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Forms of Rolle’s Theorem.

By J. C. GuasHAN, Ottawa, Canada.
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Explanation of Symbols.
0<6<1. a<u<b.
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If « be a complex variable,
S fu = the protensive (real) part of fu;
U fu= the ditensive (imaginary) part of fu.

I. FuNcrioNs OF A SIMPLE VARIABLE.

1. Fundamental Form. (Rollés.) Let Fx and F'x be continuous from x =«

to x = b, and Fb — Fu = 0; then will
Flu=0. i.

A proof of this theorem is given in nearly every text-book on the differ-
ential calculus; perhaps the best is that by Professor Mansion in his Legons
d Analyse infinitésimale, ( Gand).

2. Extension of Rolle's Form. If fr, ¢z and f'z : ¢'x be continuous from
x=atox=2"b, and fb— fa =0, then will

S ¢u=0. ii.

This form may be proved by reasoning similar to that employed to prove
the Fundamental Form, or it may be deduced from the latter thus:

Let fix = Fox and g, = ¢a + 0 (pb — ¢a); then, since fr and ¢z are both
continuous from z =a to « = b, Fpx will remain continuous while ¢x varies
continuously from ¢a to @b, also Dy Fox = D, Fox: Dpw = f'x: ¢'x is con-
tinuous between the same limits. '

Therefore by i. D, Fu, =0 ().

But since ¢x is continuous from x = a to « = b, although it need not
always be intermediate between ¢a and ¢b, yet it must be capable of assuming
any proposed intermediate value for at least one value of z between « and b,
i e U= Qu.

Hence D, Fuy = Dy Fpu = D, Fpu: D,pu = fu:¢'u, = 0 by (a).

8. Lagrange’s Form. Let Fyx and Fy'xz be continuous from x =atox =20,

then will

Fib—Fa=(b—a)u. iii.
— B @
Let Fx:ﬂb—-ﬂa—b—a’
. Fpu |
then #mﬁ}b_ﬂa—.b————a—o’byl.’

hence b — Fa=(b—a)Fiu.
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4. Cauchy’s Form. Let fix and ¢ and either, (4,) f/x and ¢'1x, (¢',u=z0)
or, (B,) fiz: ¢ be continuous from & =a to @ = b, then will

Jib — fia = ':E):i (@16 — Pra). iv.
N o
Case A. Let Fr = b —fa b —ga
Sir 20U -
! —_— .
then Fﬂ—flb—f‘la g:]b—%a,—o’ byi.;
‘whence, since ¢/u=z0, fb— fia= % (P16 — 1) . iv,.
| R )
. Let = — ;
Case B e S Fo—fa  ph—pa
!
then Fr — He ! 1 0, by i;

ol T edp " fib — fia o ¢1b — ¢ra
/

whence fib— fa= % (@D — dra) . iv,.
1

This is an analytical translation of the geometrical proof given by Professor
Mansion in his Legons, p. 24, and also in Messenger of Mathematics, V,, 34-35.
The analytical demonstrations usually given in the text-books apply only to
Case A.

6. Spectal Case of Cauchy’s Form. Let U,, V,, W,, and either D,U,
and D, (V,— W,), [D.(V,— W,)=0], or D,U,:D,(V,—W,) be all continuous
from @ = ¢ to x = b, then if

U=fl+a)+ 75 leda)+. . . . L. .-I—Mf”(e-l-m)
V=9t + 2 et 4. . . .. +(’ ) o7 (¢ + a),
W= (n .+‘”*,“ Vi (n — ),

it follows immediately from iv. that

— plollg—p)fr¥i(e+ )
O—U=(Nt W Vo W) Hgl(l—p)? ¢p+1(€+//z)+p' (=27 F(g—p)f

For  DU=Y=" prr1(oqa), Dﬁv;:(lp D a2+ 4 1),
and DwW$E~uf¢q+l(n—x).

q-:
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6. Fatension of Cauchy’s Form. Let fix, flx, foxr, fle, . . .. foxr, filo,
¢, dlw, P, P, . . ... P2, ¢ be all continuous from x=a to =125,
then will

S S Sutt

f16——f1a+z-—fza+' e .+f———nb__fna
_ ¢ ¢ot &t _ .
{ ¢1b — ¢ + ¢2b — a0t teo. e T Pub — pua ; =0 v
— flm f2m fnm
Let Fw_flb—fla +fgb-—j;az + . . .. +—-——~nb_fna
— v (224 . P
{ S’lb_ ¢1a + ¢2b'—— Polb + o + Sonb'_ P } ’
then i. becomes vi.
Cor. If fr=fw=fix= . . . . .=fx, then will
Y S ¢ ' ¢t .
Jo fa—nfy.{———————%b_%a + ... .. .+ﬂ———~¢nb_%a } Vii.

