
Photowoltaic spatial light modulator 
John H. Hong, Frederick Vachss, Scott Campbell, and Pochi Yeh 
Rockwell Science Center, 1049 Camino dos Rios, Thousand Oaks, California 91360 

(Received 3 August 1990; accepted for publication 21 November 1990) 

A novel concept for implementing a high-resolution spatial light modulator using a thin slab of 
photorefractive LiNbOs crystal is described. This method uses the photovoltaic effect to 
impress phase information onto the crystal without the use of holography where coherent 
reference beams are required. Experimental demonstration as well as an analysis of the 
operation and performance of the device are given. 

I. INTRODUCTION II. PHOTOVOLTAIC PHASE MODULATION 

A basic need in most optical information-processing 
systems is the interfacing requirement, i.e., the need to pro- 
vide input to and extract output from the optical system. 
Generally speaking, the input function is performed by de- 
vices called spatial light modulators (SLM). Such a device 
imposes a given set of information on an optical wave by 
spatially modulating its intensity and/or phase distribution. 
An optical processor then operates on the spatially modula- 
ted optical beam to yield some desired computational result, 
which is extracted by an appropriate output device such as a 
detector. Optical correlation systems,’ optical vector matrix 
multipliers,2 and, more recently, optical neural networks3 
are examples in which the SLM is a necessary component. 

Photorefractive holography has already been used suc- 
cessfully to implement an optically addressed SLM, the so- 
called “photorefractive incoherent-to-coherent optical con- 
verter”4*5 (PICOC) (Fig. 1). First, a dynamic holographic 
grating is created inside a photorefractive slab with two co- 
herent plane waves. An incoherent object is then imaged 
onto the crystal; the incoherent image partially erases por- 
tions of the dynamic grating, which is continuously support- 
ed by the two writing beams. The partially erased grating is 
then read out with a reading beam whose diffracted compo- 
nent contains the spatial modulation imposed by the erasing 
incoherent image. High resolution (upwards of 15 lp/mm) 
has been achieved with this method. Because the system is 
inherently holographic, however, it is subject to tight align- 
ment as well as vibrational requirements. 

Our technique’ achieves similar results without the 
need for external voltages by utilizing the bulk photovoltaic 
effect exhibited by certain ferroelectric crystals such as lith- 
ium niobate ( LiNbO, ). The photovoltaic effect is character- 
ized by a photocurrent in the absence of an external field, 
distinguishing it from photoconductivity. It is widely ac- 
cepted that the origin of the effect is due to asymmetric 
charge transfer during photoexcitation.’ If such a crystal is 
flooded uniformly with light, then a short-circuit current 
can be measured (or, equivalently, an open-circuit voltage) 
across the crystal. If, however, as illustrated in Fig. 3, the 
crystal is exposed to a nonuniform distribution of light, in 
this case in the form of a rectangular window function, then 
charges accumulate at the light-dark boundaries within the 
crystal. The associated space-charge field modulates the in- 
dex of refraction via the electro-optic effect, resulting in a 
nonuniform spatial phase distribution as seen by a coherent 
read beam passing through the crystal. This is the principle 
of operation of the spatial light modulation scheme. By sim- 
ply imaging an incoherent object onto the photovoltaic crys- 
tal, information in the form of phase modulation is recorded, 
which is then read out with a coherent reading beam. 

Ill. EXPERIMENTS AND DISCUSSION 

Information (i.e., images) can be imprinted in photore- 
fractive crystals without resorting to holographic techniques 
as shown in Fig. 2 where an incoherent intensity pattern is 
imaged onto a photorefractive crystal across which a large 
electric field is imposed. The nonuniform illumination 
causes local variations in the conductivity of the crystal (via 
photoconductivity), resulting in nonuniform screening of 
the electric field. The spatially varying electric field induces 
index perturbations via the electro-optic effect; the index 
perturbations are read out using coherent light, either as a 
phase image or, by using crossed polarizers, as an intensity 
image. This technique has been demonstrated by Yu6 for 
Bi,,Si02, and also by Steir, Kumar, and Ziari for CdTe.’ 
Such methods, however, require large external voltages and 
are difficult to generalize for two-dimensional spatial light 
modulation. 

