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Measuring gravitational waves from binary black hole coalescences.
II. The waves’ information and its extraction, with and without templates
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We discuss the extraction of information from detected binary black (Bi#) coalescence gravitational
waves by the ground-based interferometers LIGO and VIRGO, and by the space-based interferometer LISA.
We focus on the merger phase that occurs after the gradual inspiral and before the ringdown. Our results are
(i) if numerical relativity simulations have not produced template merger waveforms before BBH events are
detected, one can study the merger waves using simple band-pass filters. For BBHs smaller tharvdhout 40
detected via their inspiral waves, the band-pass filtering signal-to-noise ratio indicates that the merger waves
should typically be just barely visible in the noise for initial and advanced LIGO interferoméi¢iie derive
an optimized maximum-likelihood method for extracting a best-fit merger waveform from the noisy detector
output; one “perpendicularly projects” this output onto a function spéggecified using waveletghat
incorporates oufpossibly sketchyprior knowledge of the waveforms. An extension of the method allows one
to extract the BBH's two independent waveforms from outputs of several interferom@tgrg/e propose a
computational strategy for numerical relativists to pursue, if they successfully produce computer codes for
generating merger waveforms, but if running the codes is too expensive to permit an extensive survey of the
merger parameter space. In this case, for LIGO-VIRGO data analysis purposes, it would be advantageous to do
a coarse survey of the parameter space aimed at exploring several qualitative issues and at determining the
ranges of the several key parameters which we desdnbeA complete set of templates could be used to test
the nonlinear dynamics of general relativity and to measure some of the binary’s parameters via matched
filtering. We estimate the number of bits of information obtainable from the merger wakest 10—60 for
LIGO-VIRGO, up to 200 for LISA, estimate the information loss due to template numerical errors or sparse-
ness in the template grid, and infer approximate requirements on template accuracy and spacing.
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PACS numbe(s): 04.80.Nn, 04.25.Dm, 04.30.Db, 95.55.Ym

I. INTRODUCTION AND SUMMARY Gravitational waves from the merger epoch could be rich
with information about relativistic gravity in a highly nonlin-
ear, highly dynamical regime which is poorly understood
With ground-based gravitational-wave observatories sucloday.
as the Laser Interferometric Gravitational Wave Observatory Depending on the system’s mass, some BBH coalescence
(LIGO) [1], VIRGO [2], and GEO60Q 3] expected to be events will be most easily detected by searching for the in-
taking data within the next few years, and with the spacespiral waves, others by searching for the ringdown, and oth-
based Laser Interferometer Space Antefid&A) [4-6] in ers by searching for the merger. In paper | of this sdffés
planning and development, much effort is currently goingwe analyzed the prospects for detecting BBH events using
into understanding gravitational-wave sources and associatedese three different types of searches, for initial and ad-
data analysis issues. One potentially interesting and imporanced LIGO interferometers and for LISA. Once a BBH
tant source is the coalescences of binary black h@8s1s). event has been detected, the location of the three different
Such systems will be detectable to large distances by groungihases of the waves in the data stream will be known to a
based interferometefgactors of the order of 10 further than fair approximation, although it will not necessarily be the
binary neutron star systemsand over a wide range of case that all three phases will be detectable.
masses. If the birthrates of BBH systems are not too low, Waveform models or templates for the three epochs will
they could be the most commonly detected type of compadbe useful both for searches for BBH events using matched
binary gravitational-wave source. filtering, and also for interpreting and extracting information
The evolution of BBH systems and their emitted gravita-from the observed waveforms. At present, there is a reason-
tional waves can be roughly divided into three epdéfijsan  ably good theoretical understanding of the waves generated
adiabaticinspiral, in which the evolution is driven by radia- during the inspiral and the ringdow{v,10|, whereas the
tion reaction, terminating roughly at the innermost stable cir-merger is very poorly understood: no merger templates exist
cular orbit[8,9]; a violent, dynamianerger and a finalring- as yet. Theoretical understanding of merger dynamics will
downin which the emitted radiation is dominated by the eventually come from numerical relativity. One rather large
=m=2 quasinormal mode of the final Kerr black hole. effort to compute the dynamics of BBH mergers is the

A. Gravitational waves from binary black holes
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American Grand Challenge Alliance, an NSF funded col- The third scenario consists of matched filtering the data
laboration of physicists and computer scientists at eight instream with merger templates in order to measure the param-
stitutions [11,17]; similar efforts are underway elsewhere. eters of the binary and to test general relativity. This will
Modeling BBH mergers is an extremely difficult task; the certainly be feasible if one has a complete set of merger
numerical relativists who are writing codes for simulating templateqstate(iv)]. It may also be feasible when informa-
BBH mergers are beset with many technical difficulties.  tion about BBH mergers is “limited in practice[state(iii )]:
When the first BBH coalescences are detected, our thedt may be possible to perform several runs of the supercom-
retical understanding of BBH mergers could be in one ofputer code, concentrated in the appropriate small region of
four possible stategt) No information:supercomputer simu- parameter space compatible with one’s measurements from
lations have not yet successfully evolved any BBH mergersthe inspiral and ringdown waves, in an effort to match the
and so no information about merger waves is availafile. ©observed waveforms.
Information limited in principle: some information about
BBH mergers is available, but numerical relativists are un- B. What can be learned from BBH waves

able to produce arbitrary merger templates. For example, SU- piterent types of information will be obtainable from the

percomputer codes might only be able to simulate Some Spggee different phases of the gravitational-wave signal. If the
mql class of BBH mergerée.g., t_hose with van|sh|_ng initial inspiral and ringdown phases are strong enough to be mea-
spins or equal mass BBbisor it could be that it is not gy rape they will be easier to analyze than the merger phase,
POSS,'b'e to PrOduce accurate waveforms, ,bUI more q,ual'taénd the information they yield via matched filtering will be
tive information about the mergdsuch as its durationis — seq a5 “prior information” in attempting to analyze the
available. (iii) Information limited in practice:accurate  nerger Matched filtering of the inspiral will allow measure-

waveforms can be obtained for fully general BBH mergers,nants of the(redshifted masses of the two black holes, the
but each run of the codes to produce a template is SO €xpefjraction to the source, the arrival time, direction of orbital

sive in terms of computer time and cost that only a smallynq,1ar momentum, and orbital phase at some fiducial fre-

number of representative template shapes can be computggiency the luminosity distance to the source, and some in-
and stored(The total number of template shapes required tmafion about the black holes’ spins. See, for example,
cover the entire range of behaviors of BBH mergers is likelyRefs.[lB—la for estimates of anticipated measurement ac-
to be in the range of thousands to millions or mp(t&.) Full curacies for these parametefs9]. From the ringdown
information: a complete set of templates has been computeqlaves, one can measure the mikand dimensionless spin

and is available for data analysis. This possibility Seem?)arametea of the final merged black hole, with an accuracy
rather unlikely in the time frame of the first detections of of roughly[16,17]

BBH coalescences.

Concomitant to these four states are three possible sce- 6(1—a)t%
narios for data analysis of the waves from the merger epoch. Aa= (SIN) oo
The first possibility{corresponding to stat@) abovd is that fingdown
numerical computations provide no input to aid
gravitational-wave data analysis. With no templates to guide 9120
the interpretation of the measured waveform, it will not be A_Mz 2(1-a)
possible to obtain information about the BBH source or M (S/N)ingdown’
about strong-field general relativity from the merger waves.

One’s goal will simply be to measure as accurately as pos-

sible the merger waveform’s shape. For this waveform shapehere &/N)ingdown IS the ringdown’s measured matched fil-
measurement, one should make use of all possible prior irtering signal-to-noise ratigSNR). (However, note that for
formation obtainable from analyses of the inspiral and/olow mass BBH events which are detected via their inspiral
ringdown signals, if they are detectal§fee Sec. | B beloyw  signals, the ringdown waves will be detectable only for

Second stateq(ii) and(iii) abovd, if only a few represen- ~1% of the event$20]).
tative simulations and associated templates are available, one If merger templates are available, one could hope to use
might simply perform a qualitative comparison between thematched filtering to measure the system’s parameters and to
measured waveform and templates in order to deduce qualiest general relativity. If one has no prior information about
tative information about the BBH source. For instance, simuthe detected BBH system, one would simply filter the merger
lations might demonstrate a strong correlation between thdata with all merger templates available, potentially a large
duration of the mergefin units of the total mass of the number. However, if the inspiral and/or the ringdown signals
system and the spins of the binary’s black holes; a measurehave already been measured, some information of the type
ment of the merger’s duration would then give some infor-discussed in the previous paragraph will be available. In such
mation about the binary’s spins, without having to find acases the total number of merger templates needed will be
template that exactly matched the measured waveform. Inreduced—one need consider only templates whose param-
this scenario, when reconstructing the merger waveforneters are commensurate with the inspiral and ringdown mea-
from the noisy data, one should use any prior informationsurements. Such inspiral and ringdown information will be
from the measured inspiral and/or ringdown waves, and innvaluable if our understanding of the merger waves is “lim-
addition the prior information(for example the expected ited in practice,” as discussed in Sec. | A.
range of frequencigone has about the merger waveforms’ The primary goal when one attempts to match a merger
behaviors from representative supercomputer simulations. template with gravitational-wave data will be to provide a

1.9



4568 EANNA E. FLANAGAN AND SCOTT A. HUGHES 57

test of general relativity rather than to measure parameters. the noisy data stream. In Sec. IV we use Bayesian statistics
good match between the measured waveform and a numetind the framework of maximum likelihood estimation to
cal template would constitute a strong test of general relativsketch an optimized method for performing such a recon-
ity in the most extreme of domains: highly nonlinear, rapidly struction. The method is based on a “perpendicular projec-
dynamical, highly non-spherical spacetime warpage. Ition” of the observed signal onto an appropriate function
would also provide the oft-quoted unambiguous detection ogpace that encodes all of ofmossibly sketchyprior knowl-
black holes.(Such an unambiguogs detecti_on. could a|30edge about the waveforms. We argue that the best type of
come from a measurement of quasi-normal ringiMgclose  «pasis functions” to use to specify this function space are
match between measured and predicted waveforms for BBI},5,elets, functions which allow simultaneous localization in

general relativity. The inspiral portion of the waveform for
neutron-star—neutron-star mergers will strongly constrain th
dimensionless parameter of Brans-Dicke theory21]. Un-

fortunately, the most theoretically natural class of generali
zations of general relativity compatible with known experi-
ments (“scalar-tensor theories” [22]) may not be

constrained by BBH measurements, since black holes, unlik

neutron stars, cannot have any scalar hair in such theorl%1Setwork is an extension and generalization of a method pre-

[23]. ) " ;
_ viously suggested by Gsel and Tintq 25].
Matched filtering of the merger waves could also be use- Our waveform reconstruction algorithm comes in two

