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Optical deformation-potential scattering of holes in multiple quantum well structures

K. Reimann® R. A. Kaindl M. Woerner
Max-Born-Institut fu Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-StraRe 2A, 12489 Berlin, Germany
(Received 1 August 2001; published 14 December 2001

The lifetime of excited states in intersubband transitions of holes in nonionic semiconductors, e.g., in
Si;_,Ge, is determined predominantly by optical deformation-potential scattering. We present a theory for the
calculation of the scattering rates. It includes strain and confinement, the hole-hole Coulomb interaction in
Hartree-Fock approximation, and the different possible optical phonon branches. As a consequence of the
symmetry of the optical deformation tensor the scattering rate between subbands of differeie.typéom
a heavy-hole subband to a light-hole or split-off subbasaonsiderably higher than between subbands of the
same type. Numerical results are given foy_SGe,/Si quantum wells with various Ge concentrations and
well widths. We find that the scattering rates decrease both with increasing Ge concentration in the wells and
with increasing well width. From this one can derive guidelines how to achieve lifetimes long enough to allow
the operation of a silicon-based quantum cascade laser.,,
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[. INTRODUCTION is based on this material. Light-emitting devices, however,
In semiconductor quantum wells, the two-dimensionalform an important exception due to the indirect band gap of
confinement leads to the emergence of subbands within th®i. Nevertheless, it is still a goal of research to integrate the
conduction and valence bands, which results in a multitudeemiconductor laser onto a silicon microelectronics chip.
of novel electronic and optical properties. An important newHere, the use of intersubband transitions in_$Ge,/Si
relaxation process is intersubband scattering: carriers pratuantum wells as the lasing transition might constitute a vi-
moted into a higher subband via thermal, optical or elecable, novel approacH.In contrast to quantum cascade lasers
tronic excitation are scattered into lower subbands by phobased oft In,Gay _,As/AlyIn; _ As or* GaAs/ALGa,_,As,
non emission or by interacting with other charge carriers. which use intersubband transitions of electrons, the
For electrons, numerous studies, both experimental an8i;_,Ge,/Si system uses intersubband transitions of holes.
theoretical, have revealed a detailed picttifeA subband ~ While first measurements show electroluminesc&tiein
separation larger than the energy of a LO phonon results isuch a structure, lasing has not yet been observed.
the emission of polar LO phonons within typically one pico-  In this paper, we provide a detailed theory of the scatter-
second. For smaller subband spacings, the rate is signifing of holes inside valence subbands of semiconductor quan-
cantly reduced as mainly electron-electron scattering retum wells. The calculation takes into account hole-phonon
mains. Scattering via the deformation potential plays ncscattering via the deformation potential, which is the domi-
marked role in the conduction band for reasons of symmetrynant process in the nonionic group-IV semiconductors. We
In contrast, only scarce information is available about thenclude the effects of symmetry, strain, and confinement, as
dynamics of holes. Here the scattering is determined by othexell as the hole-hole Coulomb interaction, and the different
processes and deformation potential interaction can exhibiaptical phonon branches that occur in this system. Results of
very high rates in the valence band since it can couple théhese calculations are reported for SiGe, /Si heterostruc-
p-wave components of the cell-periodic wave functions. Retures in a wide range of parameters. As the relaxation deter-
cently, an experimefthas been carried out that has deter-mines the important lifetime of the upper laser level in a
mined the relaxation of holes in SiGe/Si quantum wells aftequantum cascade structure, we provide guidelines how to
optical intersubband excitation of heavy-hole states, findingnaximize this lifetime.
rapid relaxation within=250 fs. As is well known, the va- The present paper is organized as follows. In Sec. Il we
lence band in tetrahedral semiconductors is considerablgive an overview over our band structure calculations, since
more complicated than the conduction band. Some theoretthe calculation of scattering matrix elements necessitates the
cal calculations for intersubband scattering of holes arevave functions of initial and final states. The calculations are
reported’ =2 but they fail to take into account the important based on the eight-barkl- p approximation, which yields
interplay between the symmetries of the hole wave functionseasonably accurate resdltsn the range of wave vectors
and that of the matrix elements correctly. A comprehensivenear k=0 that is accessible by optical phonon scattering,
treatment which includes these effects is essential here, butith acceptable computation times. Many-particle effects are
has not been carried out up to now. treated in the full Hartree-Fock approximation. The subse-
Aside from physical insights, an understanding of thesequent sectior(Sec. Ill) provides a description of the defor-
fundamental interactions is important also for the accuratenation potential interaction of holes with optical phonons,
engineering of semiconductor devices, where single compowhich is the central issue of this paper. The effects of sym-
nent plasmas as in quantum cascade structiiees of spe- metry and phonon modes are included and discussed explic-
cific current interest. Silicon is nowadays the most widelyitly. Then, in Sec. IV we give our results for Si,Ge,/Si
utilized semiconductor, as nearly all commercial electronicanultiple quantum well structures with different well widths
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and Ge concentrations. Finally, we conclude in Sec. V withsplit-off bands. Because of this, valence bands can only be
guidelines for achieving long lifetimes ip-type quantum designated either as heavy-hd@l¢H) or as light-hole—split-

