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Forms of Rolle's Theorem. 

BY J. C. GLASHAN, Ottawa, Canada. 

CONTENTS. 

Explanation of Symbols. 
I. Functions of a Simple Variable. 1. Fundamental Form (Rolle's). 2. Extension of Rolle's Form. 

3. Lagrange's Form. 4. Cauchy's Form. 5. Special case of Cauchy's Form. 6. Extension of Cauchy's 
Form. 7. Forms expressed by definite integrals. 8. Remainder in Taylor's Theorem. 9. Remainder 
in Cayley's Theorem. 10. Remainder in Lagrange's Series. 

II. Functions of a Con,plex Variable. 11. General Form. 12. Special Form. 13. Remainder in 
Taylor's Theorem. 

Ex;planation of Symbols. 

0<0<1. a< <b. 

a; =R _a.+ a.n+]L + ....*.+ an -,. a; n = a; ?o . m a- (I'm - ni - 

a n ;a;m J+a1 +a-m+2 _a; n 
[J>da] U-fo d(a;mn+1)i m J o(a;n).+2) ;.d (a; t) U 

[:da] U _[ da] U. 
0 

[a]n_(n M-i)! [f da] the remainder of the expansion of (a;n)nm- 
m m 

after rejecting all terms of the forma 

C(a; n + 1)lln anm-n am?2. 

in which nm+l + n++. . . . . . . . . . . .+ An_1>n-(in +1), 
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If u be a complex variable, 

e fu the protensive (real) part of fut; 
utlfu the ditensive (imaginary) part of fu. 

I. FUNCTIONS OF A SIMPLE VARIABLE. 

1. Fundamental Forqn. (Rolle's.) Let Fx and F'x be continuous from x a 

to x = b, and Fb - F = 0 ; then will 

F' = 0. i. 

A proof of this theorenm is given in nearly every text-book on the differ- 
ential calculus; perhaps the best is that by Professor Mansion in his Le9onfs 
d'Analyse infinite6simale, (Gand). 

2. Extenspion of Rolle's Form. If fx, (px and f'x : (p'x be continuous from 

x a to x = b, and fb -fa=0, then will 

fit : qP'O. =i. 

This form may be proved by reasoning similar to that employed to prove 
the Fundamental Form, or it may be deduced from the latter thus- 

Let fx = F'px and y= _pa + 0 (cpb - (pa); then, since fx and cpx are both 

Continuous from x = a to x = b, Fcpx will remain- continuous while (px varies 

continuousl,y fronm (pa to cpb, also DoxFcpx = DFcpx :D ,px =f'x: (p'x is con- 

tinuous betwveen the same limalits. 

Therefore by i. D0 = (a). 

But since cpx is continuous from x a to x = b, although it need not 

always be intermediate between cpa and cpb, yet it must be capable of assuming 

any proposed intermediate value for at least one value of x between a and b, 

z. e. It,= (tt 
Hence D,,Fy, = D1,.Fcpf = D,.Fcp: DSp t f'=y : p'm, 0 O by (a). 

3. Lagrange's Form. Let F.7 x and Fl'x be continuous from x a to x b, 
then will 

F,.b-F.a = (b-a) F,'t1. iii. 

Let Fx Fixb-F,.a b-a' 

then 5 I,b- 1 =0 , by i.; 

henace F,.b - la = a) FLa. 
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4. Cauchy's Form. Let fix and qpx and either, (A,) fi'x and qplix, (d/1y z 0) 
or, (B,) fi'x: pjx be continuous from x = a to x b, then will 

f,b-fia= (qpb-fla). iv. 