IEI "t1 tmleasur;r;lg sotr;:e of.the syste;ns gai;]arr}gtelrst;lsulfh Persions: a simple version incorporating the above men-
€ total massvi ‘or the Spin parametex of the final blac tioned “perpendicular projection,” described in Sec. IV A,

hole [24]. These measurements could provide additional in-,

¢ i bout th d ab that obtai bIand a more general and powerful version that allows one to
ormation about the source, over and above that oblainabl ;4 in mere prior information, described in Sec. IV B. If

nique in detail using the language of wavelets, and also show
fhat the operation of “perpendicular projection” onto the

function space is a special case of Wiener optimal filtering.
n Appendix A, we describe an extension of the method to a
network of several gravitational-wave detectors, which al-
lows one to reconstruct the two independent polarizations
Fﬁ(t) and hy(t) of the merger waves. This method for a

the fact that it must match up smoothly to the measured
inspiral waveform, etc.; in such cases the reconstructed
waveform differs from the band-pass filtered data stream.
In Sec. V, we discuss the types of information that repre-
The principal purposes of this paper dirgto suggest a sentative supercomputer simulations could provide, short of
data analysis method that can be used in the absence of teproviding a complete set of merger templafes., in states
plates to obtain from the noisy data stream a “best-fit” (ii) and (iii) abovd, that would be useful for data analysis.
merger waveform shape ariil) to provide input to numeri- Such qualitative information about BBH merger waveforms
cal relativity simulations by deriving some requirements thatwould be useful in two ways: as prior information for signal
numerical templates must satisfy in order to be as useful asconstruction and as a basis for comparisons with the recon-
possible for data analysis purposes and by highlighting thetructed waveforms in order to make qualitative deductions
kinds of information that such simulations can provide, otherabout the BBH source, as mentioned above.
than merger templates, that can aid BBH merger data analy- We turn next to issues concerning the use of numerical
sis. relativity templates in data analysis. Using matched filtering,
We first consider analysis of a detected merger withoutemplates can be used to make measurements of the binary’s
templates from numerical relativity. In this case, observerphysical parameter§masses, vectorial spin angular mo-
will likely resort to simple band-pass filters to study the menta, etg. which are independent of any such measure-
merger waves. The first question to address in this context iments from the inspiral and ringdown waves, and to make
whether the merger signal is likely to even\asible thatis, quantitative tests of general relativity. These measurements
whether the signal will stand out above the background noisand tests will be possible with modest accuracy with LIGO-
level in the band-pass filtered detector output. In Sec. Il weVIRGO and with extremely high accuracy with LIS&or
estimate band-pass filtering signal to noise rat®NRS for  which the merger matched filtering SNRs are typicatig0*
the merger waves using the results of paper I. We find that7]). To be useful for such purposes, the merger templates
for BBHs that have been detected via their inspiral wavesmust satisfy certain accuracy requirements. In Sec. VI we
these band-pass filtering SNRs are of order unity for initialderive an approximate accuracy criteridfy. (6.2)] that nu-
and advanced LIGO interferometers; thus the merger signaherical relativists can use to ensure that the waveforms they
will typically be just barely visible above the noise if at all. produce are sufficiently accurate. This formula is derived
Only the somewhat rarer, close events will have easily visfrom two requirements: first, that template inaccuracies cause
ible merger signals. For LISA, by contrast, we estimate that loss in event rate of no more than 3% when searching for
band-pass filtering SNRs will typically be 400, and so the merger waves with matched filtering, and second, when mea-
merger waves will be easily visible. suring the BBH parameters, that the systematic errors due to
When templates are not available, one’s goal will be totemplate inaccuracies be smaller than the statistical errors
reconstruct as well as possible the merger waveform fronfrom detector noise.

C. Extracting the waves’ information:
Our analyses, suggested tools, and results
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In Sec. VIl we re-address the issue of template accuracy o
and also the issue of the spacing of templates in parameter p2=(h|h)=4f df .
space in the construction of a grid of templates, using the 0 S(f)
mathematical machinery of information theory. In informa-

tion theory, a quantity called “information” can be associ- On several occasions we shall be interested in finite
oo : n§tretches of data of lengih, represented as a vector of num-

gers instead of as a continuous functionAlf is the sam-
pling time, this vector is

Ih(f)|2

(2.9

of the number of distinguishable measurement outcome
[26,27]. We specialize the notions of information theory to
gravitational-wave measurements, and define two different s=(s,... g'\bins) 2.5
types of information(i) a “total” information |5, the base
2 logarithm of the total number of waveform shapes thatwhere Ny,=T/At, S'=9[tgait (j —1)At], 1<j<Ngins,
could have been distinguished by the measurement(igral  andt,,is the starting time. The quantity};,sis the number
“source” information |4, the base 2 logarithm of the of independent real data pointsumber of bingin the mea-
total number of waveform shapes that could have been disured signal. The gravitational wave sigrialt) and the
tinguished by the measuremeand that could have been noisen(t) can similarly be represented in this way, so that
generated by BBH mergef(se., the number of BBH sources s=h-+n. We adopt the geometrical viewpoint of Dhurandhar
that the measurement could have distinguighed and Schut730], regardings as an element of an abstract
We give precise definitions dfy andlouce[EQs. (7.2 vector spacd/ of dimension\;,s, and the sample points
and (7.11] in Sec. VII. In Appendix B, we derive simple as the components sfon a time domain basi®; , .. ey, }
analytic approximations fargg andl soyce €Xpressing them ¢ /.
in terms of the merger’'s matched filtering SNIRthe num-
ber of independent data point¥},;,s, in the observed signal, Noins
and the number of parameterg,,am 0N Which merger tem- S= 2 se. (2.6
plates have a significant dependence. In Sec. VII C, we esti- =1

mate the 10S$! sourcein source information that would result r5ying 4 finite Fourier transform of the data stream can be
from template inaccuraciefEq. (7.20]; demanding that regarded as a change of basis\of Thus, a frequency do-

dlsource=1 then allows us to re-derive the criterion for the a5y pasigd,! of V is given by the finite Fourier transform
template accuracy requirements obtained in Sec. VI. We also

estimate the loss in informatiofl ¢, that would result Nbins

from having insufficiently closely spaced templates in a tem- dy= E g exp{27ijK/Nying» (2.7
plate grid[Eq. (7.24)], and we deduce an approximate crite- =1

rion for how closely templates must be spaced. where — (Njne— 1)/2<k= (N 1)/2. The corresponding

frequencied,=k/T run from — 1/(2At) to 1/(2At) [31].
Il. NOTATION AND CONVENTIONS More generally, if we band-pass filter the data stream

In this section we introduce some notation that will be down to a frequency interval of lengthf, then a stretch of
used throughout the paper. We use geometrized units jRand-pass filtered data of duratidnwill have

which Newton'’s gravitational consta@ and the speed of Ao = 2TAf 2.8
light ¢ are unity. For any function of tima(t), we will use bins ‘
a tilde to represent that function’s Fourier transform: independent real data points. In this case also we regard the
. set of all such stretches of data as an abstract linear 3pace
a(f ): f dtezw”ta(t). (21) of dimension/\/bins.
—o ~On an arbitrary basis of, we define the matrices;; and
> by
The output strain amplitudg(t) of a detector can be written o -
(n'nl)=3", (2.9
s(t)=h(t)+n(t), (2.2 _ _
I;3k=s,; (2.10

whereh(t) is the gravitational wave signal anqt) is the

detector noise. Throughout this paper we will assume, fof-€., the matriced” andX are inverses of each other. In Eq.
simplicity, that the noise is stationary and Gaussian. Thd2.9) the angular brackets mean expected value. On the time
statistical properties of the noise determine an inner producdomain basige; ,....ey; } we have

on the space of wavefornigt), given by _
SK=Cu(tj—t), (2.10)

0 *
(hylhy)—4 Ref gr T Tha(f) o o wheret; =ty (j— 1)AL, andCo(7)=(n(H)n(t+ 7)) is the
0 Sn(f) noise correlation function given by
see, for example, Ref$28,13. In Eq. (2.3), S,(f ) is the
one-sided power spectral density of strain naig¢g [29].
For any waveformh(t), the matched filtering SNR is
given by We define an inner product on the spatdy

C(7)= f;df co§ 27 7]Sy(F ). (2.12
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(h1|h2):Fijhi1hj2- (2.13 space of signal parameters. In Appendix A, we will use ar-

o _ _ _ rowed vectors §) to denote elements of the linear space of
This is a discrete version of the inner prod@t3): the two  the output of a detector network.

inner products coincide in the limikt—0, for waveforms

which vanish outside of the time interval of IengTh[lG] IIl. ANALYSIS OF MERGER WAVES WITHOUT
Throughout this paper we shall use interchangeably the TEMPLATES: VISIBILITY OF THE MERGER
notationsh(t) andh for a gravitational waveform. We shall AFTER BAND-PASS FILTERING

also for the most part not need to distinguish between the _ _ _
inner products(2.3) and (2.13. Some generalizations of ~ We first consider merger wave data analysis when
these notations and definitions to a network of several detednatched filtering is not possible. One’s primary goal in this

tors are given in Appendix A. case will be to reconstruct a “best-guess” estimate of the
For any detector outpig=h+n, we define merger wavefornp32] from the measured data. If sor(eer-
haps very feywsupercomputer templates are available, it may
p(9=+(99), (2.14  then be possible to interpret the reconstructed waveform and
obtain some qualitative information about the source.
which we call themagnitudeof the stretch of data. From One very simple procedure that could be used to estimate
Egs.(2.9 and(2.13 it follows that the waveform shape is simply to band-pass filter the data
stream according to our prior prejudice about the frequenc
(p(5)%) = p*+ Noins, (219 pand of the merger wavgs. ngéver, even after sucﬂ banc)j/—

pass filtering, the merger signal may be dominated by detec-
tor noise and may not be visible.
In this section, we estimate the visibility of the merger
272\ _ 2 , signal after band-pass filtering by calculating band-pass fil-
V([Ap(9)%1%) = V4p®+ 2Niins (2.19 tering SNRs using the results of R¢T]. A signal will be
whereA p(s)2=p(s)2—(p(s)?). Thus, the magnitudp(s) is  Visible if its band-pass filtering SNR is large compared to
approximately the same as the matched filtering SNR ~ Unity [7]. We consider only signals that are detected via their
the limit P>\/N_bins (large SNR squared per frequency bin mspwal waves, i.e., low-mass BBH systems. We f_|rst con-
but is much larger thap when p< A The quantityp(s) S|de_r th_e visibility pf the last few cy_cles of the mspl_ral. _By
will be of most use in our information theory calculations in continuity, one might expect that if the last few inspiral
Sec. VIl and Appendix B. c_ycles are visible, then at least the .early par@ qf_t.he merger
The space&/ equipped with the inner produ¢2.13 forms signal WI|.| be as well. We then consider the visibility of the
a Euclidean vector space. We will also be concerned witd"erger signal itself.
sets of gravitational waveforns( ) that depend on a finite o o
numbern,, of parameterg)=(4%,...,6"). For example, in- A. Visibility of inspiral waveform
spiral waveforms form a set of this type, wheieare the If a BBH event has been detected via its inspiral signal, it
parameters describing the binary source. We will denote byollows that the matched filtering inspiral SNR must &
S the manifold of signal$(6), which is a submanifold of [33]. It does not follow, however, that the inspiral is visible
dimensionn,, of the vector spac¥. We will adopt the con- in the data stream. For neutron-star—neutron-star binaries the
vention that Roman indicesj,k, ... will run from 1 to Myins,  reverse is usually the case: the amplitude of the signal is less
and that a symbol such @$ will denote some vector in the than the noise, and the signal would be invisible without
spaceV. Greek indicesy, B, y will run from 1 ton,, and a  matched filtering.
vectorv® will denote a vector field on the manifolf. The The dominant harmonic of the inspiral waveform can be
inner product(2.13 induces a natural Riemannian metric on written as
the manifoldS given by

where p? is the matched filtering SNR squaré2l4) of the
signalh, and that

h(t)=hamdt)cog (t)], (3.1

)dﬁad@ﬁ. (2.17  where the amplituden,{t) and instantaneous frequency
f(t) [given by 27f(t)=dd/dt] are slowly evolving. For

We shall denote this metric b,z and its inverse by @8, sych queforms,.the SNR_ squared obtained us.ing.band—pass

relying on the index alphabet to distinguish these quantitie§iltering is approximately given by the matched filtering SNR

from the quantitie$2.9) and(2.10. For more details on this Squaredoer cycle[cf. Eq. (2.10 of Ref. [7]]:

geometric picture, see, for example, Ref3]. ( s

ah
6%

ah

dSzZ( W

We shall use the wordetectorto refer to either a single
interferometer or a resonant mass antenna and the phrase
detector networko refer to a collection of detectors operated
in tandem. Note that this terminology differs from that hamd t(f )1]?
adopted in, for example, R€f28], where a detector network hd ) |
is called a detector.