cascade structures based on this system. off (LHSO). Further mixing occurs fok# 0, so that a band
with 100% heavy-hole character ka0 gets light-hole and
II. BAND STRUCTURE CALCULATIONS split-off contributions fork#0 (and vice versa We will

) ) designate bands according to their charactde=a0.
We perform the calculation of the electronic band struc-

ture of heterostructures in the eight-bdng approximation.
First we consider the bulk band structure of the constituent
materials including spin-orbit coupling and strain. In Sec. There are two possibilities for calculating the energies and
Il B the wave functions and energies for the heterostructureave functions in a heterostructure in the envelope-function
are obtained from a plane-wave basis. The carrier-carrier inR@PProact>-*° One of these is to solve the Hamiltonian in-

teraction is included in the full Hartree-Fock approximationdependently in each layer. The allowed states are then found
(Sec. 11 O. from boundary conditions at the interfaces between the lay-

ers. This method is well suited if one considers exclusively
conduction band electrons without any coupling to the va-
lence band. In contrast, the technique becomes very difficult
Within the eight-bandk-p approximation, bulk wave to carry out for an eight-component wave function. More-
functions for the wave vectdr are given as linear combina- over, including the full electron-electron interactigisee be-
tions low) prevents an analytical solution in this case.
8 Because of these problems we choose a second
_ekrS g L possibility!® namely, to solve the Hamiltonian for the total
h=e = oK) @) structure with spatially varying parameters along the growth
direction, taken ag [E;=Ey(2), A=A(2), etc)]. In the
of the following eight basis functions|v) (xyz growth direction we choose periodic boundary conditions

B. Heterostructures

A. Bulk Hamiltonian

representation'® [#(z+]1)=exp(k])¥(2)] with | equal to the period length of
the structure, i.e., to the sum of well and barrier widths. In
ST.PxT.PyT.P,1.S].Pxl Pyl Pzl . (2)  this way we calculate a three-dimensional crystal with the

(rather large lattice constant in z direction. This has the
advantage that one can use the same formalism both for su-
1perlattices and for uncoupled quantum wells simply by
r(T‘hanging the barrier width. As in any crystal, the resulting
wave functions can be classified according to their b@md
subband index N and by their wave vectok in the first
Brillouin zone. This implies especially thét,|</l.

Functions which automatically fulfill the boundary condi-
tions given above and which form a complete set are plane
wavese'"™ " (n is an integerwith the length ofK equal to
27/l and its direction parallel to the growth direction i
our case Thus, a wave function belonging to the sthtand
the wave vectok can be written as

The direction of the arrow indicates tkecomponent of the
electron spin, ang, p,, etc., give the symmetry of the cell-
periodic parts of the wave function. Very often another set o
basis functions is chosen, namely, one which is diagonal i
the total angular momentund [heavy-hole §=3/2,J,=
+3/2), light-hole §=3/2,J,==+1/2), and split-off
=1/2,J,=+1/2) band$!®?° Whereas this second choice
gives a simpler form for the spin-orbit coupling, all other
parts (e.g., thek- p interaction and the deformatipmof the
total Hamiltonian get more complicated.

