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Optical deformation-potential scattering of holes in multiple quantum well structures

K. Reimann,* R. A. Kaindl,† M. Woerner
Max-Born-Institut fu¨r Nichtlineare Optik und Kurzzeitspektroskopie, Max-Born-Straße 2A, 12489 Berlin, Germany

~Received 1 August 2001; published 14 December 2001!

The lifetime of excited states in intersubband transitions of holes in nonionic semiconductors, e.g., in
Si12xGex , is determined predominantly by optical deformation-potential scattering. We present a theory for the
calculation of the scattering rates. It includes strain and confinement, the hole-hole Coulomb interaction in
Hartree-Fock approximation, and the different possible optical phonon branches. As a consequence of the
symmetry of the optical deformation tensor the scattering rate between subbands of different types~e.g., from
a heavy-hole subband to a light-hole or split-off subband! is considerably higher than between subbands of the
same type. Numerical results are given for Si12xGex /Si quantum wells with various Ge concentrations and
well widths. We find that the scattering rates decrease both with increasing Ge concentration in the wells and
with increasing well width. From this one can derive guidelines how to achieve lifetimes long enough to allow
the operation of a silicon-based quantum cascade laser.,,

DOI: 10.1103/PhysRevB.65.045302 PACS number~s!: 73.21.Fg, 72.10.Di, 78.47.1p
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I. INTRODUCTION

In semiconductor quantum wells, the two-dimension
confinement leads to the emergence of subbands within
conduction and valence bands, which results in a multit
of novel electronic and optical properties. An important n
relaxation process is intersubband scattering: carriers
moted into a higher subband via thermal, optical or el
tronic excitation are scattered into lower subbands by p
non emission or by interacting with other charge carriers

For electrons, numerous studies, both experimental
theoretical, have revealed a detailed picture.1–5 A subband
separation larger than the energy of a LO phonon result
the emission of polar LO phonons within typically one pic
second. For smaller subband spacings, the rate is sig
cantly reduced as mainly electron-electron scattering
mains. Scattering via the deformation potential plays
marked role in the conduction band for reasons of symme

In contrast, only scarce information is available about
dynamics of holes. Here the scattering is determined by o
processes and deformation potential interaction can exh
very high rates in the valence band since it can couple
p-wave components of the cell-periodic wave functions. R
cently, an experiment6 has been carried out that has det
mined the relaxation of holes in SiGe/Si quantum wells a
optical intersubband excitation of heavy-hole states, find
rapid relaxation within'250 fs. As is well known, the va
lence band in tetrahedral semiconductors is consider
more complicated than the conduction band. Some theo
cal calculations for intersubband scattering of holes
reported,7–12 but they fail to take into account the importa
interplay between the symmetries of the hole wave functi
and that of the matrix elements correctly. A comprehens
treatment which includes these effects is essential here
has not been carried out up to now.

Aside from physical insights, an understanding of the
fundamental interactions is important also for the accur
engineering of semiconductor devices, where single com
nent plasmas as in quantum cascade structures13 are of spe-
cific current interest. Silicon is nowadays the most wide
utilized semiconductor, as nearly all commercial electron
0163-1829/2001/65~4!/045302~10!/$20.00 65 0453
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is based on this material. Light-emitting devices, howev
form an important exception due to the indirect band gap
Si. Nevertheless, it is still a goal of research to integrate
semiconductor laser onto a silicon microelectronics ch
Here, the use of intersubband transitions in Si12xGex /Si
quantum wells as the lasing transition might constitute a
able, novel approach.12 In contrast to quantum cascade lase
based on13 InxGa12xAs/AlyIn12yAs or14 GaAs/AlxGa12xAs,
which use intersubband transitions of electrons,
Si12xGex /Si system uses intersubband transitions of ho
While first measurements show electroluminescence15,16 in
such a structure, lasing has not yet been observed.

In this paper, we provide a detailed theory of the scat
ing of holes inside valence subbands of semiconductor qu
tum wells. The calculation takes into account hole-phon
scattering via the deformation potential, which is the dom
nant process in the nonionic group-IV semiconductors.
include the effects of symmetry, strain, and confinement
well as the hole-hole Coulomb interaction, and the differe
optical phonon branches that occur in this system. Result
these calculations are reported for Si12xGex /Si heterostruc-
tures in a wide range of parameters. As the relaxation de
mines the important lifetime of the upper laser level in
quantum cascade structure, we provide guidelines how
maximize this lifetime.