Finally, we will use boldfaced vectors lika to denote In Eq.(3.2), t(f ) denotes the time at which the frequency is
either vectors in three dimensional space, or vectors in thé, andh,,,{(f )=VfS,(f ). Note that the band-pass filtering
Npinsdimensional spac¥, or vectors in then, dimensional  SNR (3.2) is evaluated at a specific frequency; when one

2 ( S) 2
N band-pass N matched, per cycle

(3.2
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discusses matched filtering SNRs, an integral over a freeters, given in Eq(4.3) of Ref.[7]. The band-pass filtering
guency band has been performed. We next insert the value &N\R for advanced interferometers is
Namd t(f )]? for the leading-order approximation to the in-

spiral waves and take an rms average over source orienta- S 1 1Gpd[(1+z)M ]2 39

tions and polarizationg34,7], which yields N . 7 D(2) 20M ' (3.9
and-pass

2 4] 10/3¢4/3
(§ = am 3[(1+22)M] jf ) (3.3  and the SNR obtained by matched filtering the inspiral signal
N band-pass 25D(2)"himdf) is

Here,M is the binary’s total masg its cosmological red- S 1Gpd[(1+2)M 5/6

shift, andD(z) its luminosity distance. We have also special- N ~ Sm7 | (3.10
matched D ( Z) 20M o

ized to equal masses.

In Eq. (4.2) of Ref.[7] we introduced an analytic formula
for a detector’s noise spectrum, which, by specialization
its parameters, could describe to a good approximation eith

Otfor (1+z2)M=s37My [7]. With the assumption that
érS/N)matched%& we find

an initial LIGO interferometer, an advanced LIGO interfer- S (1+2)M 53
ometer, or a space-based LISA interferometer. We now in- (—) = 6{— (3.11)
sert that formula into Eq(3.2), and specialize to the fre- band-pass 20Mo
n
auency for (1+2)M=<37Mg. Thus the last few cycles of BBH in-
Ym spirals with (1+2z)M <37M should typically be just barely
f:fmerge:m1 (34 visible above the noise for advanced LIGO interferometers,
depending on the binary’s total mass.
where y,=0.02. The frequencymeeiS approximately the Although we do not explore here larger mass BBHs, in
location of the transition from inspiral to merger, as esti-many cases for these systems also the last few cycles of
mated in Ref[7]. This yields inspiral will be visible; this can be seen by combining Eq.
(3.2 with Figs. 4 and 5 of Ref[7].
( S)Z A7 (1+2)M 1%y, 2t a5 For LISA, Eq.(3.5) combined with Eq(4.4) of Ref. [7]
band-pass 5D(Z)2h2m ’ . ylelds
wherea, h,, and f,, are the parameters used in REf] to (E) _ {1 Gpi (1+2)M]*? (3.12
describe the noise curve. Equati¢h5) is valid only when N band-pass D(2) || 10°Mg '

the redshifted mass (1z)M is smaller thany,/af,.
For initial LIGO interferometers, appropriate values of for (1+z)M=<10°M, with larger values for 1M ,=<(1
hm, fm and a are given in Eq.(4.2 of Ref. [7]. Inserting +2z)M=3Xx10'M,. Individual cycles of inspiral should be

these values into Ed3.5) gives clearly visible with LISA.
5/2
§ ~1 1[200 Mpc} (1+7)M (3.6) B. Visibility of merger waveform
N "1 D(z 20M ' . .
band-pass (@) © Consider now the merger waveform itself. In Rief] we

This result is valid for (Fz2)M=<18M . Now, the SNR showed that

obtained by matched filtering the inspiral signal is approxi-
S 1 S
mately[7] = ~—— | = , (3.13
5/6 N band-pass, merger \/Nbins N matched, merger
S 200 Mpc | (1+2z)M
N ~2. D(2) 20M ' (3.7 where N,ins=2TAf is as discussed in Sec. Il. We also esti-
matched

mated[Eqg. (3.26 of Ref.[7]] that, for the merger waves,
and the SNR(3.7) must be=6 [33], since, by assumption,
the inspiral has been detected. By eliminating the luminosity VMNpins™~5, (3.19
distanceD(z) between Eqgs(3.6) and (3.7) we find that the . o .
band-pass filtering SNR for the last few cycles of inspiral foralthough there is a large uncertainty in this estimate.

detected binaries satisfies Consider the band-pass filtering SNR for the merger for
events that have been detected via matched filtering of the
S (1+z)M 53 inspiral. For initial LIGO interferometers, combining Egs.
NI = E{W (3.8 (B4) and (B10) of Ref.[7] Egs. (3.13 and (3.14), and the
band-pass threshold for detectiof33],

Therefore, the last few cycles of the inspiral should be indi-

vidually visible above the noise for BBH events witit%, (E) =6, (3.15

=M=20M detected by initial LIGO interferometers. matched, inspiral

We now repeat the above calculation with the values of
hm, fm, anda appropriate for advanced LIGO interferom- yields
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(s) _ . J1+zM
N =0. 20M o

band-pass, merger

5/3 this section’s waveform-estimation method to an arbitrary
(3.19 number of detectors, which yields a method of reconstructing
the two waveformd, (t) andhy(t).

for (1+z2)M=18M, . Repeating this analysis for advanced The use of maximum likelihood estimators has been dis-
LIGO interferometerdusing Eqgs.(B5) and (B11) of Ref. cussed extensively by many authors in the context of gravi-

[7]] yields tational waves of a known functional form, depending only
on a few parameteff28,13,14,38,3pP Here we consider their
S (1+z)M]53 application to wave bursts of largely unknown shape. The
N =0. 20Mo (3.17  resulting data analysis methods which we derive are closely

band-pass, merger related mathematically to the methods discussed previously

for (1+2)M=37M, [35]. [28,13,14,38,3P but are considerably different in opera-

The SNR value$3.16) and(3.17) indicate that for typical tional terms and in implementation.
inspiral-detected BBH systems wil <20M, (initial inter- o .
ferometers or M<40M, (advanced interferometérsthe A. Derivation of data analysis method
merger signal will not be easily visible in the noise, and that  Suppose our prior information includes the fact that the
only relatively rare, nearby events will have easily visible merger waveform lies inside some time interval of duration
merger signals. This conclusion is somewhat tentative bet and inside some frequency interval of lengtti. We de-
cause of the uncertainty in the estimates\gf,s and of the  fine Aj;,=2TAf; cf. Sec. Il above. We assume that we are
energy spectra discussed in Réf]. Also the actual visibility  given a stretch of data of duratii >T and with sampling

will probably vary considerably from event to event. How- time At<1/(2Af ). These data lie in a linear spate of
ever, our crude visibility argument suggests that the prosgimension

pects for accurately recovering the merger waveform are
good only for the stronger detected merger signals. Niine=T'1AL. 4.0

This conclusion only applies to low mass BBH systems
which are detected via their inspiral waves. For higher mas3hus, Ny, is the number of independent data points, and
systems which are detected directly via their merger and/al;s is the number of independent data points in that subset
ringdown waves, the merger signal should be visible abovef the data which we expect to contain the merger signal.
the noise after appropriate band-pass filteficfg Figs. 4 and  Note that these definitions modify the conventions of Sec. I,
5 of [7], dividing the matched filtering SNRs presented therewhere the dimension of was denotedVy,,s; we will use,
by VANuins~5). Moreover, most merger events detected byunmodified, the other conventions of Sec. II.
LISA will have band-pass filtering SNRs 1, as can be seen In our analysis, we will allow the basis of the vector space
from Fig. 6 of Ref.[7], and thus should be easily visible.  V to be arbitrary. However, we will occasionally specialize

to the time-domain and frequency-domain bases discussed in

IV. ANALYSIS OF MERGER WAVES WITHOUT Sec. Il. We will also consider wavelet bases. Wavelet bases
TEMPLATES: A METHOD OF EXTRACTING can be regarded as any set of functiomg(t) such that
A BEST-GUESS WAVEEORM Wij(t) is approximately localized in time at the timg
FROM THE NOISY DATA STREAM =tsarit (i/n7) T’ and in frequency at the frequenct

=(j/ng)(At) " 1; their advantage is that they simultaneously

In the absence of templates we would like to reconstruckncode time domain and frequency domain information. The
from the data a best-guess estimate of the merger wavefornhdex i runs from 1 ton; andj from —(ng—1)/2 to (ng

Any waveform-reconstruction method should use all avail-—1)/2. Clearly the number of frequency bimg and the

able prior knowledge about the waveform. We will hopefully nymper of time binsi; must satisfynsng=A},., but oth-

know from representative simulations and perhaps from th%rwise they can be arbitrary; typicaIIyT~nF~\/J\/_{)-
. 1] Ins

measured_lnsp_lral or ringdown the following: the approxi- Also, the functionsw;; usually all have the same shape,
mate starting time of the merger waveform, the fact that it

starts off strongly(smoothly joining on to the inspirpland (Vo[ Fo(T—t.
eventually dies away in quasinormal ringing, and its approxi- Wiy (el ()], 42
mate bandwidth and duration. When both the inspiral and thﬂ)r some functionp_ For our considerations, the Shap&;ﬂs
ringdown are strong enough to be detectable, the duration gfot of critical importance. Note that families of wavelets
the merger waveform will be fairly well known, as will the discussed in the literature are often overcomplete; here we
frequencyf,, of the ringdown onto which the merger wave- are considering bases of the vector specevhich by defi-
form must smoothly join. nition are simply complete.

In this section, we suggest a method for reconstructing the | et p©(h) be the probability distribution functioPDF)
waveform which uses such prior information, based on thghat summarizes our prior information about the waveform.

technique of maximum likelihood estimatidi$6,37. We A standard Bayesian analysis shows that the PDIF gizen
shall describe this method in the context of a single detectotthe measured data streamis [28,16]

However, in a few years there will be in operation a network

of detectors(both interferometer§1—3] and resonant mass p(h|s)=ICp(°)(h)exq—l"ij(h‘—s‘)(hj—si)/Z], 4.3
antennag and from the outputs of these detectors one would

like to reconstruct the two polarization componehts(t) where the matrixI';; is defined in Eq.(2.10 and K is a
and h,(t) of the merger waves. In Appendix A we extend normalization constant. In principle this PDF gives complete
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information about the measurement. Maximizing the PDFof U. At the very least, we would like our choice to effect
gives the maximum likelihood estimator for the mergertruncation of the measured data stream in both the time and
waveform h. This estimator,h(s), will in general will be  frequency domains, down to the intervals of time and fre-
some non-linear function of. The effectiveness of the re- quency in which we expect the merger waveform to lie. Be-
sulting waveform estimator will depend on how much prior cause of the uncertainty principle, such a truncation cannot
information about the waveform shape can be encoded in thee done exactly. Moreover, for fixed specific intervals of
prior PDF p(®). time and frequency, there are different, inequivalent ways of
One of the simplest possibilities is to taRE) to be con-  approximately truncating the signal to these intenjdls].
centrated on some linear subsp&tef the space/ and to be  The differences between the inequivalent methods are essen-
approximately constant inside this subspace. A multivariatéially due to aliasing effects. Such effects cannot always be
Gaussian with widths very small in some directions and veryneglected in the analysis of merger waveforms, because the
broad in others would accomplish this to a good approximaduration T~10M —-100M [7] of the waveform is probably
tion. For such choices of the prior POK®®, the resulting only a few times larger than the reciprocal of the highest
maximum likelihood estimatofthe functionh=h(s) that frequency of interest.
maximizes the PDR4.3)] is simply the perpendicular pro- ~ The simplest method of truncating in frequency, band-
jection P, of sinto U: pass filtering, is to a good approximation a projection of the
type (4.4) that we are considering. Lek [cf. Eq.(2.7)] be a
Npest.(S) = Pu(9), (4.4 frequency domain basis . For a given frequency interval
[feha— Af/I2f et AT/2], let U be the subspace oV
spanned by the elemends with |f.,—f;|<Af/2, i.e., the
ny span of the basis elements that correspond to the given fre-
Pu(s)= > u”(uj|s)ui. (4.5  quency interval. Then the projection operatiBy is to a
ij=1 moderate approximation just the band-pass filter:

where

Here,ul,...,unU is an arbitrary basis dfJ, n is the dimen-
sion of U, u'luj= 8} andujx= (u;|uy).

