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We calculate the amplitudes of de Haas-van Alphen oscillations for a system of heavy fermions close to a
quantum critical point �QCP�. A nested Fermi surface, which consists of an electron and a hole pocket, together
with the remaining interaction between the carriers after the heavy particles are formed, leads to itinerant
antiferromagnetism. The order can be gradually suppressed by increasing the mismatch between the Fermi
momenta, and a quantum critical point is obtained as TN→0, giving rise to a heavy-fermion non-Fermi liquid
behavior in the specific heat, quasiparticle linewidth, and resistivity. The Lifshitz–Kosevich expression for the
de Haas-van Alphen oscillations is modified by the quasiparticle self-energy. The amplitudes are considerably
reduced by the interactions. The magnetic field and temperature dependence of the amplitudes shows that the
effects of the QCP extend over a large T interval.
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I. INTRODUCTION

Landau’s Fermi liquid �FL� theory has been successful in
describing the low energy properties of most normal metals.
Numerous U, Ce, and Yb based heavy-fermion systems1–3

display deviations from the FL behavior, which manifest
themselves as, e.g., a log�T� dependence in the specific heat
over T, a singular behavior at low T of the magnetic suscep-
tibility, and a power-law dependence of the resistivity, with
an exponent close to 1. These deviations from FL are known
as non-Fermi liquid �NFL� behavior. The breakdown of the
FL can be tuned by alloying �chemical pressure�, hydrostatic
pressure, or a magnetic field. In most cases, the systems are
close to the onset of antiferromagnetism �AF� and the NFL
behavior is attributed to a quantum critical point �QCP�.4–9

NFL properties are usually measured in the disordered
phase and inferred from the temperature and field depen-
dence extrapolated to T→0. The QCP itself is elusive to
experiment, and to explore its neighborhood requires the fine
tuning of experimental parameters. From the theoretical
point of view, the QCP is not a stable fixed point. There are
differences between the behaviors of CeCu5.9Au0.1,

9,10

Ce�Ru1−xFex�2Ge2,11 CeAuSb2,12 and YbRh2Si2
13,14 close to

the QCP, which suggests the nonuniversality of the NFL
properties in heavy fermions.

In heavy-fermion systems, the low energy excitations in
the disordered �paramagnetic� phase are well described by
bands of quasiparticles with a large effective mass. In the
sense of a Fermi liquid, the remaining repulsive interaction
between the heavy quasiparticles �after the heavy particles
have been formed� is assumed to be weak. Itinerant AF arises
from the topology of the Fermi surface and the remaining
interactions. For instance, the nesting of two parabolic pock-
ets, one electronlike and the other holelike, leads to spin-
density waves.15 As the long-range order is suppressed, TN is
reduced and a QCP is obtained as TN→0. The tuning param-
eter for the QCP, in this case, is the mismatch between the
Fermi surfaces.

We previously studied the precritical region of the
two-pocket model via renormalization group �RG�

approaches.15,16 Our main results are the following: For the
tuned QCP, the effective mass m� �specific heat over T� and
the magnetic susceptibility logarithmically increase as T is
lowered and diverge at the critical point, signaling the break-
down of the FL.15,16 There is a crossover from the −ln�T�
dependence of C /T to a constant � as T is lowered if the
QCP is not perfectly tuned. The quasiparticle linewidth, a
quantity relevant to electrical resistivity, shows a crossover
from NFL ��T� to FL ��T2� behavior with increasing nest-
ing mismatch and decreasing temperature.17 The behaviors
of the specific heat, susceptibility, effective mass, and resis-
tivity �see Ref. 18� are in good qualitative agreement with
experiments for numerous quantum critical heavy-fermion
compounds. The predictions of our nested Fermi surface
model are sufficiently robust to explain many of the conse-
quences of the QCP. An exception is the dynamical suscep-
tibility �relevant to inelastic neutron scattering�,19 which
strongly depends on the local character of the f electrons, so
that a single band model may not be sufficient. In Secs. VI
and VII, we discuss the frequencies of oscillation as a func-
tion of the nesting mismatch, which vary little in a single
band model, but may substantially vary if one would allow
the f electrons to localize.