Fzx being continuous, » must in general be finite.

7. Forms expressed by Definite Integrals. Let fx, ¢x, 4, .L ';"w@ocdx and

‘/: ’ Jaxobaxdx be continuous from x =a tox=2>5, and fr=z0 and Yax =0, then will
D ) .
ja Jx . pxde = % .L Jx Adxde . viii.

_ wawrpwdw J:wfxml«xdw 4

Let Fr= % _— 33 3
‘L Jx.pxdx .,L Jx Axdx

then Fu= J:M@ﬂ — ..;f#'mm =0 byi.
Sotoprda [ fAada
b 1

consequently J; Jx. padr = %’Z .[ Ju lada .

Cor. Ifax=1, then will

j; bfw.q)wdx = Qu 'L‘ ;”xdw. ix.
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In viii. and ix. let gz = j: wgbl ydy and o = J: a:.)/l ydy

viii. becomes f Jx f Py dyde = —/— § ;wdw f S f Yyydyda ;
xd;

ix. becomes j: Jx J: tplydydoc = j: JSxde . J; Mq)locohx.

Similarly [ fo [y [ bededydn = [ fudo. [ pade. [ dade

where p=c+0(u—c).

Let ¢z = f paxdx and let ¢'c be finite. Integrating by parts,

b b
S o qude = fb.9% — fa.pa — [, Fo. ¢uda

= fb(@b — ) — fa(Pa—¢e) — [ Fx (¢ — ') da

=fb‘/:2pxa7fac — fa c?pxdoc ——‘/:zif’w./:wq)ydyo&n

by xi., = /0 [ gede — fu [ quds — (£ — fa) [ pade.

Let ¢c=a, then

£}w-¢xdw =fb./:b¢:rdw ——'/c:?jf’m‘L‘wq)ydydw

:fb./;z)xdw— (fb——fa)J;%):rdm

xiv. may also be obtained directly from ix., thus:

b 1/
£fw.¢wdm=fb.¢‘b—fa.q>‘a-—Ja‘f’ac.cp‘xdw

by ix., =/b.9b— fu.Pa— (fb— fa) Pu
=fb./':2;>wdm —|—fa‘/¢:%>adm
and =fb'/(:b¢9cdm — (/b ——fa)ﬁ%wdw

and also :faj:bcpmdm + (f0 mfa)j:bcpocdw.

xi.

xii.

(8)-

xiil.

(&)

X1v.

Xivy.
x1v.

X1V,.
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The usual proofs of viii. and ix. are substantially the same as Moigno’s proof
of Cauchy’s Theorem, but no hint is at the same time given that iii. and viii.
differ only in form of statement. xi., for the case ¢ =5, was given by A.
Winckler in Sitzungsberichte der math.-nat. Klasse, Wien, LX, (1869). (y) was
given by Grunert in Gruneré's Archiv., IV, 118. (B) was given by U. H. Meyer
in Grunert’s Archiv., V, 216. xiv., xiv,, and xiv, were given by Hankel in
Schiomilch’s Zeitschrift, X1V, (1869).

8. Remainder in Taylor's Theorem. In the Special Case of Cauchy’s Form,
let g=1l=b,2A=a,e=0,ce=c¢c—a,n=1Fk + b and b = a + 5, then
v. becomes

f(a+7z)—{fa+~’1b—f’a+ ..... +—Z%f”a}
—[¢(c+7z)——§¢c+£—¢’c+ ..... +;!¢pc}
o+ 1) — U+ VR + 2l ]

plgl(L— 0 ke fr+i(a0n)
"l [g! (T—0)h »F T (o 0h) + pl 07 W g+ 3 (ot (L—0) R3]

R XV.