Case A. Let Flx - -__-- 
fib -f,a ;o1b - (cla 

then Ff ______=__ ____ =_ - ,b i then y 
~~~~~f,b -f,a scjb -,fa Y*; 

whence, since ci'i z 0, fib - fa = ff , (lb - pia)* ivl. 

Ca,se B. Let fx - fx 
____J 

fib -fla ft b - ja 

then - f'y f1b-f1a fpb-foa =0 , by ii.; 

whence fb -ffla = (q,lb - pla). iv2. 

This is an analytical translation of the geometrical proof given by Professor 
Mansion in his Le9ons, p. 24, and also in Messenger of Mathematics, V2, 34-35. 
The analytical demonstrations usually given in the text-books apply only to 
Case A. 

5. Special Case of Cauchy's Form. Let Ux, VRx WTVC, and either D TJU 
and D.( Vx- Wx), [D,,(T,h- W,,) z 0], or D. U.: D. (V - Wx) be all continuous 
from x=a to x = b, then if 

U2 f(e+x)+ .(e+) + + (g-) (e + x) n! 

Vx= (e - + x) + x 
t (PI + X) (.+ X)p p (e + x), 

-W=,(nX f'4"n-)+ 

it follows immediately from iv. that 

1-& U= ( V, + Wt- V.-Wb) n !i4q ! (1-i)P (cP+ I ( C + ly) +p ! (i f-A ), y' q+1 ( fi ) V. 

For Dx Ux (g ! ) ((e ++x), D1 v- p! + (?JrX), na! ff?I(+ 

and D_,q ( x) 
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6. Extension of Cauchy's Form. Let fix, fx x, f2x , f2'x . A x, f /x, 

cP1X, cP1f'x qx, 2 q,'x . . . . . px ( 'fpx be all continuous from x = a to x = b, 
then will 

_ii _ __ _ _ _1 f + AP +.+ fb-fP 
f1b -fla f2b -f2a . .. b -a 

- 2 lt5'1 + Sa 2 + + 0} 
= . Vi. 

j1b -jb-a YJ2b- sc2a -?nb sDNa 

Let Fx_fi+ + + f * + 
f1b-fla f2b-f2a fb b-ffla 

then i. becomes vi. 

Cor. If fx=f1x = f2x. -n then will 

fb - fa=nf':1 1bia + + V vii. 

Fx being continuous, n must in general be finite. 

7. Forms expressed by Definite Integrals. Let f, px, x, ]fx. cpxdx and 

fxvAxdx be continuous from x = a to x = b , and fx z 0 and Px z 0 , then will 

Jbfx b xdx- t Jfx.?x. viii. 

J71x. F:pxdx f ., fx. vxiix 
Let Fx ____ 

Jfx. pxdx Jfx.4'xdx 

then ____- fit _ __ f4 = 0 by i. 

fx.cpxddx fx.4'xdx 

consequently ffx. pxdx = ,jfx.4'xdx. 

Cor. If 4x 1 , then will 

Jb = b 

Jafx. *pxdyx = f)UJ fxcdx. ix. 
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In viii. and ix. let cpx fp1 ydy and Jx f Iydy 

ry b 
x (~J'pixdx b ''dd 

viii. becomes JfxJ, q lydydx fx dydx; x. 

JC ,xdx 

ix. becomes fix f$ cp1ydydx = f fxdx .Jp xdx. xi. 

Similarly fbfxp/ y -5zdzd.ydx = fxdx .. Ipxcl .fpxx 1,xdx xii. 

where c + O (It 

Let q*'x =f cpxdx and let ip'c be finite. Integrating by parts, 

Pb fb 

fx. cpxdx =fb.cp'b - fa. p'a -f fx. cp'xdx 

b 

f fb (q'b - p'c) - fa (qpa - cp'c) -J fI'x (q'x - (p'c) dx 

pb aC Pb 
=fb fcpxdx - faf qpxdx fx fl (pycdyd (x). 

by, xi., = fbf pxdx - fa f tPclx - (fb - fa) )xdx. xiii. 

Let c =a, then 

opb c = b pb Xs 

j fx. cxdx f bfxdx ax fcJ ydycdx 0/) 

Ob Ay 
-f b qpxdx - (f b - fa) fcpxdx. xiv. 

xiv. may also be obtained directly from ix., thus: 
pb ab 

fx. q xdx =f b . (p'b - fa . p'a-a f 'x. q'xdx 

by ix., = fb . p'b-fctf . p'a - (fb -fa) cp'z 
ab P1j 

ffbf pxdx + faf qpxdx xivl. 

and = f bf q xdx - (fb -.fa) fpxdx xiv. 

and also =f f Pxdx + (fb - fa)fj)xdx. xiv2. 
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The usual proofs of viii. and ix. are substantially the saule as Moigno's proof 
of Cauchy's Theoreim, but no hint is at the same time given that iii. and viii. 
differ only in form of statement. xi., for the case c = b, was given by A. 
Winckler in Sitzungsberichte der math.-nat. Klasse, Wien, LX, (1869). (y) was 
given by Grunert in Grunertis Archiv., IV, 113. (13) was given by U. H. Meyer 
in Grunert's Archtiv., V, 216. xiv., xivl, and xiv2 were given by Hankel in 
Schlbmilch's Zeitsch'rift, XIV, (1869). 

8. Remainder in Taylor's Thteorem. In the Special Case of Cauchy's Form, 
let g =I=b, 2 =a, e_o, =c--a, 7= e + b and b=a + h, then 
v. becomes 

f(a+h)- fa++f'a +. . . . . 

=[q (c + 71)- oc + 1 qvtc + ...............+ !qPpc} 

+ i+(7 + 7^ 7? 
h 

'?+.............+ !i7 

p! q! (1 _ 
O)nhafn + (aO+ h) - R 

n! [ ! (1-O)P hP9P-+ I(G+Oh)-+ p! qhqql k+ (I+-U) h ] * xv. 

R gives at once all the forms, exclusive of those involving definite integrals, 
hitherto proposed for the reraainder in Taylor's Theorem for a simple variable. 
Thus, if ix be constant and c a, R will become the gen7eral form given in the 
M62noires de l'Academie . . . . .de Montpellier, V. (1861-1863), and if in addi- 
tion p 0, ?R will become the special form given in the same memoir. (Tod- 
hunter's Dif. Gale., 6th editiutn, pp. 404-406). The latter form is also given by 
Schlomilch in hiis Uebungsbuch, p. 262. If p = n, R will become the form 
given by Professor Mansion in Messenger of Math., V2, 161. 

If px be constant, R will become a form of which the special case for 
k = q 0 O was given by Schlomilch in Liouville's Journal, III2, 384, (1858); also 
in his Handbuch, 1847. The forms of Roche (1868), Cauchy, and Lagrange (1807) 