The present paper is organized as follows. In Sec. II
give an overview over our band structure calculations, si
the calculation of scattering matrix elements necessitates
wave functions of initial and final states. The calculations
based on the eight-bandk•p approximation, which yields
reasonably accurate results17 in the range of wave vector
near k50 that is accessible by optical phonon scatterin
with acceptable computation times. Many-particle effects
treated in the full Hartree-Fock approximation. The sub
quent section~Sec. III! provides a description of the defor
mation potential interaction of holes with optical phonon
which is the central issue of this paper. The effects of sy
metry and phonon modes are included and discussed ex
itly. Then, in Sec. IV we give our results for Si12xGex /Si
multiple quantum well structures with different well width
©2001 The American Physical Society02-1
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and Ge concentrations. Finally, we conclude in Sec. V w
guidelines for achieving long lifetimes inp-type quantum
cascade structures based on this system.

II. BAND STRUCTURE CALCULATIONS

We perform the calculation of the electronic band stru
ture of heterostructures in the eight-bandk•p approximation.
First we consider the bulk band structure of the constitu
materials including spin-orbit coupling and strain. In Se
II B the wave functions and energies for the heterostructu
are obtained from a plane-wave basis. The carrier-carrie
teraction is included in the full Hartree-Fock approximati
~Sec. II C!.

A. Bulk Hamiltonian

Within the eight-bandk•p approximation, bulk wave
functions for the wave vectork are given as linear combina
tions

ck5eik•r (
v51

8

bvkuv& ~1!

of the following eight basis functions uv& (xyz
representation!:18

s↑,px↑,py↑,pz↑,s↓,px↓,py↓,pz↓. ~2!

The direction of the arrow indicates thez component of the
electron spin, ands, px , etc., give the symmetry of the cel
periodic parts of the wave function. Very often another se
basis functions is chosen, namely, one which is diagona
the total angular momentumJ @heavy-hole (J53/2, Jz5
63/2), light-hole (J53/2, Jz561/2), and split-off (J
51/2, Jz561/2) bands#.19,20 Whereas this second choic
gives a simpler form for the spin-orbit coupling, all oth
parts ~e.g., thek•p interaction and the deformation! of the
total Hamiltonian get more complicated.

The HamiltonianHk without carrier-carrier interaction
but including the effect of strain, is given in Ref. 18. It d
pends on the following parameters: the energy gapEg , the
valence-band offsetDVB , the mass parametersA, L, M, and
N, which describe interactions with additional bands not
cluded explicitly, the momentum matrix elementP betweens
and p states, the spin-orbit couplingDSO, the difference of
the hydrostatic deformation potentials21,22 of conduction and
valence bandsac2av , and the tetragonal deformation pote
tial b. In general there is an additional contribution due to
trigonal deformation potential, but this is zero for our case
pseudomorphic growth on a~001! surface.

Without the tetragonal deformation, atk50 the Hamil-
tonian leads to the typical band structure of cubic semic
ductors, namely a twofold degenerate conduction band
two valence bands, one fourfold and the other twofold
generate. ForkÞ0, the fourfold band splits into heavy- an
light-hole bands. With the tetragonal deformation, the fo
fold degeneracy is lifted already atk50, resulting in three
twofold degenerate valence bands. Additionally, the tetra
nal deformation introduces a mixing between light-hole a
04530
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split-off bands. Because of this, valence bands can only
designated either as heavy-hole~HH! or as light-hole–split-
off ~LHSO!. Further mixing occurs forkÞ0, so that a band
with 100% heavy-hole character atk50 gets light-hole and
split-off contributions forkÞ0 ~and vice versa!. We will
designate bands according to their character atk50.

B. Heterostructures

There are two possibilities for calculating the energies a
wave functions in a heterostructure in the envelope-funct
approach:23–26 One of these is to solve the Hamiltonian in
dependently in each layer. The allowed states are then fo
from boundary conditions at the interfaces between the
ers. This method is well suited if one considers exclusiv
conduction band electrons without any coupling to the
lence band. In contrast, the technique becomes very diffi
to carry out for an eight-component wave function. Mor
over, including the full electron-electron interactions~see be-
low! prevents an analytical solution in this case.

Because of these problems we choose a sec
possibility,19 namely, to solve the Hamiltonian for the tota
structure with spatially varying parameters along the grow
direction, taken asz @Eg5Eg(z), A5A(z), etc.#. In the
growth direction we choose periodic boundary conditio
@c(z1 l )5exp(ikzl)c(z)# with l equal to the period length o
the structure, i.e., to the sum of well and barrier widths.
this way we calculate a three-dimensional crystal with
~rather large! lattice constantl in z direction. This has the
advantage that one can use the same formalism both fo
perlattices and for uncoupled quantum wells simply
changing the barrier width. As in any crystal, the resulti
wave functions can be classified according to their band~or
subband! index N and by their wave vectork in the first
Brillouin zone. This implies especially thatukzu<p/ l .

