

In Ref. @25#, Gürsel and Tinto suggest a method of es
mating m from sW(t) for a network of three detectors. Fo
white noise and for the special case of one detector per
the Gürsel-Tinto estimator is the same as the maximum li
lihood estimatormML(sW) just discussed, with one majo
modification: in Sec. V of Ref.@25#, Gürsel and Tinto pre-
scribe discarding those Fourier components of the d
whose SNR is below a certain threshold as the first stag
calculating their estimator.

Turn, now, to the issue of estimating the waveform sha
h1(t) and h3(t). In general situations where bothm and
hA(t) are unknown, the best way to proceed in princip
would be to integrate the probability distribution~A18! over
all solid anglesm to obtain a reduced probability distributio
P@hA(t)usW(t)# for the waveform shapes and to use this
duced probability distribution to make estimators ofhA(t).
However, such an integration cannot be performed ana
cally and would not be easy numerically; in practice simp
estimators will likely be used. One such simpler estimato
the maximum likelihood estimator ofhA(t) obtained from
Eq. ~A18!. In the limit of no prior information about the
waveform shape when the PDFp(0)@hA(t)# is very broad,
this maximum likelihood estimator is simplyĥA(t) evaluated
at the valuemML(sW) of m discussed above.

For BBH mergers, in many cases the directionm to the
source will have been measured from the inspiral portion
the waveform, and thus for the purposes of estimating
er
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merger waveform’s shape,m can be regarded as known. Th
probability distribution forhA(t) given m andsW(t) is, from
Eq. ~A18!,

P@hA~ t !um,sW~ t !#5K8p~0!@hA~ t !#e2L9/2. ~A26!

HereK8 is a normalization constant, andL9 is given by Eq.
~A20! with the termS( f ,m) omitted. The maximum likeli-
hood estimator ofhA(t) obtained from this probability dis-
tribution in the limit of no prior information is again jus
ĥA(t). The formula for the estimatorĥA(t) given by Eqs.
~A15!, ~A16!, ~A21! and ~A22! is one of the key results o
this appendix. It specifies the best-fit waveform shape a
unique function of the detector outputssa(t) for any detector
network.

3. Incorporating prior information

In Sec. IV, we suggested a method of reconstruction
the merger waveform shape, for a single detector, which
corporated assumed prior information about the wavefor
properties. In this appendix, our discussion so far has
glected all prior information about the shape of the wav
forms h1(t) andh3(t). We now discuss waveform estima
tion for a detector network, incorporating prior informatio
for fixed sky directionm.

With a few minor modifications, the entire discussion
Sec. IV can be applied to a detector network. First, the lin
spaceV should be taken to be the space of pairs of wa
forms$h1(t),h3(t)%, suitably discretized, so that the dime
sion of V is 2T8/Dt. Second, the inner product~2.13! must
be replaced by a discrete version of the inner product

~$h1 ,h3%u$k1 ,k3%![4 ReE
0

`

d f QAB~ f ,m!

3 h̃A~ f !* k̃ B~ f !, ~A27!

since the inner product~A27! plays the same role in the
probability distribution ~A26! as the inner product~2.13!
plays in the distribution~4.3!. Third, the estimated wave
forms $ĥ1(t),ĥ3(t)% given by Eq.~A22! take the place of
the measured waveforms in Sec. IV, for the same reason
Fourth, the wavelet basis used to specify the prior inform
tion must be replaced by a basis of the form$wi j

1(t),wkl
3(t)%,

wherewi j
1(t) is a wavelet basis of the type discussed in S

IV for the space of waveformsh1(t), and similarly for
wkl

3(t). The prior information about, for example, the a
sumed duration and bandwidths of the waveformsh1(t) and
h3(t) can then be represented exactly as in Sec. IV. W
these modifications, the remainder of the analyses of Sec
apply directly to a network of detectors. Thus the ‘‘perpe
dicular projection’’ estimator~4.4! and the more general es
timator ~4.12! can both be applied to a network of detecto

4. Gürsel-Tinto waveform estimator

As mentioned in Sec. IV above, Gu¨rsel and Tinto have
suggested an estimator of the waveformsh1(t) and h3(t)
for networks of three detector sites with one detector at e
site when the directionm to the source is known@57#. In our
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notation, the construction of that estimator can be sum
rized as follows. First, assume that the estimator is so
linear combination of the outputs of the independent de
tors corrected for time delays:

h̃̂A
~GT!~ f !5 (

a51

3

wA
a~m!e2p i f ta~m! s̃a~ f !. ~A28!