In our experiments, we used a l-mm-thick, Fe-doped 
(0.08%) LiNbO, as the photovoltaic material with the 
broad faces parallel to the xz plane of the crystal. The image 
recorded in such a crystal is expected to accentuate features 
that vary along the c axis due to the anisotropy of both the 
photovoltaic and electro-optic effects. The basic record- 
ing/reading experiment is shown in Fig. 4 where il = 5 14.5 

..coherent read beam 
*. . . 

.-A /;* coherent image 

FIG. 1. Photorefractive incoherent-to-coherent optical converter 
(PICOC). 
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FIG. 4. Experimental system for spatial light modulation using LiNbO,. 

FIG. 2. Nonholographic image recording using photoconductivity. 

nm light from an argon-ion laser supplies both writing and 
reading beams. The writing beam (ordinary polarization) 
intensity was 8 mW/cm2, and the reading beam (extraordin- 
ary polarization) was 400pW/cm2. The choices of the beam 
polarizations were dictated by the electro-optic coefficients. 
The writing beam should “see” as small an index perturba- 
tion as possible during the writing process so as to reduce 
self-defocusing (ordinary beam “sees” r,3, which is a factor 
of 3 smaller than r13, which is “seen” by the reading beam). 
Various images (Ronchi rulings and Air Force resolution 
chart) with spatial detail ranging from - 10 pm to grosser 
scale structures (1 mm and greater) were used. Since the 
spatial modulation is phase-only, the modulated beam had 
to be either defocused or spatially filtered (in the Fourier 
plane) to be visualized. The results thus obtained are sum- 
marized in Fig. 5 where the anisotropy of the spatial phase 
modulation due to the tensor nature of both photovoltaic 
and electro-optic effects is striking. At the intensity levels 
used, about 15 min were taken to write the images to satura- 
tion. Note that, as in the photorefractive effect, this factor 
can be reduced substantially by increasing the intensity level. 

To rigorously analyze the SLM response, we need to 
resort to a system of nonlinear equations governing the gen- 
eration, recombination, and transport of charged carriers in 
the photorefractive crystal. In steady state, the equations 
are” 

Open Circuit Field --f An 

FIG. 3. Nonholographic image recording using photovoltaic effect. 

WfP)WD -Nit) =y)?nN,+, (1) 

J=en~E+k,T+pI, (2) 

$f=‘(N,+ -n-N”), E 

where E = electric field, I = incident writing intensity dis- 
tribution, J = current density, s = ionization cross section, 
p = rate of thermal generation of carriers, k, = Boltzmann 
constant, p = carrier mobility, yR = carrier recombination 
rate, ND = total density of donors, N 2 = density of ionized 
donors, NA = density of compensating charge for ionized 
donors, n = density of electrons in the conduction band, 
e = electronic charge, E = dielectric constant of crystal, and 
p = photovoltaic constant. The x axis is defined to be oppo- 
site in direction to the + c axis so that the photovoltaic cur- 
rent term in Eq. (2) may differ from other formulations by a 
sign; the physics is unchanged. 

Since the ends of the crystal are left open, Jmust be zero 
at those boundaries and hence zero everywhere, in steady- 
state conditions. To obtain approximate results appropriate 
for our experiments, we assume linear generation and re- 
combination and neglect Poisson’s equation (3), which de- 
scribes the feedback effect of the charged carriers on the 
electric field. We are left with the carrier transport equation 
given by Eq. (2) equated to zero because of the boundary 
conditions and a linear expression for the carrier density. 
Further, we neglect the diffusion component of the current 
density which is the second term in Eq. (2). 