Functions which automatically fulfill the boundary cond
tions given above and which form a complete set are pl
waveseinK•r (n is an integer! with the length ofK equal to
2p/ l and its direction parallel to the growth direction (z in
our case!. Thus, a wave function belonging to the stateN and
the wave vectork can be written as

cNk~r !5
1

AV
eik•r(

n,v
gN,n,v,ke

inK•ruv&. ~3!

The summation indexn runs from2` to ` ~for numerical
calculations one uses instead of` a suitably chosennmax),
and the indexv over the states given in Eq.~2!. V is the
normalization volume.

The complex coefficientsgN,n,v,k and the energyENk are
found from calculating the matrix elements ofHk and deter-
mining then the eigenvalues and eigenvectors. For the st
tures we have studied, it is sufficient to choosenmax between
12 and 22. This results in matrix sizes (16nmax18) between
200 and 360, which are easily tractable on a typical PC.

C. Carrier-carrier interaction

The above Hamiltonian is suitable only in the absence
free carriers. Since we consider, however, structures w
2-2
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rather high carrier densities~e.g., by modulation doping!, the
interaction between the carriers needs to be included. It c
sists of the direct (Hd) and the exchange (He) Coulomb
interaction. In the Hartree-Fock approximation, these in
actions induce additional couplings between states with b
indicesM andM 8 ~or energy shifts forM5M 8), which are
given by
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HM ,M8,k
d

5(
N,q

f NqU (Mk)(M8k)(Nq)(Nq)1Udoping,

HM ,M8,k
e

52 (
N,qÞk

f NqU (Mk)(Nq)(Nq)(M8k) , ~4!

with
U (N1k1)(N2k2)(N3k3)(N4k4)52qe
2E E cN1k1

* ~r !cN2k2
~r !cN3k3

* ~r 8!cN4k4
~r 8!

4pe0e r ur2r 8u
dVdV8

52
qe

2

V (
n,v,p
m,u

gN1 ,m,u,k1
* gN2 ,m1p,u,k2

gN3 ,n,v,k3
* gN4 ,n2p,v,k4

e0e r uk12k21pK u2
dk12k21k32k4 ,0 . ~5!
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For k15k2 the term withp50 is omitted. In these equation
qe is the elementary charge,e0 is the vacuum dielectric con
stant~SI units!, e r is a background dielectric constant caus
by the screening from all other electrons, andf Nq is the
occupation of the state with wave vectorq and indexN. In
thermal equilibrium at the temperatureT, f Nq is the Fermi
distribution for holes

f Nq5
1

expS 2ENq2m

kBT D11

. ~6!

The chemical potentialm has to be chosen so that the to
number of carriers is equal to the number of carriers pres
by doping or by interband excitation. In doped material th
is an extra termUdoping due to the potential of the ionize
acceptors/donors. Because of the dependence ofHd andHe

on the carrier distribution, the resulting band structure
comes temperature dependent even without an explicit t
perature dependence of the band structure parameters.

The direct Coulomb termHd is determined by the carrie
density. It can be transformed into an electrostatic poten
so that its action on all states is about the same. This i
contrast to the exchange partHe, which mainly acts on state
with the same symmetry as the occupied states. Thus, if
subband 1 is occupied, the effect ofHe is strongest for sub-
band 1 and rapidly decreases for higher subbands. There
since the calculation ofHe is quite time consuming, we re
strict M andM 8 to the three lowest-energy subbands. Es
cially, we do not consider Auger terms, i.e., contributio
with M equal to an electron andM 8 equal to a hole subban
~or vice versa!. The reason for this is that apart from the
small values such contributions go beyond the one-elec
model used here, since they allow generation of electr
hole pairs.

Because of the considerable computational effort nee
to evaluateHe from Eq. ~4!, there exist a large number o
approximations.27 Most of these construct a carrier-dens
dependent electrostatic potential that shifts the energy le
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in the same way as the exchange interaction. While this
proach typically gives satisfactory ground state energies,
excited states are much less accurate, since an electro
potential has the same influence on both ground and exc
states, whereas the exchange interaction acts mainly on
ground state, as already mentioned above. A second s
coming of all density-functional approximations is that th
are only applicable to a limited range of carrier densiti
Because of these problems we employ here the exact exp
sion for the exchange, Eq.~4!.