Here h̃̂A
(GT) is the Gürsel-Tinto ansatz for the estimator, an

wA
a are some arbitrary constants that depend onm. @Since

there is only one detector per site, we can neglect the
tinction between the outputs̃a( f ) of an individual detector
and the outputs̃a( f ) of a detector site.# Next, demand that
for a noise-free signal the estimator reduce to the true wa
forms hA(t). From Eqs.~A1! and ~A8! above, this require-
ment is equivalent to

(
a51

3

wA
a~m!Fa

B~m!5dA
B . ~A29!

There is a two dimensional linear space of tensorswA
a which

satisfy Eq.~A29!. Finally, choosewA
a subject to Eq.~A29! to

minimize the expected value with respect to the noise of
quantity

(
A51,3

E dtuĥA
~GT!~ t !2hA~ t !u2, ~A30!

where ĥA
(GT)(t) is given as a functional ofhA(t) and the

detector noisena(t) by Eqs.~A1!, ~A8! and ~A28!.
It is straightforward to show by a calculation usin

Lagrange multipliers that the resulting estimator is@58#

ĥA
~GT!~ t !5ĥA~ t !. ~A31!

In other words, the Gu¨rsel-Tinto estimator coincides with th
maximum likelihood estimators ofh1(t) and h3(t) dis-
cussed in this appendix in the case of little prior informatio
However, the estimators discussed here generalize
Gürsel-Tinto estimator by allowing an arbitrary number
detectors per site@with the effective output and effectiv
noise spectrum of a site being given by Eqs.~A16! and
~A15! above#, by allowing an arbitrary number of sites an
by allowing one to incorporate prior information about t
waveform shapes.

APPENDIX B: MEASURES OF INFORMATION

In this appendix we substantiate the claims concern
information theory made in Sec. VII of the body of the p
per. First, we argue that the concept of the ‘‘relative info
mation’’ of two PDFs introduced in Eq.~7.2! has the inter-
pretation we ascribed to it: it is the base 2 logarithm of
number of distinguishable measurement outcomes. Sec
we derive the approximations~7.8! and ~7.12!.

Consider first the issue of ascribing to any measurem
process a ‘‘number of bits of information gained’’ from th
process, which corresponds to the base 2 logarithm of
number of distinguishable possible outcomes of the meas
ment. If p(0)(x) is the PDF for the measured quantitiesx
a-
e

c-

s-

e-

e

.
he

g

-

e
d,

nt

e
e-

5(x1,...,xn) before the measurement, andp(x) is the corre-
sponding PDF after the measurement, then the relative in
mation of these two PDFs is defined to be@27#

I 5E dnx p~x!log2F p~x!

p~0!~x!G . ~B1!

In simple examples, it is easy to see that the quantity~B1!
reduces to the number of bits of information gained in t
measurement. For instance, ifx5(x1) and the prior PDFp(0)

constrainsx1 to lie in some range of sizeX, and if after the
measurementx1 is constrained to lie in a small interval o
size Dx, then I' log2(X/Dx), as one would expect. In add
tion, the quantity~B1! has the desirable feature that it
coordinate independent, i.e., that the same answer is obta
when one makes a nonlinear coordinate transformation
the manifold parameterized by (x1,...,xn) before evaluating
Eq. ~B1!. For these reasons, in any measurement process
quantity ~B1! can be interpreted as the number of bits
information gained.

1. Explicit formula for the total information

As a foundation for deriving the approximate formu
~7.8!, we derive in this subsection an explicit formula@Eq.
~B13!# for the total information gain~7.2! in a gravitational
wave measurement. We shall use a basis ofV where the
matrix ~2.10! is unity, and for ease of notation we shall d
note byN the quantityNbins.

First, we assume that the prior PDFp(0)(h) appearing in
Eq. ~7.1! is a function only ofh5r(h). In other words, all
directions in the vector spaceV are taken to be,a priori,
equally likely, when one measures distances and angles
the inner product~2.13!. It would be more realistic to make
such an assumption with respect to a noise-independent i
product like (h1uh2)[*d th1(t)h2(t), but if the noise spec-
trum Sh( f ) does not vary too rapidly within the bandwidth o
interest, the distinction is not too important and our assum
tion will be fairly realistic. We write the prior PDF as@59#

p~0!~h!dNh5
2pN/2

G~N/2!
hN21p~0!~h!dh

[ p̄~0!~h!dh. ~B2!