With these approximations, we have 

n(x) = [sI(x) +81W- N,) 
, (4) 

YR NA 

en(x),uE(x) -PI(X) = 0. (5) 
If we assume the specific intensity distribution 
I(x) = IO rect[x/Al (rect[x] = 1 if 1x1 < 1; otherwise, 
rect [x ] = 0) as shown in Fig. 3 where sl, %fl, then the elec- 
tric-field strength can be determined to be 

E(x) = PYR NA 
pes(N, - NA 1 

rect [x/A ] . (6) 

In the Appendix, by investigating the complete set of nonlin- 
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FIG. 5. Air Force resolution chart imaging results: (a) defocused phase 
image, (b) spatially filtered image, and (c) image of test chart as seen 
through the crystal. 

ear equations ( I)-( 3) both analytically and numerically, we 
show that the actual field deviates minimally from this ap- 
proximate solution. In particular, the analysis shows that, 
due to charge saturation and diffusion, the boundaries de- 
fined by the borders between the high- and low-intensity 
illuminated regions become smoothed with narrow transi- 
tion regions ( < 1 pm wide). With reference to Fig. 3, the 
carriers (electrons) generated in the illuminated region are 
transported away from the + c axis by the photovoltaic ef- 
fect,g resulting in a net positive current flow toward the + c 

axis. In steady state, charge walls build up at the light-to- 
dark boundaries, which counterbalance the photovoltaic 
current to yield a net zero current. The resulting field E(x) 
then modulates the index of refraction that extraordinary 
polarized light sees in the crystal. Note that for sI, SD, the 
steady-state electric-field strength is independent of intensi- 
ty. The index change in the given orientation is 

An(x) = -+ E(x) 

3 *cr33 PYG’A = -__ 
2 p&V, - NA 1 

rect [ x/A]. (7) 

This index change was experimentally measured using a 
Mach-Zehnder interferometer. A collimated writing beam 
(R, = 5 14.5 nm, I = 8 mW/cm*, ordinary polarized) from 
an argon laser is passed through a square opening (0.25 
cm~0.25 cm), which is imaged onto the LiNbO, crystal, 
while a collimated extraordinary polarized beam from the 
same laser (I = 400,uWW/cm*) was used as the source for the 
interferometer, in one leg of which the crystal was placed. In 
this way, the index change could be measured by careful 
observation of the output fringe pattern. The interferogram 
thus obtained is shown in Fig. 6. Note the steplike change in 
the fringe pattern shown in Fig. 6 corresponding to the dark- 
light and light-dark boundaries. Denoting the index change 
in the illuminated region by An,, the total optical phase shift 
is given by A4/2rr = An, d //2, where d = 1 mm, the thick- 
ness of the crystal. Using an estimate for the observed fringe 
shift in the illuminated region of about 90”, the index change 
can be calculated to yield An, z 1.29 X 10 - 4. 

According to Eq. (7), the saturation value of the index 
change is proportional to the empty trap concentration. 
Thus, an oxidized LiNbO, crystal (high Fe” + concentra- 
tion) will yield larger index changes. For resolution consid- 
erations, it is desirable to have a thin crystal which requires 
high trap concentration. 

One final device parameter to be discussed is the re- 
sponse time. Although the response time we obtained was on 
the order of minutes, it can be decreased considerably by 
altering the dopant concentration. The response time is the 
standard photorefractive time constant given by lo 

FIG. 6. Interferogram for square image. 
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YR %  
I-= 

(ND - NA )e,do . 
(8) 

By increasing the donor concentration ND relative to the 
empty trap concentration, the response time can be reduced. 
For optimum device performance, ND must be as high as 
possible and the oxidation state must be controlled ( NA ) to 
give the appropriate index change. 

IV. SUMMARY 

In summary, we have demonstrated a phase-only spatial 
light modulator using a photorefractive crystal in a nonholo- 
graphic geometry. The discussions given indicate a one-di- 
mensional modulation, which is due to the anisotropy of the 
LiNbO, crystal used in our experiments. The concept is easi- 
ly extended to the more general and useful two-dimensional 
case by sandwiching two similar crystals whose c-axis orien- 
tations are orthogonal to one another. 