R gives at once all the forms, exclusive of those involving definite integrals,
hitherto proposed for the remainder in Taylor’s Theorem for a simple variable.
Thus, if «a be constant and ¢ = a, R will become the general form given in the
Mémoires de U Académie . . . . . de Montpellier, V. (1861-1863), and if in addi-
tion p = 0, R will become the special form given in the same memoir. (Zbd-
hunter's Dif. Calc., 6™ edition, -pp. 404—406). The latter form is also given by
Schlomilch in his Uebungsbuch, p. 262. If p=mn, R will become the form
given by Professor Mansion in Messenger of Math., V,, 161.

. If ¢ be constant, R will become a form of which the special case for
I = ¢ = 0 was given by Schlomilch in Liouwville’s Journal, I11,, 384, (1858); also
in his Handbuch, 184'7. The forms of Roche (1858), Cauchy, and Lagrange (1807)
are all particular cases of this form of Schlomilch’s. '

Definite-integral forms of the remainder can be reduced by viii. or ix. above.

Thus, to obtain Roche’s form in expanding f (x + &) by integration by parts, let
the remainder
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/A
E—l—j; vfrt (o + A —ov)dy
1

and consequently =5 Jo V"7 2w 4+ h— v). v?d
by ix. = O puso (1 —0)a} f[ o7
fn—2 pn+1 ‘
=W+—1)—f’” Yo + (1 —0) 2},

More complicated forms of the remainder can be obtained by employing
the Extension of Cauchy’s Form given in 6. One of these has been noticed
by Professor Mansion, Mess. of Math., V,, 162.

9. Remainder in Cayley’s Theorem. In the note preceding this article, en-
titled Simple and Uniform Method of Obtaining Taylor’s, Cayley's, and Lagrange’s
Series, it is shown that

retam=f(lz+a )+ p (o 40+ .

..... + ([“]” lf”"1<m+a',m> + R  xvi
in which R=[ [ da]""s" @@+ a;m) ).
by ix. = :J,;aola];n_l<f” $x 4+ 0 (a;n) +a.;m } j:a;nd (a;n)>

=[ L] (/e + 0 @5m) + o™ } [a]s_1)
by ix., = fda] " [a]"“2 S e + 00, (a;n—1) + o, + a;”;: } )
[a]n e (a; + ajn + a,n> (¢).
Substitute x for @ 4+ a;m and 6 for 1 — 6 and the above becomes
Jr = f(x— a;l) +[L]1f' (x—a;2)+...... + ([a i S Y (x —aj;n)

+ [a]ﬂ S (x—a;n) xvii.
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In ITI. of An Extension of Taylor's Theorem, (this Journal, Vol. I, p. 287),
the remainder

A RRT T

and by I. of the same note, this .

E[Jo'da]' S (@ 4+ a;m)
which is (§) given/ above.

10. Remainder in Lagrange’s Series. Let x and y be independent variables,
w=x+ypw, v =4 adv, u=x + bpu and w, = x + udu,; also let jfw,

m 41
dfw (jly“:f , ¥Y(¢c—y), ¥ (¢ —y) be all continuous from y =a to

V25, wma lpf@_,t)zo
Since oo Lt = o @or s 2L
it By =fo+ T o T L 4 E—r (dx)” 1{@; 21 }
then Fly= (k——y) (dx) {(@’W)”"'l—dggi },
and, by iv., Fo=Fa+ LE=D=0 00 py,
or, Writing this in full,
Fut Bl +(k"‘!b)n<dx)"_l{(¢ y df“}:
pa it e G (4 i)
+ ¢(c-;;gc—;¢#()c—-b) & nxﬂ)n<dx> {(<7> ot “1}. xviii.

Iftk=5b, c=b+ hand a =0 and therefore v = and w;, = « + 0bpu,,
this reduces to Lagrange’s Series, or

fu=fo+ 2 gu put + 2 () gy sl

¢ (h+b)— gh §(1—-0)b n dful :
T U ra—opl <da:> {(‘7’ W g e

Vor. IV.
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Let A= 0 and b = 52+, then the remainder will become
(1—Oyp—rbr+1,d n+1dfu1}
2T (pF 1) dx) {(‘7’ ) : XX
For 4 (¢— y) write ¢4(y + %), which may be done since 4 and 4, are both
arbitrary, then making £ = % and ¢ = 0, xviii. becomes

— ¢i(e 4 b) —¢ne (1_0)6 n+1df'“1 :
Ju=jfx+ . . .+ Gl ) <dx> {(‘7’ ) xxi.