The quantityp̄(0)(h)dh is the prior probability that the signa
h will have an SNRr~h! betweenh andh1dh. The exact
form of the PDFp̄(0)(h) will not be too important for our
calculations below. A moderately realistic choice isp̄(0)(h)
}1/h3 with a cutoff at someh1!1. Note, however, that the
choice p(0)(h)51 corresponding top̄(0)(h)}hN21 is very
unrealistic. Below we shall assume thatp̄(0)(h) is indepen-
dent ofN.

We next write Eq.~7.1! in a more explicit form. Without
loss of generality we can take

s5~s1,...,sN!5~s,0,...,0!, ~B3!

wheres5r(s). Then, writing (suh)5sh cosu and using the
useful identity
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dNh5
2p~N21!/2

G@~N21!/2#
sin~u!N22hN21dudh, ~B4!

we can write

p~hus!dNh5K1p̄~0!~h!sin~u!N22

3expF2
1

2
~s21h222sh cosu!Gdh du,

~B5!

whereK1 is a constant. If we define the functionFN(x) by

FN~x![
1

2 E
0

p

du sin~u!N22ex cosu, ~B6!

thenK1 is determined by the normalization condition

152K1E
0

`

dh e2~s21h2!/2FN~sh! p̄~0!~h!. ~B7!

We next calculate the PDFp@hur(s)# appearing in the
denominator in Eq.~7.2!. From Bayes’s theorem, this PDF
given by

p@hur~s!#5Kp~0!~h!p@r~s!uh#, ~B8!

wherep@r(s)uh# is the PDF forr~s! given that the gravita-
tional wave signal ish, andK is a normalization constant
Using the fact thatp(suh)}exp@2(s2h)2#, we find using
Eq. ~B4! that

p~suh!dNs5
212N/2

ApG@~N21!/2#
sin~u!N22sN21

3expF2
1

2
~s21h222sh cosu!Gds du.

~B9!

Integrating overu now yields, from Eq.~B6!,

p@r~s!5suh#ds}sN21e2~s21h2!/2FN~sh!ds. ~B10!

Now combining Eqs.~B4!, ~B8!, and~B10! yields

p@hur~s!#dNh5K2p̄~0!~h!e2@r~s!21h2#/2FN@r~s!h#

3sin~u!N22dhdu, ~B11!

where from Eq.~B7! the normalization constant is given b

K25
2G~N/2!

ApG@~N21!/2#
K1 . ~B12!

We can now calculate the informationI total by combining
Eqs.~7.2!, ~B5!, ~B6!, ~B11!, and~B12!. The result is
I total@r~s!,N#52E
0

`

dh p~1!~h!GN@r~s!h#

2 log2 F 2G~N/2!

ApG@~N21!/2#
G , ~B13!

where

GN~x![
xFN8 ~x!

ln 2FN~x!
2 log2 FN~x! ~B14!

and

p~1!~h![2K1p̄~0!~h!e2@r~s!21h2#/2FN@r~s!h#. ~B15!

Equations~B7!, ~B6!, and~B13!–~B15! now define explicitly
the total informationI total as a function of the parametersr~s!
andN and of the prior PDFp̄(0)(h).

2. Approximate formula for the total information

We now derive the approximate formula~7.8! for the total
information. Letrb

25r(s)2/N; we will consider the limit of
larger~s! andN but fixedrb . Our analysis will divide into
two cases, depending on whetherrb.1 or rb<1. We first
consider the caserb.1. In the largeN limit the result for
rb.1 will be independent of the prior PDFp̄(0)(h), which
we assume has no dependence onN.

The first term in Eq. ~B13! is the expected value
^GN@r(s)h#& of GN@r(s)h# with respect to the PDF~B15!.
If we change the variable of integration in this term fromh
to u5h/AN, we find

^GN@r~s!h#&}E
0

`

du p̄~0!~ANu!e2N~rb
2
1u2!/2

3FN~Nrbu!GN~Nrbu!. ~B16!

From Eq.~B6! it is straightforward to show that, in the limi
of largeN,

FN~Nz!'
1

2
eNq~uc!A 2p

Nuq9~uc!u
, ~B17!

for fixed z. Hereq(u) is the function

q~u!5z cosu1 ln sin u, ~B18!

anduc5uc(z) is the value ofu which maximizes the func-
tion q(u), given implicitly by

z sin2 uc5cosuc . ~B19!

We similarly find that

FN8 ~Nz!'
1

2
eNq~uc!A 2p

Nuq9~uc!u
cosuc . ~B20!

It is legitimate to use the approximations~B17! and~B20! in
the integral~B16! since the valueumax(N,rb) of u at which
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the PDFp(1)(Nrbu) is a maximum approaches at largeN a
constantumax(rb) which is independent ofN, as we show
below.