Since the expressions forHd andHe @Eq. ~4!# include the
eigenvectors and@via Eq. ~6!# the energies for all occupied
states, first one solvesHk without carrier-carrier interaction
for a sufficient number of points ink space. From Eq.~4!
one finds that to calculateHd andHe one has to include al
points ink space which have non-negligible occupation. T
distribution spreads out for increasing temperature, and t
the volume ink space~and with it the numerical effort!
increases considerably with temperature. To determine h
fine the spacingDk between adjacentk points has to be to
achieve a reasonable accuracy, we have compared the re
for the free-electron case, which can be solved analytica
with the results of the summation in Eq.~4!. It turns out that
already atT50 it is necessary to calculate the exchan
energyHe (Hd converges much faster! at more than 3600
points ~plus the symmetry-equivalent points! in k space to
achieve an accuracy of better than 0.5 meV. Since, howe
the error is to a very good approximation linear inDk ~we
use the same spacing inx, y, andz direction!, i.e., He(Dk)
5He(Dk→0)1CDk with some ~unknown! constant C,
He(Dk→0) can be found with extremely high precision28

from He(Dk→0)52He(Dk)2He(2Dk). With this expres-
sion only 60 points are needed for the same accuracy of
meV or, conversely, the same number of points as above
yields an accuracy of better than 2meV.

With these matrix elements forHd andHe one then solves
the Schro¨dinger equation for the total Hamiltonian

Hk
total5Hk1Hk

d1Hk
e . ~7!
2-3
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From the new solutions one then calculates improved va
for Hd and He, solves againH total and so on until conver-
gence is reached. We use as criterion for convergence
the maximum energy deviation between two steps is
than 50 meV. Fortunately, convergence is rather fast, so t
typically just two iterations are needed.

III. DEFORMATION POTENTIAL SCATTERING
The electronic band structure is determined by the ato

in the unit cell. Accordingly, a change of atomic positio
leads to changes of the band structure, the so-ca
deformation-potential interaction.21 Such changes of atomi
positions can occur either because of externally app
stress or because of phonons. External stress leads to a
band structure change, which has to be taken into accou
calculations of strained quantum wells~see above!. Phonons,
on the other hand, lead to dynamic changes, which may
low intra- or interband scattering of carriers. In the harmo
approximation the phonon scattering matrix eleme
Mi f are linear in the atomic displacementsu:29,30 Mi f
5^ i uD•uu f &.

In the following we will restrict ourselves to scattering b
optical phonons in semiconductors with diamond struct
~point groupOh5̂m3m).31 The high symmetry of this struc
ture limits the number of states between which scatterin
possible32 and determines the form of the tensorD. To decide
whether scattering between the statesi and f is allowed, one
has to determine the symmetric part of the direct prod
G f3G i @G f and G i are the irreducible representations~or
symmetries! of these states#. If this product contains the
symmetry of the phonon involved, the scattering is allow
Under the usual assumption that the deformation poten
interaction does not couple states with different spin it
sufficient to consider the single-group representations. S
the optical phonons near the zone center haveG5

1 symmetry
~we give the irreducible representations in the notation
Koster et al.33!, intraband scattering is allowed for band
with G4

1 , G4
2 , G5

1 , and G5
2 symmetries. In particular

intraconduction-band scattering is forbidden, b
intravalence-band scattering is allowed, since the upperm
valence band of diamond-type semiconductors typically
G4

2 symmetry. More detailed selection rules can be obtai
from the tables of coupling coefficients in Ref. 33. One fin
that scattering from anx-like state into any-like state is only
allowed if the elongation of the optical phonon is parallel
z.30,34,35All other allowed processes are obtained by perm
tation ofx, y, andz ~see Fig. 1!. If one considers the angula
momentum basis~the basis functions are then heavy-ho
light-hole, and split-off bands!, this interaction again only
couples states of different types. For example, a heavy
is not coupled to other heavy-hole states, but to light-h
and split-off bands~see Fig. 1!.

Although these selection rules are known since more t
40 years,30 there exist a considerable number of papers7–12

which do not use the selection rules, but simply assume
the scattering is proportional to the wave function overl
Accordingly, they predict wrong lifetimes.

On the basis of these symmetry considerations, the op
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deformation potential tensorD takes the following form:36,34

D5
d0

a F S dx 0

0 dx
D ,S dy 0

0 dy
D ,S dz 0

0 dz
D G , ~8!

with

dx5S 0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

D , dy5S 0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

D ,

dz5S 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

D .