The HamiltonianH, without carrier-carrier interaction,
but including the effect of strain, is given in Ref. 18. It de-
pends on the following parameters: the energy Bgp the
valence-band offsed,z, the mass parametefs L, M, and 1
N, which describe interactions with additional bands not in- ,/,Nk(r):_eik-rz ONno keinK‘f|U>_ 3
cluded explicitly, the momentum matrix eleméhbetweers Woooa T
and p states, the spin-orbit couplinyso, the difference of
the hydrostatic deformation potenti@i$? of conduction and . lations one uses instead ©ofa suitably chosem..).
v_alence banda.-a,, f%”d the te_tr_agonal deforrr_]atmn POteN- and the indexv over the states given in E@2). V is the
tial b. In general there is an additional contribution due to the

trigonal deformation potential, but this is zero for our case ofnormalization volume.
. ! The complex coefficient and the ener are
pseudomorphic growth on @01) surface. P SNnw k 9% i

) . . found from calculating the matrix elementstdf and deter-
Without the tetragonal deformation, kt=0 the Hamil- 9 k

mining then the eigenvalues and eigenvectors. For the struc-

tonian leads to the typical band structure of cubic SemICoNg s \we have studied, it is sufficient to chomse, between

ductors, namely a twofold degenerate conduction band an . . o
) . _l’_
two valence bands, one fourfold and the other twofold de- 2 and 22. This results in matrix sizes (1, 8) between

generate. Fok+# 0, the fourfold band splits into heavy- and 200 and 360, which are easily tractable on a typical PC.
light-hole bands. With the tetragonal deformation, the four-
fold degeneracy is lifted already &&= 0, resulting in three

twofold degenerate valence bands. Additionally, the tetrago- The above Hamiltonian is suitable only in the absence of
nal deformation introduces a mixing between light-hole andree carriers. Since we consider, however, structures with

The summation index runs from—c to « (for numerical

C. Carrier-carrier interaction
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rather high carrier densitige.g., by modulation dopingthe g

interaction between the carriers needs to be included. It con- HM’M,,k=E fngU (Mg Mk (Ngy (Ng) T Y dopings
sists of the direct Ki%) and the exchangeH®) Coulomb N

interaction. In the Hartree-Fock approximation, these inter-

actions induce additional couplings between states with band Hywr == 2 FraU migiay Naym i - 4
indicesM andM’ (or energy shifts foM =M"), which are N.azk
given by with

PRk, (D ko (1D PR (1) Ui (1)

_ _~2 "
U(lel)(Nzkz)(N3k3)(N4k4)_ qeff dAmeger—r] dvdVv

2 * *
g gNl,m,u,klgNz,m+p,u,k29N3,n,v,k3gN4,n—p,v,k45 -
=-v ky—Kytkg—kg,0°
Voo €o€r|ky— kot pK|? Pem

m,u

Fork,=k, the term withp=0 is omitted. In these equations in the same way as the exchange interaction. While this ap-
g. is the elementary charge, is the vacuum dielectric con- proach typically gives satisfactory ground state energies, the
stant(SI units, ¢, is a background dielectric constant causedexcited states are much less accurate, since an electrostatic
by the screening from all other electrons, afyg, is the  potential has the same influence on both ground and excited
occupation of the state with wave veciprand indexN. In  states, whereas the exchange interaction acts mainly on the
thermal equilibrium at the temperatulie fy, is the Fermi  ground state, as already mentioned above. A second short-

distribution for holes coming of all density-functional approximations is that they
are only applicable to a limited range of carrier densities.
_ 1 Because of these problems we employ here the exact expres-
fng= —Eng— & . ®  sion for the exchange, E¢).
ex;{ kB—T) +1 Since the expressions fét? andH® [Eq. (4)] include the

eigenvectors anflvia Eq. (6)] the energies for all occupied
The chemical potentigk has to be chosen so that the total states, first one solved, without carrier-carrier interaction
number of carriers is equal to the number of carriers preserfbor a sufficient number of points ik space. From Eq(4)
by doping or by interband excitation. In doped material thereone finds that to calculatd® andH® one has to include all
is an extra termJ y,,ing due to the potential of the ionized points ink space which have non-negligible occupation. The
acceptors/donors. Because of the dependen¢¢’aindH®  distribution spreads out for increasing temperature, and thus
on the carrier distribution, the resulting band structure bethe volume ink space(and with it the numerical effort
comes temperature dependent even without an explicit temincreases considerably with temperature. To determine how
perature dependence of the band structure parameters.  fine the spacing\k between adjacerk points has to be to