Inserting the approximation~B17! into Eq. ~B16! and
identifying z5rbu, we find that the PDF~B15! is propor-
tional to

exp@NQ~u!1O~1!#, ~B21!

where

Q~u!52
1

2
~rb

21u2!1q~uc! ~B22!

and uc5uc(z)5uc(rbu). From Eqs.~B18! and ~B19! one
finds thatQ has a local maximum at

u5umax5Arb
221 ~B23!

at which pointuc is given by sinuc51/rb . The form of the
PDF ~B21! now shows that, at largeN,

^GN~Nrbu!&'GN~Nrbumax!. ~B24!

Finally, if we combine Eqs.~B13!, ~B17!–~B20!, ~B23! and
~B24! and use Stirling’s formula to approximate theG func-
tions, we obtain Eq.~7.3!.

Turn, next, to the caserb,1. In this case the functionQ
does not have a local maximum, and the dominant contr
tion to the integral~B16! at largeN comes fromh;O(1)
@rather than fromh;AN, u;O(1) as was the case above#.
From Eq.~B6! we obtain the approximations

FN~ANw!5A p

2N ew2/2@11O~1/AN!# ~B25!

and

FN8 ~ANw!5Ap

2

w

New2/2@11O~1/AN!#, ~B26!

which are valid for fixedw at largeN. Using Eqs.~B25!,
~B26!, and~B13!–~B15!, and using Stirling’s formula again
we find that

I total'
1

2
rb

2
*0

`dh p̄~0!~h!exp@2~12rb
2!h2/2#h2

*0
`dh p̄~0!~h!exp@2~12rb

2!h2/2#
.

~B27!
er
M

A

r-
u-

For simplicity we now takep̄(0)(h) to be a Gaussian cen
tered at zero with widthhprior

2 ; this yields

I total'
1

2 F rb
2hprior

2

11~12rb
2!hprior

2 G . ~B28!

From Eq.~7.7!, the parameterrb is given by

rb
2511

r2

Nbins
6

1

ANbins

, ~B29!

where the last term denotes the rms magnitude of the st
tical fluctuations. Since we are assuming thatrb,1, it fol-
lows that rb

2'121/ANbins, and therefore we obtain, from
Eq. ~B28!,

I total'
1

2
min@hprior

2 ,ANbins#. ~B30!

Thus, if hprior&1, the total information gain is&1 also.

3. Approximate formula for the source information

We now turn to a discussion of the approximate formu
~7.12! for the information~7.11! obtained about the source o
the gravitational waves. In general, the measure of inform
tion ~7.11! depends in a complex way on the prior PD
p(0)(h) and on how the waveformh~u! depends on the
source parametersu. We can evaluate the informationI source
explicitly in the simple and unrealistic model where the d
pendence on the source parametersu is linear and where
there is little prior information. In this case the manifold
possible signals is a linear subspace~with dimensionNparam!
of the linear space of all possible signals~which has dimen-
sion N!. The integral ~7.11! then reduces to an integra
analogous to Eq.~7.2!, and we obtain the formula~7.12! in
the same way as we obtained Eq.~7.8!. The result~7.12! is
clearly a very crude approximation, as the true manifold
merger signals is very curved and nonlinear. Nevertheles
seems likely that the formula~7.12! will be valid for some
effective number of parametersNparam that is not too much
different from the true number of parameters on which
waveform depends.
a
tudy

io,
@1# A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gu¨rsel, S.
Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Sp
K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and
E. Zucker, Science256, 325 ~1992!.

@2# C. Bradaschiaet al., Nucl. Instrum. Methods Phys. Res.
289, 518~1990!; also inGravitation: a Banff Summer Institute,
edited by R. Mann and P. Wesson~World Scientific, Sin-
gapore, 1991!.

@3# J. Hough et al., ‘‘GEO600, Proposal for a 600 m Lase
o,
.

Interferometric Gravitational Wave Antenna,’’ 1994~unpub-
lished!.

@4# P. Benderet al., ‘‘LISA, Laser interferometer space antenn
for gravitational wave measurements: ESA Assessment S
Report,’’ 1994.

@5# J. Houghet al., in Gravitational Wave Experiments, proceed-
ings of the Edoardo Amaldi Conference, edited by E. Cocc
G. Pizzella, and F. Ronga~World Scientific, Singapore, 1995!,
p. 50.



h,
.
H
e

na

e

D

.

iat

b

m
.

s

ci

er
he
rs

-
e
ce
or-

t

m

a
a

ol

S

re

ure-
re
er
ady

en-

uld

so
the

-

n de-
he
of
th.

ss.

V.

gy,

do-
ow

of
and
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