are all particular cases of this form of Schlkmilch's. 

Definite-integral forms of the renmainder can be reduced by viii. or ix. above. 
Thus, to obtain Roche's form in expanding f (x + h) by integration by parts, let 
the remainder 
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-=n-lfAv?p?1(x + h -v)dv 

and consequently = 2-fvn-P' ff (x + h -v). v-dv 

by ix. - (Oh)ffl?n+ 1 
IX + (1 -0)h J9' vpdv 

f9n -. hn + 1 y n + c+( h. 

More complicated forms of the remainder can be obtained by employing 
the Extension of Cauchy's Form given in 6. One of these has been noticed 
by Professor Mansion, Mess. of Math., V., 162. 

9. Remainder in Gayley's Theorem. In the note preceding this article, en- 
titled Simple and Uniform Method of Obtaining Taylor's, Cayley's, and Lagrange's 
Series, it is shown that 

f (x+ a;m) =f (x+ a; 1 + []f/ 
x + a; 2 +'** 

.+..1.+ (-l) + a;m) + R xvi. 

in which R [J'da] fn(x+ a;m) (s). 

by ix. =[J7da] ( lff ix + 0' (a;n) + a.;% n f d (a;n)) 

[, ] '(fn Ix + 0'(a;n) + a; [a]n ) 

by ix., =[ a f ];lf_( [a]2f .{y + 0"0,(a;n- )+ an1 + a;n ) 

- [a] fn (x$ a +a; ) . (E). 

Substitute x for x + a; m and 0 for I -0 and the above becomes 

fxf(-a;1)+ [I] f ( -a;2)+ . + (n-l)! fa f (x a;n) 

+ -[n fn (x-a ;an) xvii. 
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In III. of An Extension of Taylor's Theorem, (this Journal, Vol. I, p. 287), 
the remainder 

-9a] 
-4 

1 a;nf1d( + 1 ) d t- 

and by I. of the same note, this 
pa *n 
d a n(x + a;m) 

which is (o) given above. 

10. Remainder in Lagrange's Series. Let x and y be independent variables, 
w = x + ypw, v = x + aqpv, u = x + bcpu and u1 = x + t4pul; also let fw, 

dfw. 
d 

, 4'(c-y), 4'(c-y)be all continuous fromy==a to 

y =b, -and 4"(c- t)zO. 

Since dy4{ (pw)d dfw - d . (cw)f+' dfw 
dy ~dx dx 

if Fy-fw + k-y W dfwx+ + (k-y)n d n-1 
{ dfw 

1 dfw+ . ( )nd i{( dx 

then Fly= 
7 Yn! Kdx ((pw)n +i dxfw 

and, by iv., Fb=Fa+ b(o-a)-0 (a-b) Fg; 

or, writing this in full, 

k-b df u (k- b)n (d yn- dfu, u 
fu + 1 cpu dx + * +dz { P dx 

k-a dfv ++(ka d n-1 dfv 
fv + 1 x++ (k-)P _ 

+ ( a)-.b (o-b) (k-1)n (d) { (npus dz xviii. 

If k b, c b + h and a = 0 and therefore v x and u1= x + Obcuj, 
this reduces to Lagrange's Series, or 

fub f f' + . . . . + bn df 

+ ,b (h + b)- ,bh (l ) bb( d ) {(cpU)n+ 1 dful 3 xix. 
VOL. h+(1-0)b n! .dx 

VOL. IV. 
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Let h = 0 and 4b = bP + 1, then the remainder will become 
(1-6) Pbn'(d)q (\n+idf n * xx. 

n!(p+l adx2 kcPufl +1dxj.X 

For k (c - y) write 4,(y + h), which may be done since i and 4j are both 
arbitrary, then making k = b and a 0, xviii. becomes 

* . + 
___b__ ~ (1 -O) b (d< f +f iL~4~ 

fib6 = fx + . t( + bn (d){((pul) + d}* xxi. 0b'1o + Ob) n! TdX2 dx 

Again for 4(c - y) and 4,(y + h), there may be substituted functions of the 
form of W1, Vi, or V - W,, of 5, or functions bearing the same relation to 
Lagrange's Series that these do to Taylor's. 

In the note Simple and Uniform Method, &c., it is shown that if u = 

x + bqpu and v=x + (b - 3)qv the remainder in Lagrange's Series is 
bb[( d ) (v)n + 1 dfv I 

jdf3 [{ 
9 'j (pv,d 

which n! 3 CtF ,np (d S -t'(vv) n+ 1 dfv Vp 
n!.J L T..X/ ' dx 

by ix. ndx { (ul)n + 1 df1 xxl. 
n! (p4x 

in which ul = x + Obcpul. This is the same form of remainder as that found in 
xx. Had viii. been used instead of ix. in the reduction, forms like those of xix. 
or xxi. would have been obtained. 

II. FUNCrIONS OF . A COMPLEX VARIABLE. 

11. General Form. Let u = x + ipx, u0 =x0 + iqx, ul =x1 + i(pxl, 

V1= u0 + 01 (ui - uo), and v2= U0 + 02 (Ui - u0). If qpx and cp'x remain con- 
tinuous while x varies continuously from x = x0 to x = xl, if also 4'u and cF'u 
remain continuous from u = u0 to u = ui, and if (Du,1 - cuo = 0, then will 

(D'v = 0 and (Y(TYv2 = 0. xxii. 

12. Special Form. Let w = (u - Q:0) (uai - un0) and 
(Du (ul - un0) I (Ful - Fuo) (Tww- q0)- (Fu - Fino) (Tl - t0) 

and .-. c'Wu (Fui - Fin0) Tw - (ui - io) (XP1 - 'I0) Flu 

Fuql-Fuo-0 = (uj- uO) F'vl+ f2/2 
q 2; (u1 - u0) F'v, . xxiii. 
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13. Remainder in Taylor's Thoerem. In the preceding form let 

Fu f (h + lu) + k-lu f (h + lu) ++ (k-IU)>(h + lu), 

-bw (C -bw)mrqm 
'Iw=P(a+bw)+ 1 4'(a+bw)+. + (a + bw), 

f(h + ul) + k1 f(h + lui) +. + (k )n(h+lu) 

- f (h + uo) + k luo f (h + luo) + + (k -ljuo)nfnf(h + luo) 

[+j (a + b) + 1 A (a + b) + .(. + (cb) ,, 

p. -4 jea + Aa .. . . . . . . + p! a ]R, 

+[2(+ +r (a + ' ) %P ....+ r!t+ (a + )q 

-+ +*** + , 412a i1R2= R. xxiv. 

in which R = p! 1 I (u-u) (k- lvl)'nfn+1(h + 1vl) 
n ! b (c - Olb)P %PP + 1 (a + Olb) ' ( 

d ~~R,- q ! I V'S (uf-uo) (k -l )n 
fn 

+ 1 (h + Iv2) and 1? _ an 2 = 
~~~~n ! ,3 (y02,B)q4 + 1 