The method of filtering4.4) is a special case of Wiener
optimal filtering: it is equivalent to matched filtering with

templates consisting of linear combinations of the basis func- h h . hat th is tak |
tionsu; . (The equivalence between maximum likelihood es-Where the notatioi” means that the sum is taken only over

timation and Wiener optimal filtering in more general con-the appropriate range of frequencies. The relatio®) fol-
texts has been shown by Echeverf#0].) To show this, lows from the fact that the basik is approximately orthogo-

define a family of template waveforms that depends on pal@! With respect to the noise inner prody2t13: different
rametersa, ..., by frequency components of the noise are statistically indepen-
S

dent up to small aliasing corrections of the order of
ny ~1/(fepad ). Thus, if oura priori information is that the

h(t;a))= > aju;(t), (4.6) signaI.Iies. within a.certain frequgncy interval, then the m_axi-
=1 mum likelihood estimate of the signal is approximately given

) ) ) by passing the data stream through a band-pass filter.
whereu;(t) are the functions of time corresponding to the ~ Tryncating in the time domain, on the other hand, is not a

basis elements; of U. Now the SNR for any template(t)  projection of the typeg4.4). If our prior information is that
with the data strears(t) is the signal vanishes outside a certain interval of time, then
S (hls) si_mply discar'ding the Qata outsi'de of this intgrval will 'nqt
—[h(t)]= ——. (4.7  give the maximum likelihood estimate of the signal. This is
N V(h|h) because of statistical correlations between sample points just
inside and just outside of the time interval: the measured data
The best-fit signal given by the optimal filtering method is stream outside the interval gives information about what the
the template which maximizes the SNR.7), i.e., the tem-  nojse inside the interval is likely to be. These correlation
plate h(t;éj) such that effects become unimportant in the limitf,,— >, but for
BBH merger signalg f, is probably=<20[7]. The correct
maximum likelihood estimator of the waveform, when our
prior information is that the signal vanishes outside of a cer-
tain time interval, is given by Eq(4.5 with the basis
{ul,...,unu} replaced by the appropriate subset of the time-

’
Nbins

> sjdjle' =sld;, 4.9

j=1

Py

S - S
NIN(Ga)]= max Slhtay)] (4.9

ap,...an,

From Egs.(4.5—(4.7) it follows that Py (s) =h(t;a;). Thus, _ _

computing the perpendicular projectié.5) of s into U is ~ domain basige;,....ey; }.

equivalent to matched filtering with the template family = Our suggested choice of subspddeand corresponding

(4.6). specification of a filtering method is as follows. Pick a wave-
To summarize, the maximum likelihood estimatdr4) let basisw;; of the type discussed abovéThe filtering

gives a general procedure for specifying a filtering algorithmmethod will depend only weakly on which wavelet basis is

adapted to a given linear subspadeof the space of signals chosen. Then, the subspadd is taken to be the span of a

V. We now discuss some general issues regarding the choissitable subset of this wavelet basis, chosen according to our



4574 EANNA E. FLANAGAN AND SCOTT A. HUGHES 57

prior information about the bandwidth and duration of theof several key parameters. Below we discuss several such
signal. The dimension df} will be ny=MN,,=2TAf. issues, and describe how an understanding of them may im-

In more detail, the filtering method would work as fol- pact data analysis.
lows. First, band-pass filter the data stream and truncate itin One of the most important questions is, what is the ap-
time, down to intervals of frequency and time that are severaproximate duration of the merger signal, and how does it
times larger than are ultimately required, in order to reducgjepend on parameters such as the initial spins of the black
the number of independent data poiNfg;,sto a manageable holes and the mass ratio? The range of merger signal dura-
number. Second, for the wavelet basig of this reduced tjons will be an important input to algorithms for searching
data set, calculate the matix;; ;= (w;;|w;/j-). Recall that  for merger wavesthe “noise-monitoring” technique de-
the indexi corresponds to a timg and the index] to @  scribed in Refs[7, 42]) and algorithms for reconstructing the
frequencyf; [cf. the discussion preceding E@.2)]. Third,  waveform from the datésee Sec. IV, particularly for cases
pick out the sub-blocky;;; ;. of the matrixw;; ,;» for which  in which the ringdown and/or inspiral signals are too weak to
the timest; andt;; and frequencied; and f;, lie in the be seen in the data stream. Moreover, the duration of the
required intervals. Invert this matrix to obtaw' i, The ~ Wwaveform(together with its bandwidffepproximately deter-
best-fit waveform is then given by mines the amount by which the SNR from band-pass filtering

is lower than the matched filtering SNR obtained with
D — merger templatefcf. Eq. (3.13]. If it turns out that the du-
Nbest= > 2 w T (gwi g wg (4.10  ration is long(or, more relevantly, if\;;,sis greater than our
v estimate of~30), then the merger SNR will be badly de-
where 3’ means the sum over the required time and fre_grad_ed _if templat_es are not available. Although the n_oise-
quency intervals. monitoring technlq_ue W|_II _I|kely be useful for detecting
merger waves, it will be difficult to reconstruct the waveform
if Muins IS too large.

A similar question is the frequency bandwidth in which
most of the merger waves’ power is concentrated. In R@f.

A waveform reconstruction method more sophisticatedve assumed that when one excises in the time domain the
than (4.4) can be obtained by generalizing the above analyringdown portion of the signal, the remaining signal has no
sis. Suppose that the prior PO (h) is a general multi-  significant power at frequencies above the quasi-normal ring-
variate Gaussian ih, such as ing frequency of the final Kerr black hole. However, this

_ assumption may not be valid; if it is not, signal searches and
) 1 (hij—h;;)? waveform reconstruction methods will need to incorporate
p(h)<ex 2 ; T2 41D this high-frequency power. As with the signal’s duration, the
N range of bandwidths of merger waveforms will be an input to
whereh'l are the expansion coefficients of the sighabn algorithms for reconstructing the merger waveform from the
some fixed wavelet basig; . By making suitable choices of Noisy data(see Sec. 1.

the parameterh_ij and a;;, such a PDF could be chosen to Another |ssued|st ht?lw much enedr_g)t/ IdS _ra?r;ateq |r(1j the
encode the information that the frequency content of the Sigl_”nerger. compared fo the energy radiated In the ringdown.
nal at early times is concentrated Néag.g, that the signal Operationally, this question reduces to asking what propor-

joins smoothly onto the inspiral waveform, that at the end offion of the total wayeform prpduced ,durmg the cqalesc_ence
merger the dominant frequency component is that of quasl(-:an be accurately fit by the nngdo_vvn s decaying sinusoid. In
normal ringing, etc. For any such prior PDF, it is straightfor- Ipaper : \(/jve l{irgugd t_?r‘?t if the st[;:ns Ofdthtf] bla%Kt hIOIGS alre
ward to calculate the corresponding maximum likelihood es-argé and aligned with one another an € orbital anguiar

timator. If the prior PDF has expected valugand variance- momentum, then the system has too muqh angular momen-
covariance matri®,, then the estimator is tum for it to be lost solely through the ringdown, so that

ringdown waves should not dominate the merger. On the
_ry-loy-17-1 ry-1 -1 other hand, if the spins of the black holes are small or not
Moest () =[ 242 T [2 77 5420 ™ o). (412  aligned, most of thepradiated energy might well come out in
' ringdown waves. It may turn out that the ratio of energy
Such an estimator could be calculated numerica”y_ radiated in the merger to that in the ringdown is small for all
but a small set of merger parameters, which could have a
great influence on BBH event searches.
It would be useful to know if the waveforms contain a
strong signature of an “innermost stable circular orbit”
In this section we propose a computational strategy fofISCO) [8,9,43, as has commonly been assumed. In the ex-
numerical relativists to pursue, if they successfully producdreme mass ratio limip<M, there is such an orbit; when
computer codes capable of simulating BBH mergers, but ithe smaller black hole reaches it, there is a sharp drop in the
running such codes is too expensive to permit an extensiveadiated energy per unit logarithmic frequend$/d In f
survey of the merger parameter space. In this case, for daid4]. However, there may not be such a sharp feature in the
analysis purposes, it would be very useful to do a coarsdE/d In f plot in the equal-mass case, especially if the time
survey of the BBH parameter space, with the aim of answerscale over which the orbital instability operates is compa-
ing several qualitative questions and determining the rangeable to the radiation reaction time scale.

B. Extension of method to incorporate other types
of prior information

V. USING INFORMATION PROVIDED BY
REPRESENTATIVE SUPERCOMPUTER SIMULATIONS
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Finally, it would be useful to know how much of the resenting this set of parameters by a single toleranisean
merger can be described as higher order quasi-normal ringpversimplification but is adequate for the purposes of our
ing (QNR) modes. By convention, we have been calling thatdiscussion.One can then iterate one’s calculations varyng
phase of the coalescence which is dominated by the mogt order to obtain sufficiently accurate templates, using the
slowly damped] =m=2 mode the ringdown phase, but be- following standard type of procedure: First, calculate the
fore this mode dominates, QNR modes with different valuegemplate h,,(t,e). Second, calculate the more accurate
of | and/orm are likely to be present. After the merger hastemplateh,(t,e/2). Third, make the identifications
evolved to the point when the merged object can be accu-

rately described as a linear perturbation about a stationary h(t)=hnun(t,e/2),

black hole background, there might or might not be any sig-

nificant subsequent period of time before the higher order oh(t)=hpyn(t,e/2) —hyynft,e),

modes have decayed away so much as to be undetectable. If (6.3

simulations predict that higher order QNR modes are stron
for a significant period of time, then these higher order QN
modes should be found by the normal ringdown search of th
data stream; no extra search should be needed.

nd insert these quantities in E@.1) to calculateA. This
llows one to assess the accuracy of the temigig(t,e).
inally, iterate until Eq(6.2) is satisfied.