APPENDIX: DEPENDENCE OF DEVICE RESOLUTION 
ON MATERIAL PARAMETERS 

A practical definition of the limiting resolution of the 
device is the minimum feature size that can be imposed while 
some acceptable level of contrast in the output image is 
maintained. While the exact definition may vary somewhat 
depending on one’s criteria of acceptability, we shall show 
that certain image length scales exist above which the con- 
trast and replication fidelity are quite good and below which 
these qualities rapidly degrade. As these length scales are 
determined by the physics of the recording process, it will be 
necessary to analyze the charge transport equations underly- 
ing this process to determine these scales and the resolution 
limits they imply. 

Examining the steady-state equations ( 1 )-( 3), we see 
that when the input image intensity I(x) is simply a con- 
stant: the charge densities n and N L and hence the internal 
electric field E are also constant. It is thus reasonable to 
assume that for sufficiently slow variations in I(x), all terms 
involving the spatial derivatives of n, N 2, and E may be 
neglected and the response field will still be given by 

E(x) = PYR NA ml 

ep(N, - NA 1 d(x) +P * 
(Al) 

This is the local (albeit nonlinear) photovoltaic response 
described in Sec. III. When I(x) varies more rapidly, these 
spatial derivative terms may no longer be ignored and devia- 
tions from the local response described in Eq. (Al) occur. 
These deviations from local response eventually determine 
the achievable resolution. In the remainder of this appendix, 
we will analyze solutions to Eqs. ( l)-( 3), including the de- 
rivative terms, and in so doing will describe the behavior of 
the resultant deviations from local response and their impli- 
cations on device resolution. 

Since Eqs. ( 1 )-( 3) form a second-order nonlinear sys- 
tem for which analytic solutions are not generally available, 
we must restrict our analysis somewhat to obtain useful re- 
sults. First, we shall make the common assumption”+‘* that 
the incident intensity is sufficiently weak so that photocon- 
ductive saturation does not occur (i.e., n  4 N $ ). We  note 

that this assumption, when applied to Eq. ( 3)) implies that 

-:N, <z<E (ND -N,), 
E 

(A21 

since 0 <N,+ <ND. This restriction on the slope of the 
space-charge field due to charge saturation effects is one of 
the factors determining the effective resolution limit. 

In addition, we shall only consider input intensities that 
are piecewise constant in space. This is consistent with the 
bar pattern intensities used in our experiments and allows us 
to take dl /dx = 0 everywhere except at some isolated collec- 
tion of points corresponding to the steps in intensity. Since 
any continuous function may be approximated arbitrarily 
well by a step function of sufficiently small step size, this 
assumption of piecewise constancy is not overly restrictive. 
The fact that we can now ignore the derivatives ofI per- 
mits us to combine the steady-state charge transport equa- 
tions into the single, relatively simple second-order nonlin- 
ear equation for the internal space-charge field E(x) : 

E(x) 

. . 

(A3) 
where Ep is the nominal photovoltaic space-charge field as 
defined in (Al). 

Since Eq. (A3 ) is valid in each of the regions of constant 
intensity, the effects of the variation in I(x) are now taken 
into account by requiring that E(x) and its derivative re- 
main continuous across the boundaries at which the intensi- 
ty changes. Given Eq. (A3) defining E(x), we approach the 
solution in two steps. First, we may solve this equation di- 
rectly in the limit of negligible diffusion (ED = 0). The ef- 
fects of diffusion are then included by applying a simple form 
of boundary layer analysis to the diffusion-free solution. 

In the absence of diffusion effects, Eq. (A3 ) is reduced 
to the first-order equation 

E(x) - Ep 
(N, - NA )E,, + NAE(x) - 

(A4) 
While it is straightforward to integrate this equation and 
obtain an implicit expression for the diffusion-free space- 
charge field, it is somewhat simpler and equally instructive 
to observe certain general analytic properties of Eq. (A4). 
First, we see that for E(x) sEp, Eq. (A4) implies that the 
space-charge field diverges from Ep exponentially according 
to 

E(x) =Ep + [E(O) - E,]exp(x/L, 1, 
where 

Wa) 

L,S END-% 
eN,W, -N,) . 