The strength of this interaction is determined by the opti
deformation potential constantd0, which for typical
semiconductors37 is on the order of several ten eV. Unfortu
nately, there exist several definitions for the prefactor in E
~8! ~for example, the prefactord08 in Ref. 37 is equal to
A8/3d0) and for the displacementu. Whereas some
authors38,34 define asu the displacement of one of the tw
atoms in the primitive cell of the diamond structure, other30

~including us! define it as the difference of the displacemen
of the two atoms. The advantage of the second definitio
that it can be used equally well for structures where the t
atoms have different masses and, accordingly, different
plitudes~this is the case not only for zinc blende, but also f
the SiGe alloys considered here!.

Using Fermi’s Golden Rule, the total scattering rate fro
the initial statecN,k into all other statescN8,k8 is given by

FIG. 1. Possible scattering channels by the optical deforma
potential in the~a! xyz basis and in the~b! angular momentum
basis.
2-4
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WN,k5
2p

\ (
N8,k8, j ,q

u^cN8,k8uD•uj~q!ucN,k&u2

3$d@EN,k2EN8,k82\V j~q!#@11nj~q!#

1d@EN,k2EN8,k81\V j~q!#nj~q!%. ~9!

The first term in the braces corresponds to phonon emiss
the second to phonon absorption. In this equationuj (q) is the
displacement of the phonon modej with wave vectorq, en-
ergy \V j (q), and occupationnj (q), which is assumed to be
at the thermal-equilibrium value. In the diamond structu
there is no splitting between transverse and longitudinal
tical phonons atq50, which leads to a threefold degenerac
We will assume in the following that the energy of the op
cal phonon is independent of the wave vector~which is a
very good approximation, since only phonons in a small p
near the center of the Brillouin zone are involved!, \V j (q)
5\V j and accordinglynj (q)5nj . One should note that Eq
~9! does not contain an explicit dependence on the w
vectorq5k82k of the optical phonon involved, in contras
to, e.g., polar optical scattering.

In bulk material the phonon displacementu in Eq. ~9! is
position independent. The amplitude can be found from
requirement that the total energy of the phonon is equa
\V. In a heterostructure it is more difficult to determine t
phonon amplitudes, which will in general depend on posit
within the heterostructure. The best way would be to perfo
a lattice-dynamical calculation for the whole structure.3 It
turns out, however, that nearly identical scattering rates
be obtained from a much simpler model. We assume tha
the phonons the heterostructure is equivalent to bulk mate
with the composition of the wells. The justification for this
that phonon amplitudes are only of interest in the regio
where uc(r )u2 has appreciable magnitude. For bound sta
this is just the case in the wells. Since the phonon amplitu
in the barriers do not matter, we can simply assume
these amplitudes are the same as in the wells.

From these considerations the displacementuj (q) is
given by

uj~q!5Aa j

\a3

2VV jm j
êj exp~ iq•r !, ~10!

with m j the reduced mass of the two atoms in the primit
unit cell, êj a unit vector alongx, y, or z, andr the position
of the primitive unit cell. The factora describes the phono
amplitudes for the different types of optical phonons wh
are possible. As an example, in a Si12xGex alloy optical
phonons may be either Ge-Ge-like~the two atoms in the
primitive unit cell are both Ge,m5mGe/2) with a phonon
energy of 36 meV, Si-Ge-like~the primitive unit cell contains
one Si and one Ge atom,m215mGe

211mSi
21 , energy 50

meV!, or Si-Si-like (m5mSi/2) with an energy of 60 meV.39

Sincex of all atoms are Ge atoms,x2 of all primitive unit
cells contain two Ge atoms. Thus, for Ge-Ge-like phono
a5x2, for Si-Ge-like phononsa52x(12x), and for Si-Si-
like phononsa5(12x)2.
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The phonon wave vectorq in Eq. ~10! can be written as
q5Q1pK , with Q restricted to the first Brillouin zone o
the heterostructure andp an integer. The matrix element i
Eq. ~9! then yields the selection ruleQ5k82k. From Eqs.
~3!, ~9!, and ~10!, the scattering rate caused byx-polarized
phonons of typej is given by:

WN,k, j ,x5
pa jd0

2a

VV jm j
(

N8,k8,p
U(

n
gN8,n2p,3,k8
* gN,n,4,k

1gN8,n2p,4,k8
* gN,n,3,k1gN8,n2p,7,k8

* gN,n,8,k

1gN8,n2p,8,k8
* gN,n,7,kU2

@d~EN,k2EN8,k82\V j !

3~11nj !1d~EN,k2EN8,k81\V j !nj #. ~11!