VI. ACCURACY REQUIREMENTS B. Derivation and meaning of accuracy criterion

FOR MERGER WAVEFORM TEMPLATES The required accuracy of numerical templates depends on

h . f th . | how and for what purpose they are used. As discussed in the
For the remainder of the paper, we consider data ana YSftroduction, merger templates might be used in several dif-

of merger waves using supercomputer templates. These tefsant \yays:(i) They might be used as search templates for
plates will unavoidably contain numerical errors: if the oo searches using matched filtering. Such searches will
physical waveform flor some source it; 6), where the  oohaniy not be feasible, at least initially, as they would
components off=(¢-,...,6") are the various parameters rqoqire the computation of an inordinately large number of
upon which the waveform depends, then numerical simulagempjates (ii) For BBH events that have already been de-
tions will predict the waveformh(t;#)+dh(t;6). One  ecteq via matched filtering of the inspiral or ringdown
would like the numerical errosh(t; ) to be small enough waves, or by the noise-monitoring detection technifjué2]

not to have a significant effect on signal sear_ches, parametgbmied to the merger waves, the merger templates might be
extraction or any other types of data analysis that might bgseq for matched filtering in order to measure the binary’s

carried out using the template waveforms. In this section Wearameters and test general relativitii) If only a few,
suggest an approximate rule of thuifittyy. (6.2)] for estimat-  rgpresentative supercomputer simulations and their associ-

ing when numerical errors are sufficiently small, and discusS$iteq waveform templates are available, one might simply

its meaning and derivation. perform a qualitative comparison between the measured
o _ _ waveform and templates in order to deduce qualitative infor-
A. Accuracy criterion and implementation mation about the BBH source. In this section we estimate the

The accuracy criterion can be simply expressed in term&ccuracy requirements for the first two of these uses of
of the inner product introduced in Sec. Il abolwhich is ~ Merger templates. _ o
defined by Eq(2.3) or alternatively by Eqs(2.10—(2.13]: Consider first signal searches using matched filtering. The
for a given templaté(t), our rule of thumb is that the nu- €xPected SNRp obtained for a waveforrh(t) when using a
merical errorsh(t) should be small enough that the quantity templateh+(t) is [45]

1 (Sh|sh) ~ (hlhy)
A= 6.1 p=——— (6.4
2 (hlh) €. V(hrlhq)
satisfies Substitutingh(t) = h(t) + sh(t) into Eqg. (6.4 and expand-
ing to second order ih, we find that the fractional loss in
A=0.01. (6.2 SNR produced by the numerical erréh(t) is

(The fractional loss in event detection rate in signal searches

is ~3A, and so the value 0.01 corresponds to a 3% loss in
event rate; see Sec. VIBIf the errors at each data point
h;=h(t;) are uncorrelated, then E¢6.2) translates into a where
fractional accuracy for each data point of about 0\0%; s

If the errors add coherently in the integrd.l), the frac-

tional accuracy requirement will be more stringent.

It should be straightforward in principle to ensure that
numerical templates satisfy E¢6.2). Let us schematically Note that the quantityA,; is proportional to ¢h,|ésh,),
denote a numerically generated templatdags(t,e), where  wheresh, is the component ofh perpendicular td. Thus,

e represents the set of toleranc@gid size, size of time a numerical error of the formah(t)«h(t) will not contribute
steps, etg.that govern the accuracy of the calculati0Rep- to the fractional loss in SNR. This is to be expected,

5
f=A1+0[(5h)3], (6.5

1 [(sh|sh)  (8h|h)?
2| (h[h)  (h[M)Z]
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since the quantity6.4) is independent of the absolute nor-  The magnitudé sh,|| depends on details of the number of
malization of the templatels;(t). parameters and on how the wavefoin(t,d) varies with

The event detection rate is proportional to the cube of thehese parameters. However, a strict upper bound is
SNR, and hence the fractional loss in event rate resulting

from template inaccuracies is approximatel§pdp [45]. If | shyll<] shl. (6.12
one demands that the fractional loss in event rate be less i )
than, say, 3% one obtains the criteriot6] If we combine Egs(6.1), (6.10 and(6.12, we obtain
2
&
A;<0.01. (6.7) Asﬁ. (6.13

From Eq;.(6.1) and(6.6), AlgA.’. and so th? co.n_diti(')tBJ) Inserting reasonable estimates fpande (p=7, e=1) we
IS Iess. stringent than the cond|t.|()6\.'2). The justification for recover the criterior§6.2) [47]. In Sec. VII we give an alter-
imposing the more stringent criterid.2) rather than(6.7)  |\54ive derivation of Eq(6.13 using information theory.
derives from the use of templates for parameter extraction. The valuep=7 leading to the criteriot6.2) is appropri-

We how tu_rn to a discussion of this issue. ate for ground based interferometdid. However, much

In principle, one could hope to measure all of the 15higher SNRs are expected for LISA; see, e.g., R&f.Thus,
pgr'ame:lers on whm? the meirger wavefor.n;]s depemld by co \umerical templates used for testing relativity and measuring
bining the outputs of several detectors with a complete bank, .- \eters with LISA data will have to be substantially more

of templates(although in practice the accuracy With W.hiCh accurate than those used with data from ground-based instru-
some of those 15 parameters can be measured is not likely Ments

be very goodl In the next few paragraphs we derive an ap-

proximate condition omA [Eqg. (6.13] which results from

demanding that the systematic errors in the measured valudd:- NUMBER OF BITS OF INFORMATION OBTAINABLE
of all the parameters be small compared to the statistical FROM THE MERGER SIGNAL AND IMPLICATIONS
errors due to detector nois@/Ne note that one would also FOR TEMPLATE CONSTRUCTION

like to use matched filtering to test general relativity with In information theory’ a quantity called “information”
merger waves; the accuracy criterion that we derive for patanalogous to entropycan be associated with any measure-
rameter measurement will also approximately apply to testgent process: it is simply the base 2 logarithm of the number
of general relativity. i of distinguishable measurement outconji26,27]. Equiva-
Recall that we write the waveform d&xt; ). Let 6%, 1 lently, it is the number of bits required to store the knowl-
<a=n,, be the best-fit values ai“ given by the matched- edge gained from the measurement. In this section we spe-
filtering process. The quantitie#* depend on the detector Cialize the notions of information theory to gravitational
noise and are thus random variables. In the high SNR limitvave measurements, and estimate the number of bits of in-

the variables#® have a multivariate Gaussian distribution formation which one can gain in different cases.

with (see, e.g., Ref.13])
A. Total information gain
<5ba5{9B>:§aﬁ, (6.9 First consider the situation in which templates are un-
available. Suppose that our prior information describing the
signal is that it lies inside some frequency band of lenyth
and inside some time interval of duratidn We denote by
| ota) the base 2 logarithm of the number of waveformthat
are distinguishable by the measurement, that are compatible
with our prior information, and that are compatible with our
measurement of the detector output's magnitpds [48].
éh). (6.9 Note that the vast majority of thesew® waveforms are
completely irrelevant to BBH mergers: the merger signals
are a small subsetthe manifoldS) of all distinguishable
From Egs.(6.8) and (6.9), in order to guarantee that the waveforms with the above characteristics. The quatity,
systematic error in each of the parameters is smaller thacharacterizes the information gain in a measurement when
some numbek times that parameter’s statistical error, we we do not have prior information about which waveforms are
must have relevant. Note also that, quantifies the information
gained from the measurement about the merger waveform
|| 8hy||2=(8hy| 6h))<&2. (6.10 shape, but in the absence of templates, we do not learn any-
thing about the BBH source.

Here sh, is the component oBh parallel to the tangent A precise definition of the total information galips is as
space of the manifold of signat discussed in Sec. II. It is follows. Let T and Af be a priori upper bounds for the

where §6%=§*—(6%) and the matrix2*# is defined after
Eq. (2.17). The systematic erroA 6“ in the inferred values
of the parameter9* due to the template errafh can be
shown to be approximately

Angzﬂtﬁ ﬂ
J6P

given by durations and bandwidths of merger signals, an¥lbe the
vector space of signals with duratieaT inside the relevant

oh\ ah frequency band. This vector spatkhas dimensionVy,s
5h=E“ﬁ( oh W) FYIE (6.1)  =2TAf. Let p(9(h) be the PDF describing our prior infor-
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mation about the gravitational-wave signa9], and let The number of distinguishable signals in this large hyper-

p(h|s) denote the posterior PDF fbrafter the measurement, sphere will be approximately the ratio of the two volumes

i.e., the PDF forh given that the detector output & A (7.5 and(7.6); the base 2 logarithm of this ratio is the quan-

standard Bayesian analysis shows thét|s) will be given ity (7.3).

by Equation(7.3 expresses the information gain as a func-
tion of the magnitude of the measured detector ougpMte

p(h|s)=Kp'®(h)exd —(s—h|s—h)/2] (7.)  now re-express this information gain in terms of properties

of the gravitational-wave signal. For a giverh, Eqs.(2.15

where K is a normalization constanfl16]. Finally, let and(2.16 show that the detector output’s magnituges)

pLh|p(s)] be the PDF oh given that the magnitude afis  will be approximately given by

p(s). We definel 5 to be

.D(S)Zmpz"'-/\[binsi VNVbins (7.7)
h

ItotaIEf dhp(h|s)log, % (7.2 Here p?=|h||? is the SNR squared2.4) that would be
p

achieved if matched filtering were possiblg templates

) o ) o ) were availablg We usep as a convenient measure of signal
By this definition, | is the relative informationof the  gyength; in this context, it is meaningful even in situations
PDFs p[h|p(s).] and p(h|s) [27]. In Appendix B we ShO_W where templates are unavailable and matched filtering cannot
that the quantity(7.2) in fact represents the base 2 logarithm pe carried out. The last term in E€7.7) gives the approxi-

of the number of distinguishable wave shapes that coulghate size of the statistical fluctuations )2, We now
have been measured and that are compatible with the magypstitute Eq(7.7) into Eq. (7.3 and obtain

nitudep(s) of the data strearf¥8]. Thus, one learnk;, bits

of information about the waveforrh when one goes from 1 I NVyins
knowing only the magnitudp(s) =|d| of the detector output Itota|=§ Niins 10Go[ 1+ p?/ Npind| 1+ 0O N )
to knowing the actual detector outpsit bins
We also show in Appendix B that in the limit of no prior 1
information other tham andAf, we have 10 H (7.9
\/Nbins

1
Immzi Niins 10G5[ p(8)2/ Myingd + O[IN Myind. (7.3 Also, the condition(7.4) for the applicability of Eq.(7.3),
when expressed in terms pfinstead ofp(s), becomes

The formula(7.3) is valid in the limit of largeN,,s for fixed p> 1
p(9)?/ Myins, @and moreover applies only when +

Nbins B \/Nbins

which will be satisfied with high probability whem
> N4 [50]. In the regimep<Ni., the condition(7.4) is

see below for further discussion of this point. . - )
There is a simple and intuitive way to understand thetyp|cally not satisfied and the formuld.3) does not apply.

. - . we show in Appendix B that in this case the information gain
result(7.3). Fix the gravitational wavefornh, considered as (7.2) is usually very small, depending somewhat on the prior
a point in theMV;,sdimensional Euclidean spate What is i y very » 4ep 9 P

(0) -
measured is the detector outmit h+n, whose location in E)[rDrEsp th(g)iﬁfg?m(;?igtr?xiir?ﬂc]:; t22n|a?BeHinm§1rgerre V\i/a\;e
V is displaced fromh. The direction and magnitude of the ) 9 9 gim

< 1./4 I 1 (0) i
displacement depend upon the particular instance of tthb'nS if the prior PDFp™™(h) is very sharply peaked. For

noisen. However, if we average over an ensemble of noiseexample, when one considers measurements of binary neu-

realizations, the displacement due to the noise is in a randofio" Star inspirals with advanced LIGO interferometers, the

direction and has rms magnitud,m (since on an appro- information gain in the measurement is large even though

; ; e
priate basis each component mthas rms value )1 There- typically one will have p<A'pjns, because we have very
fore, all points{h’} lying inside a hypersphere of radius

good prior information about inspiral waveforms.
JNpins centered orh are effectively indistinguishable from As an example, a typical detected BBH event might have
each other. The volume of such a hypersphere is

a merger SNR op~ 10, andN,s might be 30[7]. Then,
Eq. (7.9 tells us that~3x10°~2% signals of the same
—— A magnitude could have been distinguished; thus the informa-
CViind Nbing o, (7.9 tion gained is~32 bits. More generally, for ground based

interferometers we expegt to lie in the range 5p=<100

whereC,, _is a constant whose value is unimportant. When[7], and therefore 10 bitsl o= 120 bits, and for LISA we

we measure a detector outpaivith magnitudep(s), the set  expectp to typically lie in the range 18sp=<10° so that

of signalsh that could have given rise to an identical mea-200 bitss | 4,=400 bits.

suredp(s) will form a hypersphere of radius p(s) and vol-

ume B. Source information gain

=0, (7.9

p(9)? Nyins>1; (7.4

Ny Consider next the situation in which a complete family of
CNbinsp (5)7bn. (7.6 accurate theoretical template waveforni#) is available for



4578 EANNA E. FLANAGAN AND SCOTT A. HUGHES 57

the merger. Without templates, we gaijp, bits of informa- smaller tham,. This will be the case if the waveform de-
tion about the shape of the waveform in a measuremenpends only very weakly on some of the parametéfs
With templates, some—but not all—of this information can Equation(7.12) is only valid when\aran<Npins. FOr BBH
be translated into information about the BBH source. Formergers we expeVp,n=15, which from Eq.(7.12 pre-
instance, suppose in the example considered above that thécts thatl s, lies in the range~10 bits to ~70 bits for
number of distinguishable waveforms that could have com&NRsp in the range 5-100the expected range for ground
from BBH mergers and that are distinguishable in the detechased interferometef§]) and~100 bits to~ 200 bits forp
tor noise is 2° (This number must be less that the total in the range 19-10 expected for LISA7].
number ~232 of distinguishable waveform shapes, since
waveforms from BBH mergers will clearly not fill out the C. Loss of source information due to template inaccuracies
entire function spac® of possible waveforms.In this ex- or to sparseness in the lattice of templates
ample, by identifying which template best fits the detector
output, we can gain-25 bits of information about the BBH
source(e.g., about the black holes’ masses or spivige will
call this number of bits of informatiohs,,..e clearly | source
<l o1a @lways.