The direct Coulomb termii® is determined by the carrier achieve a reasonable accuracy, we have compared the results
density. It can be transformed into an electrostatic potentiafor the free-electron case, which can be solved analytically,
so that its action on all states is about the same. This is iwith the results of the summation in E@}). It turns out that
contrast to the exchange p&tt, which mainly acts on states already atT=0 it is necessary to calculate the exchange
with the same symmetry as the occupied states. Thus, if onlgnergyH® (HY converges much fasteat more than 3600
subband 1 is occupied, the effectldf is strongest for sub- points (plus the symmetry-equivalent points k space to
band 1 and rapidly decreases for higher subbands. Thereforgchieve an accuracy of better than 0.5 meV. Since, however,
since the calculation off® is quite time consuming, we re- the error is to a very good approximation linearAk (we
strict M andM’ to the three lowest-energy subbands. Espeuse the same spacing ¥y, andz direction, i.e., H8(AK)
cially, we do not consider Auger terms, i.e., contributions=H®(Ak—0)+CAk with some (unknown constantC,
with M equal to an electron and’ equal to a hole subband H®(Ak—0) can be found with extremely high precistn
(or vice versa The reason for this is that apart from their from H8(Ak—0)=2H®(Ak) — H®(2AKk). With this expres-
small values such contributions go beyond the one-electrosion only 60 points are needed for the same accuracy of 0.5
model used here, since they allow generation of electronmeV or, conversely, the same number of points as above now
hole pairs. yields an accuracy of better thaneV.

Because of the considerable computational effort needed \jith these matrix elements fét¢ andH®€ one then solves
to evaluateH® from Eq. (4), there exist a large number of the Schrdinger equation for the total Hamiltonian
approximationg’ Most of these construct a carrier-density
dependent electrostatic potential that shifts the energy levels H®=Hy+ H{+HE . (7)
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From the new solutions one then calculates improved values
for HY and H®, solves agairH® and so on until conver-
gence is reached. We use as criterion for convergence that
the maximum energy deviation between two steps is less
than 50 weV. Fortunately, convergence is rather fast, so that
typically just two iterations are needed.

IIl. DEFORMATION POTENTIAL SCATTERING
The electronic band structure is determined by the atoms

Py Py P,

%

in the unit cell. Accordingly, a change of atomic positions HH LH SO
%

leads to changes of the band structure, the so-called
deformation-potential interacticit. Such changes of atomic
positions can occur either because of externally applied
stress or because of phonons. External stress leads to a static
band structure change, which has to be taken into account in
calculations of strained quantum welkee above Phonons,
on the other hand, lead to dynamic changes, which may al-
low intra- or interband scattering of carriers. In the harmonic
approximation the phonon scattering matrix elements
M are linear in the atomic displacements®®3° M FIG. 1. Possible scattering channels by the optical deformation
=<i|D-u|f>. potential in the(a) xyz basis and in th€b) angular momentum

In the following we will restrict ourselves to scattering by basis.
optical phonons in semiconductors with diamond structure

(point groupO;,=m3m) 3L The high symmetry of this struc- deformation potential tensd@ takes the following forn?®3*
ture limits the number of states between which scattering is

d, 0\ /d, 0} (d, 0

o da/lo a)lo off @

possiblé? and determines the form of the tengarTo decide _do

whether scattering between the statesdf is allowed, one D= a

has to determine the symmetric part of the direct product

I'yxT; [T and T; are the irreducible representatiofr ~ With

symmetrie$ of these statds If this product contains the

symmetry of the phonon involved, the scattering is allowed.

Under the usual assumption that the deformation potential

interaction does not couple states with different spin it is d,=

sufficient to consider the single-group representations. Since

the optical phonons near the zone center Hayesymmetry

(we give the irreducible representations in the notation of

Koster et al), intraband scattering is allowed for bands

with T, , T, , I'2, and 'y symmetries. In particular,

intraconduction-band  scattering is forbidden, but d,=

intravalence-band scattering is allowed, since the uppermost

valence band of diamond-type semiconductors typically has 0 0

I', symmetry. More detailed selection rules can be obtained

from the tables of coupling coefficients in Ref. 33. One findsThe strength of this interaction is determined by the optical

that scattering from ar-like state into ary-like state is only ~ deformation potential constantly, which for typical

allowed if the elongation of the optical phonon is parallel toSemiconductors is on the order of several ten eV. Unfortu-

2_30134'35A|| other allowed processes are obtained by permu.nately, there exist several definitions for the prefactor in Eq

tation ofx, y, andz (see Fig. 1 If one considers the angular (8) (for example, the prefactod, in Ref. 37 is equal to

momentum basigthe basis functions are then heavy-hole, J8/3d,) and for the displacemenu. Whereas some

light-hole, and split-off bands this interaction again only authors®3* define asu the displacement of one of the two

couples states of different types. For example, a heavy holatoms in the primitive cell of the diamond structure, otf%rs

is not coupled to other heavy-hole states, but to light-holdincluding ug define it as the difference of the displacements

and split-off bandgsee Fig. 1 of the two atoms. The advantage of the second definition is
Although these selection rules are known since more thathat it can be used equally well for structures where the two