According to Eq.~8!, for y polarized phonons the indice
~3,4,7,8! in Eq. ~11! change to~2,4,6,8! and for z polarized
phonons to~2,3,6,7!. Although the volumeV is explicitly
contained in Eq.~11!, the final result does not depend onV,
since the number of possiblek8 is proportional toV @to be
specific, if one calculates the energies and wave functions
a three-dimensional grid ink space with a spacing ofDk, the
volume is V5(2p/Dk)3]. The accuracy of the numerica
calculation of the scattering rate increases with decrea
Dk. The maximumuku has to be chosen to include the fin
states after phonon scattering.

IV. RESULTS
In this section we present our results for the HH2 scat

ing rates in Si12xGex /Si multiple quantum wells. For the
calculation of scattering rates it is necessary to first calcu
the electronic band structure. The parameters used for
band structure calculations are compiled in Table I. O

TABLE I. Band-structure and lattice~lattice constanta and elas-
tic constantsci j ) parameters used for Si12xGex /Si quantum wells.
The data for the Si12xGex alloy are obtained by linear interpolatio
between the values for Si and Ge, except for the valence b
parameterM, where we use the nonlinear interpolation formula
Ref. 40. The references used are given in the last column.

Si Ge Refs.

Eg ~eV! 4.185 0.898 41
A 0 0
L 0 0
M -4.6 -5.75 41
N 0 0
P2/2m0 ~eV! 26.8 26.8 42
DSO ~meV! 44 297 41
DVB ~meV! 0 470 43,44
a ~pm! 543.10 565.79 41
c11 ~GPa! 165.8 124.0 41
c12 ~GPa! 63.9 41.3 41
b ~eV! -2.2 -2.4 41
ac2av ~eV! -5 -12.7 42,41
e r 11.9 16.1 41,42
2-5
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should note that the parametersA, L, and N have different
values for six- and eight-bandk•p calculations, since in the
eight-band calculation the interaction with the conduct
bands is included explicitly. In the six-band calculation th
interaction is incorporated into the parameters~the six-band
parameter is the one usually given in data compilations42,41!
according to45–47

X(6)5X(8)1
P2

2m0

1

3 S 2

Eg
1

1

Eg1DSO
D ~12!

(X is one ofA, L, andN). It turns out that the correct elec
tron and hole masses~including their direction dependence!
are obtained forX(8)50 for the whole range of Ge concen
trations. This means that the coupling of the valence ban
other conduction bands can be neglected for these three
rameters. The only parameter which is influenced by hig
conduction bands isM. Since we do not consider explicitl
these higher conduction bands~it would need a 14-band cal
culation to do this!, M remains Ge-concentration depende
and thus position dependent.

As an example for a band-structure calculation accord
to Sec. II, we show in Fig. 2 the valence band structure,
the hole energy~which is equal to minus the energy of a
electron in the valence band! as a function of the in-plane
wave vectork, for Si0.5Ge0.5/Si multiple quantum wells with
4.4-nm thick wells and 18-nm thick barriers. The carrier de
sity per well is 1.231012 cm22 from d doping the center of
the barriers. For the following we are interested in the th
valence bands with the lowest hole energies, namely, H
LHSO1, and HH2. One can see a pronounced warping~the
energy is different for different directions ofk) and an
avoided crossing between LHSO1 and HH2 forki@110#.
Further, Fig. 2 shows the effect of the exchange interact
One sees that the exchange interaction decreases the e
of the occupied HH1 band neark50 by 17 meV. Accord-
ingly, the energetic distance between HH2 and HH1

FIG. 2. Band structure of a Si0.5Ge0.5/Si multiple quantum well
structure with 4.4-nm wells and 18-nm barriers. The dashed l
give the energies without and the solid lines with exchange inte
tion ~the chemical potentialm for the second case is shown by th
dotted line!. The arrows show possible scattering channels for
three types of optical phonons.
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creases by this amount. We would like to point out that
calculation of this rather important effect necessitates the
Hartree-Fock Hamiltonian. Density-functional approxim
tions, in contrast, will not lead to changes of the HH2-HH
distance. The energy difference caused by the exchang
teraction decreases with increasinguku; it extends ink space
to about 2kF . In contrast, the other bands, which are uno
cupied at the low temperatures we consider here~12 K!, are
almost unaffected by the exchange interaction.