. What of the remainind ota— | sourcePItS Of information(? h(6)=h(6)+ én(0), (7.13
bits in the above exampfe If the detector output is close to
one of the template shapes, this closeness can be regardedvadsereh(d) denotes the true waveform;(6) the numerical
evidence in favor of the theory of gravitgeneral relativity ~ template, andh(6) the numerical error. Clearly, the numeri-
used to compute the templates; so thg— | sourcePits can be  cal error will reduce the informatiofv.11) one obtains about
viewed as information about the validity of general relativity. the source. To make an estimate of the reduction, we model
If one computed templates in more general theories of gravthe numerical error as a random process with
ity, one could in principle translate tho3¢,— | source LIS
into a quantitative form and obtain constraints on the param- (ohioh)=Cj, (7.19
eters entering into the gravitational theory. However, with
only general-relativistic templates at one’s disposal, the in
formation contained in thBg— | sourcebits will simply result
in a qualitative confirmation of general relativity, in the

As discussed in Sec. VI, templates will contain unavoid-
able numerical errors. We now analyze how such errors af-
fect the source information gained, and use this analysis to
infer the maximum allowable template error. We write

where for simplicity we take’;; =\I'j; for some constank.
Herel';; is the matrix introduced in Eq2.10. The expected
value of (5h|sh) is then given by, from Eq(2.13),

sense that one of the general relativistic templates will fit the ((8h|5h))=Si(5h; 5h;)
data well. e
A precise definition ofl i, is as follows. Letp(ds) — ST = AN
denote the probability distribution for the source parameters Y bins (7.15
0 given the measurement This PDF is given by a formula '
analogous to Eq.7.1) [16]: where we have used E(.9). We can write\ in terms of the
quantity A discussed in Sec. VI by combining Ed8.1) and
p( 0|S) = ]Cp(o)( 0) eX[{ —(s— h(0) | s—h( 0))/2]’ (7.15, yielding
(7.10
2
wherep(©)(6) is the prior PDF for@ andK is a normaliza- A=2A j\l;b' . (7.16
Ins

tion constant. Lep[ €| p(s)] be the posterior PDF fof given

that the magnitude of the measured signah(s). Then we The informationl .,,,,.swhich one obtains when measuring

define with inaccurate templates can be calculated by treating the
o sum of the detector noiseand the template numerical error
|Soume§f dép( 4 s)log, M ] (7.1)  oh as an effective noise(®™, This effective noise is charac-
pLAp(s)] terized by the covariance matrix
The number of bits(7.11) gained about the source will (ni(eﬁ)n}eff)>=l“ij+)\l“ij. (7.19

clearly depend on the details of how the gravitational wave-

forms depend on the source parameters, on the prior exrhus, in this simplified model, the effect of the numerical
pected ranges of these parameters, etc. In Appendix B werror is to increase the noise by a factdt+\. The new
argue that to a rather crude approximatiog,ceshould be  information gainl .,,.is therefore given by Eq7.12 with

given by the formuld7.8) with MV, replaced by the number p replaced by an effective SNR', where
of parametersVyaam 0N which the waveform has a signifi-

cant dependence: i, PP

(7.18

1
~Z 2
! source™ 2 Noaram10Gz[ 1+ p*/ Nparani. (7.12 If we now combine Eqgs(7.12, (7.16 and (7.18, we find
that the loss in information due to template inaccuracy,
Note that the quantityVp,am Should be bounded above by ,
the quantityn, discussed in Sec. Il, but may be somewhat Ol sourcé™ | source™ I sourcer (7.19
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is given by detected BBH events. A complete bank of templates could
be used to implement a matched filtering analysis of merger

S| _ 2( p? Nparan1)A+O(A2) (7.20 data, which would allow measurements of the binary’s pa-
source™ P Noaranit P°/\ Noins B rameters and tests of general relativity in a strong field,
highly dynamic regime. Such matched filtering may also be
To ensure thabl source= 1 bit, we therefore must have possible without a complete bank of templates, if iterative
1IN 402\ N supercomputer simulations are carried out in tandem with
A=< ( parar P blﬂSﬂ)_ (7.2  data analysis. A match of the detected waves with such tem-
P P Noara plates will be a triumph for the theory of general relativity

Thi dition i ¢ . £ th diti and an unambiguous signature of the existence of black
6 '15 C%n tion 'S a mgr_e gccur\zilelversmn o (T cor:j oMy p)es, Qualitative information from representative supercom-
(6.13 that was derived in Sec. VI. It approximately reducesy, yor simulations will also be useful, both as an input to

tp I?q..(6.123 1;c\)[r typ|ca|' BBIj\/events(except In t?\? ur;reahs- algorithms for extracting the merger waveform’s shape from
tic limit p“<Nparan), SINCE€Nparani~10 and 18 Mins=100  the noisy interferometer data stream and as an aid to inter-

[7]. . . ) reting the observed waveforms and making deductions
Turn next to the issue of the required degree of fineness bout the waves' source

a template lattice, that is, how close in parameter space SUC- \ye haye derived, using several rather different conceptual

cessive templates must t_)e to one another. We pa_ramete”%?arting points, accuracy requirements that numerical tem-
the fineness by a dimensionless paramelgy: the lattice is 55105 "must satisfy in order for them to be useful as data
required to have the property that for any possible true signal v sis tools. We first considered matched filtering signal
h(@), there exists some templat¢d*) in the lattice with searches using templates; here the loss in event rate due to
template inaccuracies is simply related to the degradation in
(h(o)[h(6")) = (7.22 the SNR, and leads to a criterion on template accuracy. Ap-
V((O)[h(0)(h(&)|h(6)) ' proximately the same criterion is obtained when one de-
mands that the systematic errors in parameter extraction be
The quantity &4 is called the minimal matcp5]. Sup-  small compared to the detector-noise induced statistical er-
pose that one defines a metric on the spdocef templates  rors. Finally, we quantified the information that is encoded in
using the norm associated with the inner prod@&i3. It  the merger waveforms using the framework of information
then follows from Eq.(7.22 that the largest possible dis- theory, and deduced how much of the information is lost due
tanceD ., between an incoming sign&l(@) and some re- to template inaccuracies or to having insufficiently many

~ Egrid -

scaled templatedh( 6*) with A>0 is templates. We deduced approximate requirements that tem-
plates must satisf{in terms both of individual template ac-
D max= V2&griap, (7.23  curacy and of spacing between templaiesorder that all of

. . ) ) the waveform’s information can be extracted.
wherep is the matched filtering SNR.4) of the incoming The theory of maximum likelihood estimation is a useful
signal. , _ , _ starting point for deriving algorithms for reconstructing the
We can view the discreteness in the template lattice agrayitational waveforms from the noisy interferometer out-
roughly equivalent to an ignorance on our part about they; |n this paper we have discussed and derived such algo-
location of the manifoldS of true gravitational-wave signals ithms in the contexts both of a single detector and of a

between the lattice points. The maximum distance any COfaeqyork of several detectors; these algorithms can be tailored
rect waveformh(6) could be away from where we may think 4 pyild in many different kinds of prior information about
it should be(where our guess is for example obtained byine waveforms.

linearly extrapolating from the nearest points on the laltice
is of orderD,,. We can crudely view this ignorance as
equivalent to a numerical err@ih in the templates of mag- ACKNOWLEDGMENTS
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The grid finenesssyiq should be chosen to ensure that

Sl source IS SMall compared to unity, while also taking into

account that the fractional loss in event detection rate fo

signal searches due to the coarseness of the grid will be

=<3eqiq; See Sec. VI B above and Refd5, 46 APPENDIX A: WAVEFORM RECONSTRUCTION
WITH A DETECTOR NETWORK

VIIl. CONCLUSIONS . . . N
In this appendix we describe how to extend the filtering

Templates from numerical relativity for the merger phasemethods discussed in Sec. IV above from a single detector to
of BBH coalescences will be a great aid to the analysis oft network of an arbitrary number of detectors. The underly-
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ing principle is again simply to use the maximum likelihood  Turn, now, to the relation between the gravitational wave
estimator of the waveform shape. We also explain the relasignalh,(t) seen in theath detector and the two independent
tionship between our waveform reconstruction method angbolarization components, (t) andh(t) of the waves. Let
the method of Grsel and Tinto[25]. Appendixes A1 and x, be the position and, the polarization tensor of thath
A2 below overlap somewhat with analyses by Fifi].  detector in the detector network. By polarization tensor we
Finn uses similar mathematical techniques to analyze meanean that tensad, for which the detector’s output,(t) is
surements of a stochastic background and waves of welgiven in terms of the waves’ transverse traceless strain tensor
understood form with multiple detectors, applications whichh(x,t) by
are rather different from ours.