40 years? there exist a considerable number of papérs atoms have different masses and, accordingly, different am-

which do not use the selection rules, but simply assume thatlitudes(this is the case not only for zinc blende, but also for

the scattering is proportional to the wave function overlapthe SiGe alloys considered here

Accordingly, they predict wrong lifetimes. Using Fermi’s Golden Rule, the total scattering rate from
On the basis of these symmetry considerations, the opticdhe initial stateyy  into all other stategyy: - is given by

o O O o©o
o O O ©o
O O O
o O O o
= O O O
o O O ©o
S O - O

o O O
= O O

0
0
0

o O +» O

0
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TABLE |. Band-structure and latticgattice constané and elas-

WNYK=77T > [(nr g | D= () [ o i) |2 tic constantsc;;) parameters used for Si,Ge,/Si quantum wells.
N’.k’.j.q The data for the $i ,Ge, alloy are obtained by linear interpolation
between the values for Si and Ge, except for the valence band
X{a[EN'k_ EN/’k'_ﬁQj(q)][lJr nj(q)] parameteiM, where we use the nonlinear iﬁterpolation formula of
+ S[Enk— Env ke +ﬁQj(q)]nj(q)}_ ©) Ref. 40. The references used are given in the last column.

The first term in the braces corresponds to phonon emission, Si Ge Refs.
the second to phonon absorption. In this equatiga) isthe g _(ey) 4.185 0.898 41
displacement of the phonon moge&vith wave vectorg, en- Ag 0 0
ergy£Q;(q), and occupatiom;(q), which is assumed to be | 0 0
at the thermal-equilibrium value. In the diamond structure 46 575 a1
there is no splitting between transverse and longitudinal opg, 0 0
tical phonons atj=0, which leads to a threefold degeneracy. P2/2m, (eV) 268 26.8 42
We will assume in the following that the energy of the opti- A (rﬁe\/) 44' 297' 41
cal phonon is independent of the wave vectehich is a S0
very good approximation, since only phonons in a small parf&"B (meV) 0 470 43,44
near the center of the Brillouin zone are involyetlQ;(q) 2 (prg)P igg'éo fgi"gg :‘11
=#h{); and accordin_glmj(q)=n_j . One should note that Eq. ¢11 (GP3 ' '
(9) does not contain an explicit dependence on the wavé&i2 (GP3 63.9 41.3 41
vectorq=k’' —k of the optical phonon involved, in contrast b (eV) 2.2 2.4 41
to, e.g., polar optical scattering. a:—a, (ev) -5 -12.7 42,41

In bulk material the phonon displacemanin Eq. (9) is € 11.9 16.1 41,42

position independent. The amplitude can be found from the

requirement that the total energy of the phonon is equal to . .
Q. In a heterostructure it is more difficult to determine the The phono_n wave ve_cth in EQ. (1.0) can be _vvntten as
g=Q+ pK, with Q restricted to the first Brillouin zone of

phonon amplitudes, which will in general depend on position he heterostructure anglan integer. The matrix element in
within the heterostructure. The best way would be to perfor . . :
y P g. (9) then yields the selection rul®@=k’—k. From Eqgs.

a lattice-dynamical calculation for the whole structtirk. . )
turns out, however, that nearly identical scattering rates caﬁg)' (9), and (10)_,_the_ scattering rate caused lpolarized
honons of typg is given by:

be obtained from a much simpler model. We assume that fol

the phonons the heterostructure is equivalent to bulk material ra.da
with the composition of the wells. The justification for thisis  w,,, ., =~——— > |> g* g
. : . . KIXTNQ N’,n—p,3k’IN,ndk
that phonon amplitudes are only of interest in the regions i#iN K p | D
where|(r)|? has appreciable magnitude. For bound states Lo Lo
this is just the case in the wells. Since the phonon amplitudes I’ in-pak INN3K T INr - p 7k ONn 8K
in the barriers do not matter, we can simply assume that 2
these amplitudes are_the same as in t_he wells. _ +g’,§,’n_p'8’k,g,\,,n,7’k [(Enk—Enr kr —h4))
From these considerations the displacemeyltq) is
given by X (1+n)+8(Exy—Enr e +AQ)N]. (1D)