We use the energies and eigenvectors from the ba
structure calculation to determine the HH2 scattering ra
Scattering can occur either to the LHSO1 or to the H
band. The arrows in Fig. 2 show the possible channels
scattering out of the HH2 band with the participation of t
three types of optical phonon possible in a SiGe alloy.
calculation according to Eq.~11! with d0522 eV ~this cor-
responds to the deformation potential constantd085A8/3d0

536 eV in Ref. 37! at a temperature of 12 K yields a tota
scattering rate of 3.4 ps21, which corresponds to a HH2
lifetime of48 290 fs. This result agrees very well with th
experimental result in Ref. 6 of 2506100 fs.

The scattering rate from the HH2 atk50 to the LHSO1
(2.6 ps21) is more than three times larger than the scatter
rate to the HH1 (0.8 ps21). This is what one expects from
the selection rules given in Sec. III, since HH2-HH1 scatt
ing is forbidden atk5k850 ~see Fig. 1!. It becomes allowed
only through the LH and SO admixtures to the HH1 state
k8.0. This is further illustrated in Fig. 3 by a plot of th
scattering rates from HH2 atk50 to LHSO1 and HH1 as a
function of the direction of the wave vectork8 of the final
state. One can see that the scattering to HH1 is much la
in @110# directions than in@100# directions, whereas the sca
tering to LHSO1 is nearly isotropic. The reason for this
that the LHSO1 wave functions are mainly LH- and SO-lik
independent of the direction ofk8. In contrast, the HH1 wave
functions are mainly HH-like with only a small admixture o
LH and SO. This admixture increases with increasinguk8u,

s
c-

e
FIG. 3. Angular dependence of the scattering rate from the H

state atk50 to the LHSO1 state~dashed line! and to the HH1 state
~solid line! for the same structure as in Fig. 2.
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since it is caused by the nondiagonal terms in thek•p
Hamiltonian.18 Because of the warping of the valence ba
~see Fig. 2! uk8u ~and therefore the scattering rate! is larger
for scattering into the@110# direction as compared to th
@100# direction.

The temperature dependence of the scattering rates~see
Fig. 4! is determined mainly by the phonon occupation nu
bers nj in Eq. ~11!. The band structure also changes w
temperature because of the temperature dependence o
band-structure parameters and the change of the exch
interaction with temperature, but this has only rather sm
effects on the phonon scattering rates. One sees in Fig. 4
the scattering rates are nearly constant up to a temperatu
about 150 K. For higher temperatures they increase~to a
large part caused by the onset of phonon absorption
cesses!, but because of the high phonon energies this
crease is quite moderate~the lifetime at room temperature i
210 fs compared to 290 fs at 0 K!.

In order to determine the dependence of HH2 scatte
rates on well width and Ge concentration it is necessary
perform a band-structure calculation for each structure.
cause of the computational effort involved, we do not inclu
the exchange interaction in these calculations. As seen in
2, this means that the HH2-HH1 distance will be too sm
by about 17 meV~this energy difference has only a rath
small well-width dependence!. For a given well width the
HH2 lifetimes calculated with and without exchange intera
tion are almost identical~for 4.4-nm well width these life-
times differ by less than 1 fs!.

In Fig. 5 we summarize the band structure calculatio
Shown are the HH2 and the LHSO1 energies relative to
HH1 energy as a function of the well width for Ge conce
trations ofx50.3, 0.5, and 0.7. The period~sum of well and
barrier widths! is held constant atl 522.4 nm, i.e., we have
nearly uncoupled quantum wells. The carrier density per w
is 1.231012 cm22 from d doping the middle of the barriers

FIG. 4. Temperature dependence of the different scattering r
from the HH2 state atk50 for the same structure as in Fig. 2.
04530
-

the
ge
ll
at
of

o-
-

g
to
e-
e
ig.
ll

-

.
e

-

ll

One can see from Fig. 5 that the HH2-HH1 distance stron
decreases with increasing well width as expected for a qu
tum well. In contrast, the energy difference between LHS
and HH1 is almost independent of the well width, since it
determined nearly exclusively by the built-in strain and th
by the Ge concentrationx in the wells.

For a Ge concentration ofx50.5 we show in Fig. 6 the
scattering rates from the HH2 atk50 as a function of the
HH2-HH1 distance, which is changed by varying the w
width ~upper scale!. The HH2-HH1 scattering rate increase
monotonically with the energetic distance, since the fi
states will have increasingly largerk8 and thus larger LH and
SO admixtures. In contrast, the HH2-LHSO1 scattering r
shows a steplike behavior. It increases when scattering b
additional type of optical phonon becomes possible. Thus
HH2 lifetime drops from 2050 fs for a well width of 5.3 nm
~here no optical phonon can participate! to 290 fs for a well
width of 4.5 nm~all three types of phonon can participate!.
For even thinner wells the HH2 lifetime stays about const
~the increase of the HH2-HH1 rate being compensated by
decrease of the HH2-LHSO1 rate!.