We start by establishing some notation for a detector net- ha(t) =da:h(xy,1), (AB)

work; these notation and conventions follow those of Appen- ] )
dix A of Ref. [13]. The output of such a network can be where the colon denotes a double contraction. A gravita-

Sy . tional wave burst coming from the direction of a unit vector
represented as a vects(rt)—[sl(t),...,snd(t)], whereny is

) _ _ m will have the form
the number of detectors, argj(t) is the strain amplitude
read out from theath detector{52]. There will be two con- h B h
tributions to the detector outp&(t)—the detector network (X’t)_A:+,X A(t+m-x)d;, (A7)
noise n(t) (a vector random processand the true . " _
gravitational-wave signai(t): wheree,, andgm are a basis for t_he transverge tracelesBs ten-
sors perpendicular tan, normalized according t@{;:em
() =Rt +A(t). (A1) =258, Combining Eqs(A6) and(A7) and switching to the
frequency domain using the conventitth?) yields
We will assume that the detector network noise is stationary — A= it r(m)
and Gaussian. This assumption is not very realistic, but un- ha(f)=Fa(myha(f)e = (A8)
derstanding the optimal method of waveform reconstructior\uNh re th ntiti
with this idealized assumptions is an important first step to- ere the quantities
wards more sophisticated waveform reconstruction algo- FA(m)Eeﬁ] -d (A9)
rithms adapted to realistic detector noise. With this assump- a e
tion, the statistical properties of the detector network noisgor A=+ %, are detector beam-pattern functions for #te

can be described by the auto-correlation matrix detector{34] and 7,(m)=m-x, is the time delay at thath
detector relative to the origin of coordinates.
Cn(7)ap=(Na(t+ 7)Np(1)) —(na(t+ 7))(Np(1)), (A2)

where the angular brackets mean an ensemble average or a 1+ Derivation of posterior probability distribution

time average. Twice the Fourier transform of the correlation we now construct the PDP[m,h. (t),h.(t)|s(t)] for

matrix is the power spectral density matrix the gravitational waves to be coming from directionwith
waveformsh, (t) and hy(t), given that the output of the
sh(f)ab=zf dre2™'7C (1) ,p. (A3)  detector network is(t). Let p@@(m) andp@[h,(t)] be the

prior probability distributions for the sky positiom (pre-
sumably a uniform distribution on the unit spheasd wave-
The off-diagonal elements of this matrix describe the effectgorm shaped,(t), respectively. A standard Bayesian analy-
of correlations between the noise sources in the various de&sis along the lines of that given in Rdfl6] and using Eq.
tectors, while each diagonal elemey(f),, is just the usual (A4) gives
power spectral density of the noise in thth detector. We

assume that the functior®,(f),, for a#b have been mea- PLm,ha(t)|s(t)]=Kp @ (m)p @[ ha(t)]
sured for each pair of detectors. R
The Gaussian random proces&) determines a natural xexd —(s—h|s—h)/2], (A10)

inner product on the space of functiong&), which general-
izes the single-detector inner prody2t3). The inner prod-
uct is defined so that the probability that the noise takes

specific valueﬁo(t) is

whereK is a normalization constant artlis understood to
?e the function oim andh,(t) given by (the Fourier trans-
orm of) Eq. (A8).
We next simplify Eq.(A10) by reducing the argument of
IR . the exponential from a double sum over detectors to a single
p[n=ngle=e” (Nolno)’2 (A4)  sum over detector sites. In the next few paragraphs we carry
o out this reduction, leading to EqA18) and (A19) below.
It is given by We assume that each pair of detectors in the network comes
in one of two categoriesii) pairs of detectors at the same
SRy — F e * —17abfy detector site, which are oriented the same way, and thus
(glh)=4Re fo AT ga(T )T [SH(H) 71 he(F). - (AS) share common detector beam pattern functiE@(sm) (for
example the 2 km and 4 km interferometers at the LIGO
See, e.g., Appendix A of Ref13] for more details. Hanford site, or (ii) pairs of detectors at widely separated
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sites, for which the detector noise is effectively uncorrelatedThe quantityA , is independent ofn andh,(t), and is there-
Under this assumption we can arrange for the mag¥ ) fore irrelevant for our purposes; it can be absorbed into the
to have a block diagonal form, with each block correspond-normalization constarit in Eq.(A10). This unimportance of

ing to a detector site, by choosing a suitable ordering ofA , occurs because we are assuming that there is some signal
detectors in the list (1,.,ng). Let us denote the detector present. The termd , is very important, however, in situa-

sites by Greek indices,f,y..., so thate runs from 1 tong,
whereng is the number of sites. Lé®, be the subset of the
detector list (1...,ngq) containing the detectors at théh site,
so that any sum over detectors can be re-written

Ns

anZdl:E 2

a=1 aeD,

(A11)

tions where one is trying to assess the probability that some
signal (and not just noiseis present in the outputs of the
detector network. In effect, it encodes the discriminating
power against noise bursts which is due to the presence of
detectors with different noise spectra at one &itg., the 2
km and 4 km interferometers at the LIGO Hanford sit&/e
drop the termA , from now on.

The probability distribution for the waveform shapes and

Thus, for example, foa 3 detector network with 2 detectors SKY direction is now given by, from EqgA10), (A12) and

at the first site and 1 at the secor®;={1,2 and D,

={3}. Let F4(m) denote the common value of the beam

pattern functions(A9) for all the detectors at siter. Let

S,(f ) denote theath diagonal sub-block of the matrix

S,(f ). Then if we define

A=(s—h|s—h) (A12)
[the quantity which appears in the exponential in &4.0)],
we obtain, from Eq(A5),

Ns

A=, 4Re

a=1

“df S [Sa)*—Fa)*]
0 a,beD,
X[Sa(F) 13 sp(F) —hp(F)]. (A13)

Next, we note from Eq(A8) that the value oh a Will be
the same for all detectors at a given sitelf we denote this

common value byh,,, then we obtain, after some manipu-

lation of Eq.(A13),

Ng . o W 2
A= 4ReJ’ df|M+Aa(f) _
a=1 0

(A14)

Se(f)

The meanings of the various symbols in E§14) are as
follows. The quantityS{®(f) is defined by

1
ST

a,beD,

[Sa(f)711", (A15)

and can be interpreted as the effective overall noise spectrum

for site @ [53]. The quantitys,, is given by

S, (F)=SE"(f) bED [S.(F)"1129Sy(f),  (A16)

and is, roughly speaking, the mean output strain amplitude o'rfg

site a. Finally,

Al f)= X
a,beD

,De

Eam*“s'b(f)[[sa(f)1]“—82*“)(0

a

X dED [sa<f>1]a°[sa<f>1]dbj. (A17)

(Al14),

PLm,ha(t)[s(H)]=Kp @ (m)p©@[ha(t)]e 272,
(A18)

where

n _ —

RS = |s,(f)=hy(f)?
A= (121 4 Re fo de (Alg)
Finally, we express this probability distribution directly in
terms of the waveformi, (t) andh(t) by substituting Eq.
(A8) into Eq. (A19), which gives

A’=4Refwdf| > ORB(f,m)[Aa(f)* — ha(f)*]
0 AB=+,X

x[’ﬁB(f)—'ﬁB(f)]Jrs(f,m)]_ (A20)
Here
Ng FA(m)FB(m)
AB(fm)= >
0 (f,m)—azl S (A21)
’ﬁA(f)EG)AB(fam) ZS:I Fz(m)ga(f)eZwiha(m),
(A22)

where® ,p is the inverse matrix t®E, and

S(f,m)= 2 [5,(H)|2—0*Bh(f)* hg(f). (A23)

2. Estimating the waveform shapes and the direction
to the source

Equations(A18) and (A20) constitute one of the main
sults of this appendix, and give the final and general PDF
rm andh(t). In the next few paragraphs we discuss its
implications. As mentioned at the start of the appendix, we
are primarily interested in situations where the directioto
the source is already known. However, as an aside, we now
briefly consider the more general context where the direction
to the source as well as the waveform shapes are unknown.

Starting from Eq.(A18), one could use either maximum
likelihood estimators or so-called Bayes estimators
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[13,54-56 to determine “best-guess” values ah and merger waveform’s shape) can be regarded as known. The

ha(t). Bayes estimators have significant advantages ovegrobability distribution forha(t) givenm ands(t) is, from
maximum likelihood estimators but are typically much moregq. (A18),

difficult to compute, as explained in, for example, Appendix

A of Ref. [13]. The Bayes estimator for the direction to the PLha()|M,S()]=K pO[hat)]e 22 (A26)
source will be given by first integrating E¢A18) over all
waveform shapes, which yields HereC' is a normalization constant, and’ is given by Eq.
- (A20) with the termS(f,m) omitted. The maximum likeli-
7>[m|§(t)]=l€p<°)(m)D(m)eX[{ _2f dfg(f,m)}, hood estimator oh,(t) obtained from this probability dis-
0 tribution in the limit of no prior information is again just

(A24) ﬁA(t). The formula for the estimatdﬁA(t) given by Egs.

whereD(m) is a determinant-type factor that is produced by (A19): (A16), (A21) and (A22) is one of the key results of

integrating over the waveformis,(t). This factor encodes this appendix. It specifies the best-fit waveform shape as a

the information that the detector network has greater senan'queI:unCt'on of the detector outpug(t) for any detector
tivity in some directions than in others and that, other thingd'€tWOrk.

being equal, a signal is more likely to have come from a _ o _
direction in which the network is more sensitive. The Bayes 3. Incorporating prior information

estimator ofm is now obtained simply by calculating the | sec. Iv, we suggested a method of reconstruction of
expected value o with respect to the probability distribu-  the merger waveform shape, for a single detector, which in-
tion (A24). The simpler, maximum likelihood estimator®f  comorated assumed prior information about the waveform's
is given by choosing the values of [and ofh(t)] which  properties. In this appendix, our discussion so far has ne-
maximize the probability distributiofA18) or, equivalently,  glected all prior information about the shape of the wave-

by minimizing the quantity formsh, (t) andh,(t). We now discuss waveform estima-
. tion for a detector network, incorporating prior information,

J df S(f,m). (a25)  for fixed sky directionm.
0 With a few minor modifications, the entire discussion of

Sec. IV can be applied to a detector network. First, the linear
Let us denote this value ah by my, (s). Note that the spaceV should be taken to be the space of pairs of wave-
guantity (A25) encodes all information about time delays forms{h_(t),h.(t)}, suitably discretized, so that the dimen-
between the signals detected at the various detector sites; aion of V is 2T'/At. Second, the inner produ2.13 must
is well known, directional information is obtained primarily be replaced by a discrete version of the inner product
through time delay informatiofb4]. .

|I’.] Ref. [25], Cjusel and Tinto suggest a method of esti- (Ihy hod ks ko)) =4 Ref df ©*8(f,m)

mating m from s(t) for a network of three detectors. For 0
white noise and for the special case of one detector per site, - —~
the Gusel-Tinto estimator is the same as the maximum like- Xha(f)*kg(f), (A27)

lihood estimatormML(§) just discussed, with one major
modification: in Sec. V of Ref[25], Gursel and Tinto pre-
scribe discarding those Fourier components of the dat : I : :
whose SNR is below a certain threshold as the first stage (glays |r1 the glstrlbutlgd4.3). Third, the estimated wave-
calculating their estimator. forms {h, (t),h.(t)} given by Eq.(A22) take the place of
Turn, now, to the issue of estimating the waveform shapef’€ measured waveformin Sec. IV, for the same reason.
h.(t) and hy(t). In general situations where both and Eourth, the wavelet basis useq to specify tr+1e prler informa-
ha(t) are unknown, the best way to proceed in principletion must be replaced by a basis of the fo[wnj'(t),wk,(t)'},
would be to integrate the probability distributioA18) over ~ Wherew;; (t) is a wavelet basis of the type discussed in Sec.
all solid anglesn to obtain a reduced probability distribution |VX for the space of waveform$ (t), and similarly for
P[hA(t)|§(t)] for the waveform shapes and to use this re-Wi(t). The prior mformatlgn about, for example, the as-
duced probability distribution to make estimatorshgf(t). ~ Sumed duration and bandwidths of the wavefofmst) and
However, such an integration cannot be performed analytilx(t) can then be represented exactly as in Sec. IV. With
cally and would not be easy numerically; in practice simplerthese modifications, the remainder of the analyses of Sec. IV
estimators will likely be used. One such simpler estimator i2PPly directly to a network of detectors. Thus the “perpen-
the maximum likelihood estimator dia(t) obtained from dicular projection” estimatof4.4) and the more general es-
Eq. (A18). In the limit of no prior information about the timator(4.12 can both be applied to a network of detectors.
waveform shape when the PO#%[h,(t)] is very broad,
this maximum likelihood estimator is simphy(t) evaluated 4. Gursel-Tinto waveform estimator

at the vaIuemML(g) of m discussed above. As mentioned in Sec. IV above, @el and Tinto have

For BBH mergers, in many cases the directionto the  suggested an estimator of the waveformg(t) and h,(t)
source will have been measured from the inspiral portion ofor networks of three detector sites with one detector at each
the waveform, and thus for the purposes of estimating theite when the directiom to the source is knowfb7]. In our

since the inner productA27) plays the same role in the
robability distribution (A26) as the inner product2.13
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notation, the construction of that estimator can be summa=(x!,... x") before the measurement, ap(k) is the corre-
rized as follows. First, assume that the estimator is someponding PDF after the measurement, then the relative infor-
linear combination of the outputs of the independent detecmation of these two PDFs is defined to %]

tors corrected for time delays:

- 3 , _ I=f d"x p(x)log
A= 3 wimet ™S (1), (A28) i

a=

P(X)

p'V(x)

_ In simple examples, it is easy to see that the quariB)
Here ﬁgGT) is the Gusel-Tinto ansatz for the estimator, and reduces to the number of bits of information gained in the
W< are some arbitrary constants that dependnor{Since ~Measurement. For instancexi# (x*) and the prior PDFp®)
there is only one detector per site, we can neglect the disconstrains<' 0 lie in some range of siz¥, and if after the
tinction between the outp( (f) of an individual detector measuremenx™ is constrained to lie in a small interval of

~ , size Ax, thenl=log,(X/AX), as one would expect. In addi-
and the outpus,(f) of a detector sitg.Next, demand that tion, the quantity(B1) has the desirable feature that it is

for a noise-free signal the estimator reduce to t_he true_ WaV&oordinate independent, i.e., that the same answer is obtained
forms h,(t). From Eqgs.(Al) and (A8) above, this require- \\han one makes a nonlinear coordinate transformation on

ment is equivalent to the manifold parameterized by, ... x") before evaluating

. (B1)

3 Eq. (B1). For these reasons, in any measurement process, the
S wé(m)FB(m)= 58, (A29) guantity (B1) can be interpreted as the number of bits of
el “ A information gained.