According to Eq.(8), for y polarized phonons the indices
(3,4,7,8 in Eq. (11) change to(2,4,6,8 and for z polarized
phonons to(2,3,6,7. Although the volumeV is explicitly
contained in Eq(11), the final result does not depend Wn
with w; the reduced mass of the two atoms in the primitivesince the number of possibl€ is proportional toV [to be

unit cell, éj a unit vector along, y, or z, andr the position ~ Specific, if one calculates the energies and wave functions on
of the primitive unit cell. The factor describes the phonon a three-dimensional grid ikspace with a spacing dfk, the
amplitudes for the different types of optical phonons whichvolume isV=(27/Ak)®]. The accuracy of the numerical
are possible. As an example, in a, SiGe, alloy optical ~ calculation of the scattering rate increases with decreasing
phonons may be either Ge-Ge-likthe two atoms in the Ak. The maximumk| has to be chosen to include the final
primitive unit cell are both Geu=mgd2) with a phonon states after phonon scattering.

energy of 36 meV, Si-Ge-lik&he primitive unit cell contains

one Si and one Ge atomy '=mgi+mg!, energy 50 IV. RESULTS

meV), or Si-Si-like (u=mg/2) with an energy of 60 me¥? In this section we present our results for the HH2 scatter-
Sincex of all atoms are Ge atoms? of all primitive unit  ing rates in Si_,Ge /Si multiple quantum wells. For the
cells contain two Ge atoms. Thus, for Ge-Ge-like phonongalculation of scattering rates it is necessary to first calculate
a=x2, for Si-Ge-like phononsr=2x(1—x), and for Si-Si-  the electronic band structure. The parameters used for our
like phononsa=(1—x)2. band structure calculations are compiled in Table I. One

= hat i 10
u;(q)= aimejexmq-r), (10
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FIG. 2. Band structure of a §iGe, 5/ Si multiple quantum well
structure with 4.4-nm wells and 18-nm barriers. The dashed lines
give the energies without and the solid lines with exchange interac-
tion (the chemical potentigk for the second case is shown by the
dotted ling. The arrows show possible scattering channels for the
three types of optical phonons.

e

FIG. 3. Angular dependence of the scattering rate from the HH2
state ak=0 to the LHSO1 statédashed lingand to the HH1 state

. solid ling) for the same structure as in Fig. 2.
should note that the parameteAsL, and N have different (solid fine Het nH9

values for six- and eight-barid p calculations, since in the creases by this amount. We would like to point out that the
eight-band calculation the interaction with the conductioncalculation of this rather important effect necessitates the full
bands is included eXpIICItIy In the six-band calculation this Hartree-Fock Hamiltonian. Density-functiona| approxima-
interaction is incorporated into the parametéte six-band  tions, in contrast, will not lead to changes of the HH2-HH1
parameter is the one usually given in data compilafiofis  distance. The energy difference caused by the exchange in-

according t6°~* teraction decreases with increasihg; it extends ink space
to about X¢. In contrast, the other bands, which are unoc-
2 cupied at the low temperatures we consider Hé&K), are
P=1(/2 1 . .
XO®)=x®y | 4~ (12) almost unaffected by the exchange interaction.

We use the energies and eigenvectors from the band-
structure calculation to determine the HH2 scattering rate.
(X is one ofA, L, andN). It turns out that the correct elec- Scattering can occur either to the LHSO1 or to the HH1
tron and hole massd#cluding their direction dependence band. The arrows in Fig. 2 show the possible channels for
are obtained foX(8)=0 for the whole range of Ge concen- scattering out of the HH2 band with the participation of the
trations. This means that the coupling of the valence band téree types of optical phonon possible in a SiGe alloy. A
other conduction bands can be neglected for these three pgalculation according to Eq11) with dy=22 eV (this cor-
rameters. The only parameter which is influenced by higheresponds to the deformation potential constagit \8/3d,
conduction bands i#. Since we do not consider explicity =36 eV in Ref. 37 at a temperature of 12 K yields a total
these higher conduction bantiswould need a 14-band cal- scattering rate of 3.4 ps, which corresponds to a HH2
culation to do thiy M remains Ge-concentration dependentlifetime of*® 290 fs. This result agrees very well with the
and thus position dependent. experimental result in Ref. 6 of 250100 fs.