Again for (¢ —y) and (y + &), there may be substituted functions of the
form of W,, V., or V,— W, of 5, or functions bearing the same relation to

Lagrange’s Series that these do to Taylor’s.

In the note Simple and Uniform Method, &ec., it is shown that if » =
x + bpu and v = x + (b — B)pv the remainder in Lagrange’s Series is

s hasle Gy e+ ) ]
which =%/0‘bd13 [ﬁn—-p(%)n {(¢v)n+1%€f } l@p]

. (L= @)nmrbrrt o d N w1 Afun
by ix. = Al pED < do ) (p)™ =g XX
in which w, = x 4 0bpw,. This is the same form of remainder as that found in

xx. Had viii. been used instead of ix. in the reduction, forms like those of xix.
or xxi. would have been obtained.

II. FuncrioNs oF.A COMPLEX VARIABLE.

11. General Form. Let uw = x + ipx, w,=x,4 1px,, w = x; + 1Py,
v =y + 0; (uy— w), and v, = uy+ 0, (u; — v). If px and ¢’z remain con-
tinuous while « varies continuously from & =, to x =, if also du and P'u
remain continuous from w = u, to w = w,, and if ®u; — Pu, =0, then will

SOy, =0 and Q@dv,=0. xxii.
12. Special Form. Let w = (u— u,):(u, — u,) and
Pu = (ug — uy) § (Fuy — Fuy) (Bw — B0) — (Fu — Fu,) (¥1 — $0)}
and ... Pu= (Fuy — Fuy) $'w — (u; — u,) (F1 — B0) Fu

. F%_FUFM $ g(ul__uo)p@l%_kw

i - I cee
7.6, 7, $ (ug — uy) F'uyd. xxiii,
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13. Remainder in Taylor’s Thoerem. In the preceding form let

Fu= Gttt oo+ EE ),
B =(a+ bw) + =V (a4 by .. + C=0 (4 + bo)
N RO + E I o ()
_ {f(h+luo)+k_lu°f’(7z+lu0)+ ....... +(’°—“n!l@"f”(h+zuo)}
=[h@+8)+ o@D+ += P @t
— ot it +i¥al 1R,
+[¢2(a+5)+ YTB Yoo +B)+. ... ... +9—-§T@i¢§(a+ﬂ)
—{%a+—i~¢;a+ ....... +—’q—!¢ia}]stR. xxiv.
in which r=P!U3 jl(fz‘; (;"_"’”%g‘; — ;”4_): {: :_1 gfb?_ )i, (&)
and By = 2110 0 — ) (b — T+ Do) @,

n! By —0,8) 4+ (o + 6,0)
Had it been assumed that

bl'w b 0

=", (a, + byw) —P, (a, — byw) +& ¥ (o + blw)— ¥, (a, — byw)+ &ec.,

a general theorem would have been obtained of which v. is the form for a real
variable in the particular case I = 6, = 1.

Taylor’s theorem with Remainder is the particular case of xxiv. for A =0,
k=wu,, and/=1. If in addition to these limitations, c=15%, y =3, and
U — %y = ¢, xxiv. becomes (writing w» for wu,)

f(u+t)—-%fu+_i~f’u+ L ..+i”_'fnu}
n.:
=[¢1(a+b)—{¢1a+_f_d/1a+ . .+%¢fa}]Rl

et —{ha+ Lvta . eI
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. — p!(L— )=S0}
in which R, o LI 0,5) LA I (1)-
and Ry= LA — 6" A 6at)} (7)-

ntlgq+1¢q+2(a + 9113)

See Elementary Demonstration of Taylor's Theorem for Functions of an
Imaginary Variable, by Professor Mansion, Mess. of Math. VIII,. pp. 17-20 (1878).

TIn this note I have spoken of Forms of Rolle's Theorem because in reality
the various theorems differ merely in form, not at all in generality. Some
forms are more convenient than others, and exhibit explicitly what the others
contain implicitly. Thus Cauchy’s Form is not more general than that of
Lagrange, but only sometimes more convenient; every theorem that can be
proved by the former can likewise be proved by the latter.
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