(aX + 021S) 
(2 

Had it been assumed that 

Tw=zl5(a,+ bw) -'V2(a2- Nw)+ +l7blw V (a + blw)2- b2w (a2 -b2w)+&c., 

a general theorem would have been obtained of which v. is the form for a real 
variable in the particular case 1- b= = 1. 

Taylor's theorem with Remainder is the particular case of xxiv. for h = 0, 
k = ul, and l= 1. If in addition to these limitations, c = b, y 'f, and 
u- t, xxiv. becomes (writing u for u0) 

f(u + t)- fu + tf'u + + t 

= [ j1 (a + b)-4 ALa + lb1a + . . . .... +b!'4V, a } ] R x 

+ [q4 (a + ,B)- ' 2 / +a..... 2 a}] xv 
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in which RI p! (01)n f ? rt + )fn + l(U + Olt) ( 
n! b + 4P+ '(a + Olb) 

and R = q! (1 - 2)n-qtn+lfn+( + O2t)} (2) 

See Elementary Demonstration of Taylor's Theorem for Fwnctions of an 
Imaginary Variable, by Professor Mansion, Mess. of Math. VI12. pp. 17-20 (1878). 

In this note I have spoken of Forms of Rolle's Theorem because in reality 
the various theorems differ merely in form, not at all in generality. Some 
forms are more convenient than others, and exhibit explicitly what the others 
contain implicitly. Thus Cauchy's Form is not more general than that of 
Lagrange, but only sometimes more convenient; every theorem that can be 
proved by the former can likewise be proved by the latter. 
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