As an example for a band-structure calculation according The scattering rate from the HH2 k&0 to the LHSO1
to Sec. Il, we show in Fig. 2 the valence band structure, i.e(2.6 ps ') is more than three times larger than the scattering
the hole energywhich is equal to minus the energy of an rate to the HH1 (0.8 ps'). This is what one expects from
electron in the valence bands a function of the in-plane the selection rules given in Sec. lll, since HH2-HH1 scatter-
wave vectolk, for Siy sGe, 5/ Si multiple quantum wells with  ing is forbidden ak=k’ =0 (see Fig. 1 It becomes allowed
4.4-nm thick wells and 18-nm thick barriers. The carrier den-only through the LH and SO admixtures to the HH1 state for
sity per well is 1. 10*? cm™2 from & doping the center of k’>0. This is further illustrated in Fig. 3 by a plot of the
the barriers. For the following we are interested in the threescattering rates from HH2 &=0 to LHSO1 and HH1 as a
valence bands with the lowest hole energies, namely, HHIfunction of the direction of the wave vect& of the final
LHSO1, and HH2. One can see a pronounced warfiing state. One can see that the scattering to HH1 is much larger
energy is different for different directions &) and an in[110] directions than in100] directions, whereas the scat-
avoided crossing between LHSO1 and HH2 fd{110].  tering to LHSOL1 is nearly isotropic. The reason for this is
Further, Fig. 2 shows the effect of the exchange interactionthat the LHSO1 wave functions are mainly LH- and SO-like,
One sees that the exchange interaction decreases the enengyependent of the direction &f . In contrast, the HH1 wave
of the occupied HH1 band ne&=0 by 17 meV. Accord- functions are mainly HH-like with only a small admixture of
ingly, the energetic distance between HH2 and HH1 in-LH and SO. This admixture increases with increadiky,
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from the HH2 state ak=0 for the same structure as in Fig. 2. Well width (nm)

since it is caused by the nondiagonal terms in e
. . 18 .

Ham"t?”'a”- ’Because of the warping of _the valence bandSil_xGe,(/Si multiple quantum wells for Ge concentrations of

(see Fig. 2|k’| (and therefore the scattering rafe larger  _3 0’5 and 0.7 as a function of well width, calculated without

for scattering into theg110] direction as compared to the aking into account the exchange interaction. The HH1 barid at

[100] direction. _ =0 is chosen as the zero of energy.
The temperature dependence of the scattering (ams

Fig. 4) is determined mainly by the phonon occupation num-One can see from Fig. 5 that the HH2-HH1 distance strongly
bersn; in Eqg. (11). The band structure also changes with decreases with increasing well width as expected for a quan-
temperature because of the temperature dependence of than well. In contrast, the energy difference between LHSO1
band-structure parameters and the change of the exchangad HHL1 is almost independent of the well width, since it is
interaction with temperature, but this has only rather smalldetermined nearly exclusively by the built-in strain and thus
effects on the phonon scattering rates. One sees in Fig. 4 thhy the Ge concentratiorin the wells.
the scattering rates are nearly constant up to a temperature of For a Ge concentration of=0.5 we show in Fig. 6 the
about 150 K. For higher temperatures they incre@sea  scattering rates from the HH2 &t=0 as a function of the
large part caused by the onset of phonon absorption prd-H2-HH1 distance, which is changed by varying the well
cesseg but because of the high phonon energies this inwidth (upper scale The HH2-HH1 scattering rate increases
crease is quite moderatthe lifetime at room temperature is monotonically with the energetic distance, since the final
210 fs compared to 290 fs at 0)K states will have increasingly largkf and thus larger LH and

In order to determine the dependence of HH2 scatteringO admixtures. In contrast, the HH2-LHSO1 scattering rate
rates on well width and Ge concentration it is necessary tahows a steplike behavior. It increases when scattering by an
perform a band-structure calculation for each structure. Beadditional type of optical phonon becomes possible. Thus the
cause of the computational effort involved, we do not includeHH?2 lifetime drops from 2050 fs for a well width of 5.3 nm
the exchange interaction in these calculations. As seen in Fighere no optical phonon can participate 290 fs for a well
2, this means that the HH2-HH1 distance will be too smallwidth of 4.5 nm(all three types of phonon can participate
by about 17 meMthis energy difference has only a rather For even thinner wells the HH2 lifetime stays about constant
small well-width dependengeFor a given well width the (the increase of the HH2-HH1 rate being compensated by the
HH2 lifetimes calculated with and without exchange interac-decrease of the HH2-LHSOL1 rate
tion are almost identicalfor 4.4-nm well width these life- In Fig. 7 we present the total scattering rates fqr 366,
times differ by less than 1 fs quantum wells witbk=0.3, 0.5, and 0.7. Again the steplike