(i-b) 

We note that this monotonic divergence implies that E(x) 
must always lie between the maximum and minimum values 
of Ep(x). In particular, in our sign convention taking the 
+ c axis of the material as the negativex direction, Eq. (A 1) 

implies that Ep)O. In addition, we see that Ep reaches a 
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maximum value of 

Ema, &tk. NA 
pes ND - NA ’ 

(A61 

when the incident intensity is large enough that photocon- 
ductivity substantially exceeds the dark conductivity of the 
medium. Combining these two results with the requirement 
that the space-charge field must lie between the extremal 
values of Ep, we obtain the requirement that 
0 < E(x) <Em,, . This requirement further implies that the 
exponential length scale Lo given in Eq. (A5b) takes on a 
maximum value of 

L,(max) = ~NJLax 
eNA(ND -NA) ’ 

(A7) 

when E, = E,,,,,. Assuming that the nominal photovoltaic 
field does indeed stay near E,,,,, (as is usually the case for 
significant levels of illumination), we thus may use 
Lo (max) as an effective minimum resolution scale. 

The exponential behavior described in Eq. (A5) persists 
until 1 E(x) - E, 1 grows sufficiently large that the slope of 
E(x) approaches the limits given in Eq. (A2). In particular, 
if E(x) > Ep, then as E(x) - Ep grows to near E,N,/N,, 
the exponential growth of Eq. (A5) becomes linear with the 
maximum slope of dE /dx zz e/e( ND - NA ) . Conversely, if 
E(x) <E,, then as E(x) decreases, the slope also decreases 
and approaches its minimum value of dE /dx z - eN, /E as 
E(x) approaches zero. These two limiting slopes thus pro- 
vide specific resolution constraints since a minimum length 
scale of 

Lm,n = I AE/(% I (A81 

is required for a change in value of 1 AE 1 to be achieved with a 
maximum slope magnitude I (dE /dx),,, I. Specifically, 
since any changes AE in the space-charge field from region 
to region must satisfy IAE I <E,,,,, , we may combine Eqs. 
(A6) and (A8) with the slope constraints of Eq. (A2) to 
obtain the minimum resolution scales: 

Lmin =~&,,/eN.4, &,,,/[dND -NA)]. (A9) 
Since O( NA <ND, however, we see that Lo (max) as given in 
Eq. (A7) exceeds both values for L,,, given in Eq. (A9) 
above. Thus, as the largest of all the resolution constraints 
we have found, Lo (max) may be taken as the minimum re- 
solvable feature size for the diffusion-free system described 
by Eq. (A4). 

The diffusion-free results we have described above do 
not adequately characterize the response of the system when 
distance scales become very small. In particular, if Em,, as 
given in Eq. (A6) is sufficiently small, the resolution limit in 
Eq. (A7) can become very small as well and approach the 
medium’s diffusion length. In this regime, diffusion effects 
significantly impact the achievable resolution, and the full 
second-order equation given in Eq. (A3) must be consid- 
ered. 

To approach the full solution, we note that diffusion 
effects are governed by the second spatial derivative term in 
Eq. (A3). Thus, diffusive effects should cause the most sig- 
nificant modifications to the behavior of our diffusion-free 

solution in those regions in which this approximate solution 
exhibits a rapid change in slope. To determine where such 
rapid changes occur, we recall that the solutions to Eq. (A4) 
tend to diverge from Ep in a roughly exponential fashion 
within a given region of constant intensity. This divergence 
is followed by an abrupt return to near-zero slope as the next 
illumination boundary is reached and the exponential diver- 
gence is repeated in the ensuing constant intensity region. 