There is a two dimensional linear space of tensefsvhich
satisfy Eq.(A29). Finally, choosev, subject to Eq(A29) to

minimize the expected value with respect to the noise of the_ AS @ foundation for deriving the approximate formula
quantity (7.8, we derive in this subsection an explicit formyg.

(B13)] for the total information gair{7.2) in a gravitational
. wave measurement. We shall use a basid/ofvhere the
f dt[AC () —ha(D)[?, (A30)  matrix (2.10 is unity, and for ease of notation we shall de-
note by the quantityVyi,s.
First, we assume that the prior P[pt®(h) appearing in
Eq. (7.1 is a function only ofh=p(h). In other words, all
directions in the vector spacé are taken to bea priori,
equally likely, when one measures distances and angles with
the inner product2.13. It would be more realistic to make
such an assumption with respect to a noise-independent inner
product like (;|h,)=[d thy(t)h,(t), but if the noise spec-
trum S,(f) does not vary too rapidly within the bandwidth of
interest, the distinction is not too important and our assump-
tion will be fairly realistic. We write the prior PDF d$9]

1. Explicit formula for the total information

A=+,X

where h{N(t) is given as a functional oh,(t) and the
detector noise (t) by Egs.(Al), (A8) and(A28).

It is straightforward to show by a calculation using
Lagrange multipliers that the resulting estimatof5§]

AT (1)=ha(1). (A31)

In other words, the Gsel-Tinto estimator coincides with the
maximum likelihood estimators oh,(t) and h,(t) dis-
cussed in this appendix in the case of little prior information.
However, the estimators discussed here generalize the 2 N2
Gursel-Tinto estimator by allowing an arbitrary number of p@(h)dVh=
detectors per sit¢with the effective output and effective F(M2)
noise spectrum of a site being given by E@816) and _
(A15) abovd, by allowing an arbitrary number of sites and =p@(h)dh. (B2)
by allowing one to incorporate prior information about the o
waveform shapes. The quantityp®(h)dh is the prior probability that the signal
h will have an SNRp(h) betweenh andh+dh. The exact

APPENDIX B: MEASURES OF INFORMATION form of the PDFp7°)(h) will not be too important for our

In this appendix we substantiate the claims concerningiculations below. A moderately realistic choicepiS)(h)
information theory made in Sec. VII of the body of the pa- 1/n* with a cutoff at soméh, <1. Note, however, that the
per. First, we argue that the concept of the “relative infor-choice p®(h)=1 corresponding tp®(h)=h""* is very

mation” of two PDFs introduced in E(7.2) has the inter- unrealistic. Below we shall assume ttﬁf’)(h) is indepen-
pretation we ascribed to it: it is the base 2 logarithm of thedent of V.
number of distinguishable measurement outcomes. Second, We next write Eq(7.1) in a more explicit form. Without

bV~ 1p©(h)dh

we derive the approximationd.8) and(7.12. loss of generality we can take
Consider first the issue of ascribing to any measurement
process a “number of bits of information gained” from that s=(sl,...,sN)= (s,0,...,0, (B3)

process, which corresponds to the base 2 logarithm of the
number of distinguishable possible outcomes of the measurevheres=p(s). Then, writing §h)=sh cosé and using the
ment. If p©(x) is the PDF for the measured quantities useful identity
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V=112

Ny —
d*h= I'[(N=1)/2]

sin(0)V"2hV~1dedh,  (B4)

we can write
p(hls)d*h=1K;p™@(h)sin(6)"2

1
Xexr{ - E(sz+ h2—2sh cos ) |dh dé,
(BS)

whereK; is a constant. If we define the functidnx) by

1 (=
FAX)=3 fo d@ sin( )"~ 2ex ©os?, (B6)

then K, is determined by the normalization condition
1=2/C1J dhe **h2E (shp©@(h).  (BY)
0

We next calculate the PDB[h|p(s)] appearing in the
denominator in Eq(7.2). From Bayes'’s theorem, this PDF is
given by

pLhlp(9)]1=Kp'® (h)pp(s)|h], (B8)
wherep[ p(s)|h] is the PDF forp(s) given that the gravita-
tional wave signal ish, and K is a normalization constant.
Using the fact thatp(sh)<exg —(s—h)?], we find using
Eq. (B4) that
21—/\/72

hdVs= —————
p(si)d™s VAl [(N=1)/2]

sin( )V 25V 1

1
Xex;{ - 5(52+ h2—2sh cos 6) |ds dé.
(B9)
Integrating overd now yields, from Eq(B6),
plp(s)=s|h]dsxsV"te~(+M2E (shyds. (B10)
Now combining Eqs(B4), (B8), and(B10) yields

pLhlp(9)1d"h=1K,p® (h)e~IP&* “h*I2E [ p(s)h]
x sin( )N~ 2dhde, (B11)
where from Eq(B7) the normalization constant is given by

2I'(NV12)

= V= 72] K. (B12)

We can now calculate the informatidp,, by combining
Egs.(7.2), (B5), (B6), (B11), and(B12). The result is
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Loalp(9.A1=— [ “ah g0 G, (9]
og, | L2ENM2) (B13)
% | arrv-1)2) |
where
_ XF(X)
GN(X):W_IOQZ FN(X) (814)
and

pD(h)=2K,p @ (h)e [P9*+NV2E  5(s)h]. (B15)

EquationgB7), (B6), and(B13)—(B15) now define explicitly
the total information ., as a function of the parameteyts)

and\ and of the prior PDR(©(h).

2. Approximate formula for the total information

We now derive the approximate formula8) for the total
information. Letpﬁzp(s)zlj\/'; we will consider the limit of
large p(s) and \V but fixed p,,. Our analysis will divide into
two cases, depending on whethgy>1 or p,<1. We first
consider the casp,>1. In the large/N limit the result for
pp>1 will be independent of the prior PDF{®(h), which
we assume has no dependence\an

The first term in Eq.(B13) is the expected value
(Gl p(s)h]) of Guf p(s)h] with respect to the PDIB15).
If we change the variable of integration in this term frém
to u=h/N, we find

(Galp(oTy [ duo( N2
0
X F\MNppU) Gr(Nppu).- (B16)

From Eq.(B6) it is straightforward to show that, in the limit
of large .\,

1 2
FMNZ)~ = eMNatlo [ ——— B1
MAND=5 Mo B
for fixed z. Hereq(#) is the function
g(6)=z cosf+Insin 6, (B19)

and 6.= 6.(z) is the value ofg which maximizes the func-
tion q(6), given implicitly by
z sir? 6,=cosf,. (B19)

We similarly find that

1 [ 2
Fj,\/(./\/’Z)~ Ee’vq“’c) /\W cos .. (BZO)

It is legitimate to use the approximatiof®817) and(B20) in
the integral(B16) since the valuai (N, p,) of u at which
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the PDFpM(W\ppu) is a maximum approaches at largéa
constantu,,,{p,) Which is independent of\, as we show
below.

Inserting the approximatioriB17) into Eq. (B16) and
identifying z= ppu, we find that the PDRB15) is propor-
tional to

exdNQO(u)+0(1)], (B21)

where

Q(u)=—3( 21 ud)+q(6 B22
5 (Py a(6e) (B22)

and 6.= 6.(z) = 6.(ppu). From Eqgs.(B18) and (B19) one
finds thatQ has a local maximum at

2
U=Umax= Vpp—1

at which pointé, is given by sing.=1/p,. The form of the
PDF (B21) now shows that, at larg#/,

(GMNppu))~GA(NppUmay -

Finally, if we combine Eqs(B13), (B17)—(B20), (B23) and
(B24) and use Stirling’s formula to approximate thefunc-
tions, we obtain Eq(7.3).

Turn, next, to the casp,<1. In this case the functio@

(B23)

(B24)
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For simplicity we now takeao)(h) to be a Gaussian cen-
2 .

tered at zero with widthng,,,; this yields
1 Pghgrior }
lota~ 5 | |- (B28)
el 2 1+(1_pg)h§rior
From Eq.(7.7), the parametep, is given by
p2=1+ e, (B29)
Nblns \/Nbins

where the last term denotes the rms magnitude of the statis-
tical fluctuations. Since we are assuming thgt 1, it fol-

lows thatp§~1—1/\/mes, and therefore we obtain, from
Eqg. (B28),

1
l'total™ > mm[hSriorv VNbing]- (B30)

Thus, if hyio=1, the total information gain iss1 also.

3. Approximate formula for the source information

does not have a local maximum, and the dominant contribu- We now turn to a discussion of the approximate formula

tion to the integral(B16) at large ' comes fromh~O(1)
[rather than fromh~ N, u~0O(1) as was the case abdve
From Eq.(B6) we obtain the approximations

Fu(VNw) = \[57- €A1+ 0(INM)]  (825)

and

F (VA W) = \/;%eWZ’Z[H O(1WN)], (B26)

which are valid for fixedw at largeN. Using Egs.(B25),

(B26), and(B13)—(B15), and using Stirling’s formula again

we find that

1, Jgdnp(hexd —(1-pp)h/2)h?
o 2P e dh PO (hyexd — (1—p2)hi2]
(827)

(7.12 for the information(7.11) obtained about the source of
the gravitational waves. In general, the measure of informa-
tion (7.11) depends in a complex way on the prior PDF
p®(h) and on how the wavefornin(@) depends on the
source parameter® We can evaluate the informatidgy,ce
explicitly in the simple and unrealistic model where the de-
pendence on the source paramet@rs linear and where
there is little prior information. In this case the manifold of
possible signals is a linear subspaaéth dimension\ram

of the linear space of all possible sign@shich has dimen-
sion N). The integral(7.11) then reduces to an integral
analogous to Eq(7.2), and we obtain the formulé7.12) in

the same way as we obtained E@.8). The result(7.12) is
clearly a very crude approximation, as the true manifold of
merger signals is very curved and nonlinear. Nevertheless, it
seems likely that the formulés.12 will be valid for some
effective number of parameterg,,,mthat is not too much
different from the true number of parameters on which the
waveform depends.
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than the notion obtained from usip§®(h). If one were to use right hand sides will produce identical expected values of
the PDFp(©, the resulting “information gain in the measure- functions that depend o6 andh only.

ment” would be the same for all detected signals, whether thd 60] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne,
SNR be 10 or 1000. Phys. Rev. D49, 6274(1994.

[49] The PDFp®(h) describes all one’s prior information about [61] L. E. Kidder, Phys. Rev. 32, 821 (1995.