In Fig. 5 we summarize the band structure calculationsbehavior can be observed. Comparing the rates for different
Shown are the HH2 and the LHSOL1 energies relative to th@alues ofx one finds that for all transition energies the rates
HH1 energy as a function of the well width for Ge concen-decrease with increasing This is caused by two effects: For
trations ofx=0.3, 0.5, and 0.7. The periddum of well and the HH2-LHSO1 scattering the thresholds for each type of
barrier width$ is held constant dt=22.4 nm, i.e., we have optical phonon are reached at higher transition energies,
nearly uncoupled quantum wells. The carrier density per welsince the LHSO1-HH1 distance increases wiflsee Fig. 3,
is 1.2<10*2 cm™ 2 from & doping the middle of the barriers. which means that the HH2-LHSO1 distance decreases. The

FIG. 5. Energies of the LHSO1 and the HH2 bandkatO for
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FIG. 6. Calculated scattering ratékeft scale¢ and lifetimes the HH2-HH1 transition energy. In the shaded argz.6) the
(right scalg at zero temperature from the optical phonon deforma-strain makes it impossible to grow such samples.

tion potential scattering for $iGe, 5/Si multiple quantum wells as
a function of the HH2-HH1 distancévaried by varying the well HH2-HH1 scattering, which is determined by the LH and SO

width, see upper scaleThe total scattering rate is divided into the admixtures to the HH1 wave function, decreases wisince
rate from HH2 to LHSO1 and into the rate from HH2 to HH1. The the increasing LHSO1-HH1 distance leads to smaller LH and
arrows show the thresholds for scattering by Ge-Ge, Si-Ge, angQ admixtures.

Si-Si type optical phonons.

V. CONCLUSIONS FOR SiGe-BASED QUANTUM
CASCADE LASERS

For a laser it is advantageous to have a long lifetime in the
upper laser level. Structures have been propd%add even
-7 103 luminescence(but not lasing was observed in a recent
experiment®>!® with HH2—HH1 as the anticipated lasing
transition. Since, as we have seen, scattering into LHSOL1 is
much more efficient than scattering into HH1, one can
achieve comparatively long lifetimes>(1 ps, which would
be similar to excited state lifetimes in electron intersubband
transitiong at low temperatures, if scattering into LHSO1 is
not possible. This is the case if the energy difference between
HH2 and LHSOL is less than one optical phonon energy.
Since the energy difference between LHSO1 and HH1 is
determined mainly by the strain, it increases with the Ge
concentratiorx in the wells(see Fig. 5. Thus, for a given
HH2-HH1 distancex has to be above a critical valug to
achieveE - E| hso1<f () (see Fig. 8 For a given value of
X, the transition energy depends on the well thickness. It
] turns out that if one uses the Ge concentratigirom Fig. 8,
——tl—— 10 the necessary quantum well thickness is approximately con-
0.20 0.25 o ;
HH2 — HH distance (@) stant at_ 5 nm. Because of the rather large built-in strain,

5-nm wide quantum wells can only be grot¥f® for Ge

FIG. 7. Calculated total scattering rates at zero temperature fogoncentrations up te=60%. This limits the maximum laser
optical phonon deformation potential scattering fo;_$Ge/Si photon energy to about 120 meV. One should note that the
multiple quantum wells for Ge concentrations>#0.3, 0.5, and  strain is responsible for the decrease of the HH2-LHSO1
0.7 as a function of the HH2-HH1 distance. distance, which eventually makes LO-phonon scattering im-

Scattering rate (ps™)
HH2 lifetime (ps)

0.1
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possible. Therefore schemes which reduce the strain by ushe long-wavelength range both Si and Ge have the addi-

ing, e.g., graded SiGe buffers, are goingréducethe life-  tional advantage that they do not possess infrared-active
time. However, to be able to grow a quantum cascad@honons, which limit the longest wavelengths to be reached
structure, which consists of a large number of wéle limit  with zinc blende semiconductors.

given above of 60% Ge concentration for a 5-nm well ap-

plies to a single well one has to find a way to compensate

for the strain. One possibility for this is to use barriers with ACKNOWLEDGMENTS

the opposite sign of the strain, for exampté?Si;_,C, .
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