In Fig. 7 we present the total scattering rates for Si12xGex
quantum wells withx50.3, 0.5, and 0.7. Again the steplik
behavior can be observed. Comparing the rates for diffe
values ofx one finds that for all transition energies the rat
decrease with increasingx. This is caused by two effects: Fo
the HH2-LHSO1 scattering the thresholds for each type
optical phonon are reached at higher transition energ
since the LHSO1-HH1 distance increases withx ~see Fig. 5!,
which means that the HH2-LHSO1 distance decreases.

es

FIG. 5. Energies of the LHSO1 and the HH2 band atk50 for
Si12xGex /Si multiple quantum wells for Ge concentrations ofx
50.3, 0.5, and 0.7 as a function of well width, calculated witho
taking into account the exchange interaction. The HH1 band ak
50 is chosen as the zero of energy.
2-7
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FIG. 6. Calculated scattering rates~left scale! and lifetimes
~right scale! at zero temperature from the optical phonon deform
tion potential scattering for Si0.5Ge0.5/Si multiple quantum wells as
a function of the HH2-HH1 distance~varied by varying the well
width, see upper scale!. The total scattering rate is divided into th
rate from HH2 to LHSO1 and into the rate from HH2 to HH1. Th
arrows show the thresholds for scattering by Ge-Ge, Si-Ge,
Si-Si type optical phonons.

FIG. 7. Calculated total scattering rates at zero temperature
optical phonon deformation potential scattering for Si12xGex /Si
multiple quantum wells for Ge concentrations ofx50.3, 0.5, and
0.7 as a function of the HH2-HH1 distance.
04530
HH2-HH1 scattering, which is determined by the LH and S
admixtures to the HH1 wave function, decreases withx since
the increasing LHSO1-HH1 distance leads to smaller LH a
SO admixtures.

V. CONCLUSIONS FOR SiGe-BASED QUANTUM
CASCADE LASERS

For a laser it is advantageous to have a long lifetime in
upper laser level. Structures have been proposed,12 and even
luminescence~but not lasing! was observed in a recen
experiment,15,16 with HH2→HH1 as the anticipated lasin
transition. Since, as we have seen, scattering into LHSO
much more efficient than scattering into HH1, one c
achieve comparatively long lifetimes (.1 ps, which would
be similar to excited state lifetimes in electron intersubba
transitions! at low temperatures, if scattering into LHSO1
not possible. This is the case if the energy difference betw
HH2 and LHSO1 is less than one optical phonon ener
Since the energy difference between LHSO1 and HH1
determined mainly by the strain, it increases with the
concentrationx in the wells ~see Fig. 5!. Thus, for a given
HH2-HH1 distance,x has to be above a critical valuexc to
achieveEHH2-ELHSO1,\V ~see Fig. 8!. For a given value of
x, the transition energy depends on the well thickness
turns out that if one uses the Ge concentrationxc from Fig. 8,
the necessary quantum well thickness is approximately c
stant at 5 nm. Because of the rather large built-in stra
5-nm wide quantum wells can only be grown49,50 for Ge
concentrations up to'60%. This limits the maximum lase
photon energy to about 120 meV. One should note that
strain is responsible for the decrease of the HH2-LHS
distance, which eventually makes LO-phonon scattering

-

d

or

FIG. 8. Minimum Ge concentrationxc to achieve a HH2-
LHSO1 difference less than the optical Ge-Ge phonon energy o
meV, calculated from the LHSO1-HH1 distance, as a function
the HH2-HH1 transition energy. In the shaded area (x.0.6) the
strain makes it impossible to grow such samples.
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possible. Therefore schemes which reduce the strain by
ing, e.g., graded SiGe buffers, are going toreducethe life-
time. However, to be able to grow a quantum casca
structure, which consists of a large number of wells~the limit
given above of 60% Ge concentration for a 5-nm well a
plies to a single well!, one has to find a way to compensa
for the strain. One possibility for this is to use barriers w
the opposite sign of the strain, for example,51,52 Si12yCy .

On the other hand, the lifetimes as shown in Fig. 7
very promising at lower energies~longer wavelengths!. For
tr

s

H

n

J

li

u

04530
s-

e

-

e

the long-wavelength range both Si and Ge have the a
tional advantage that they do not possess infrared-ac
phonons, which limit the longest wavelengths to be reach
with zinc blende semiconductors.
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