This behavior is illustrated in Fig. 7 (a). Here, an exact 
solution E(x) to Eq. (A4) is plotted assuming a periodic 
intensity step pattern. The corresponding step pattern repre- 
senting the nominal photovoltaic field E, (x) is shown as 
dotted lines in the background. Using a value of 
NA/ND = 0.5 and choosing the remaining parameters so 
that Lo (max) is roughly 0.10 times the thickness of the re- 
gions of constant illumination, we find that the quasiexpon- 
ential behavior described in the preceding paragraphs is in- 
deed present. Most significant though, in the present 
discussion, is the observation that the slope does in fact 
change abruptly at the illumination boundaries. We may 
thus expect the effects of diffusion to be manifested in the 
formation of boundary layers in the regions of these abrupt 
transitions. Such boundary layer formation is common’3 in 
such systems as Eq. (A3) in which a first-order equation is 
modified by the addition of a small higher-order term. 

The evaluation of the behavior of the solution in these 
boundary regions is simplified by noting that the extrema of 
E(x) determined from the diffusion-free equation occur at 
or near these boundaries. It is thus reasonable to determine 
the solution to Eq. (A3) in the regions of its extrema and to 
attempt to use these solutions to describe the behavior of the 
solution at the boundary layers. Specifically, near the ex- 
trema of E(x), we may take dE /dx GO, and Eq. (A3) sim- 
plifies to the linear second-order equation 

E(x,EJ------~ ; iy 
(a) 

E(x)EMy -u 1 
0 -’ 

(b) 
1 

FIG. 7. (a) The exact numerical solution to (A4), E(x) is plotted against 
position in solid lines. The zeroth-order step-function solution, 
E(x) = E,(x), is shown as dashed lines. Note the saturation with constant 
slope near the illumination boundaries. (b) The exact numerical solution to 
(A3) is plotted vs position in solid lines along with the solution of Eq. (A4) 
as dotted lines. Note the replacement of the slope discontinuities of the dif- 
fusion-free solution of Eq. (A4) with the smooth extremal behavior of the 
full second-order result. 
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d2E e2NA(l -N,/N,) -= 
dx2 ekB T [E(x) - Ep], (AlO) 

which has the solution 

E(x) = (Eo -E,)cosh[(x--x,)/L,], (Al la) 
in the region of the extremum, E( x0 ) = Eo, where x0 is the 
location of the maximum (or minimum) of E( x), and 

LD =Jek, T/e2N., ( 1 - NA /No ) (Allb) 
is the Debye screening length in the medium. We thus expect 
that instead of the abrupt slope transitions at the illumina- 
tion boundaries seen in Fig. 7 (a), smooth transition regions 
with widths on the order of L, will occur. Thus, the Debye 
screening length provides a second effective minimum reso- 
lution scale for our device. 

This smooth “coshlike” behavior at the extrema de- 
scribed by Eq. (A 1 la) will persist until dE /dx grows to the 
order of EJL, (max) at which point the solution follows 
the first-order behavior of the solutions to Eq. (A4). In oth- 
er words, the exact solution to Eq. (A3) shares the gross 
features of the earlier solution to Eq. (A4) except for the 
existence of boundary layers of width -L, near the ex- 
trema. This behavior is shown in Fig. 7(b) in which the 
exact solution to Eq. (A3) is plotted for the same parameter 
set as was used in Fig. 7(a). Here, in addition, a Debye 
screening length equal to L, (max) is used. The correspond- 
ing solution from Fig. 7 (a) is shown as dashed lines for com- 
parison. We see from these plots that, as claimed, the two 

curves share the same general behavior with diffusion effects 
introducing substantial smoothing in the region of the ex- . 
trema. 

The final result of our analysis is that there are two fun- 
damental resolution limits on the photovoltaic photorefrac- 
tive device, one imposed by charge saturation limits and the 
other by charge diffusion effects. Using typical parameters 
for LiNbO,, we may evaluate these limits and obtain 
L, (max) -L, -0.5 pm. Thus, the resolution, as dictated 
by the physics of the photorefractive/photovoltaic process, 
is limited to about 1 pm. 
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