In this paper, we calculate the temperature and field de-
pendence of the amplitudes of the de Haas-van Alphen
�dHvA� oscillations in the neighborhood of the QCP. General
expressions for the oscillatory part of the thermodynamic
potential in the presence of interactions were previously
derived.20–22 They consist of summations over the fermionic
Matsubara poles involving the quasiparticle self-energy. We
evaluate the amplitudes by using the self-energy obtained in
Ref. 17.

The rest of the paper is organized as follows: In Sec. II,
we restate the expression for the oscillatory part of the ther-
modynamic potential. In Sec. III, the dHvA amplitudes are
evaluated for a marginal Fermi liquid. In Sec. IV, we intro-
duce the two-pocket model15,16 and provide a brief summary
of the temperature and frequency dependence of the quasi-
particle linewidth.17 In Sec. V, we present our results for the
dHvA amplitudes. In Sec. VI, we discuss the continuous
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change in the oscillation frequencies across the AF transition
for the two-pocket model. Concluding remarks follow in
Sec. VII.

II. DE HAAS-VAN ALPHEN EFFECT IN INTERACTING
SYSTEMS

The Lifshitz–Kosevich expression of the thermodynamic
potential for a free fermion gas in a homogeneous magnetic
field B describes the dHvA oscillations of most normal met-
als. The oscillatory part of the thermodynamic potential is
given by22

�osc = 2kBT� eB

2��
�3/2� �2Si

�kz
2 �−1/2

��
r=1

�
�− 1�r

r3/2
cos�2�r�Fi

B − �� �
�
4 	

sinh�2�2kBTr/�	c�
. �1�

Here, 	c=eB /m� is the cyclotron frequency, where m� is the
effective mass that contains the effects of the periodic poten-
tial, � is a phase factor, and r is the index labeling the har-
monics of the oscillations. The thermodynamic potential, and
hence the magnetization, exhibits a periodicity in 1 /B with a
frequency Fi�
 ,�� when the magnetic field is directed along
the direction �
 ,��. The dHvA frequency is related through
the Onsager relation to an extremal cross-sectional area
Si�
 ,�� of the Fermi surface as follows:

Fi�
,�� =
�Si�
,��

2�e
, �2�

where the subindex i labels the different possible orbits. The
sign � in the phase � /4 depends on whether the extremal
orbit is a maximum or a minimum. For simplicity, we have
neglected the Zeeman splitting of the electron states and the
Dingle factor arising from damping that results from the
scattering off of the imperfections in the crystal.

The influence of interactions between the carriers on the
de Haas-van Alphen effect has been studied in numerous
papers.20–22 The interaction introduces a quasiparticle self-
energy, which reduces the amplitude of the oscillations. In
other words, the quasiparticle linewidth changes the thermal
damping factor. We limit ourselves to the situation in which
the frequency dependence of the imaginary part of the self-
energy is symmetric about the Fermi surface �electron-hole
symmetry�, and we neglect the effect of the Zeeman splitting
on the self-energy. Under these circumstances, the frequency
of the oscillations is not modified and it is sufficient to study
the amplitude of the oscillations, which is now given by22

Ar = �
�n0

exp
−
2�r

�	c
��n − X��n�	� . �3�

Here, i�n= i�T�2n+1� are the Matsubara frequencies for fer-
mions and X��n� is the value of the imaginary part of the
self-energy at this frequency. For X=0, i.e., no interactions,
Ar reduces to Ar

0=1 / �2 sinh�2�2kBTr /�	c�	, which is in
agreement with Eq. �1�. For interacting electrons, X�0, so
that Ar is always reduced with respect to the noninteracting
system.

A proper definition of quasiparticles requires that their
linewidth at low energies is small compared to their reso-
nance energy. This is satisfied for a Fermi liquid, wherein the
width grows proportionally to 	2 /D or T2 /D, where D is the
bandwidth. Due to the approximately linear increase in the
linewidth with �	� and T for the tuned QCP, the width of the
quasiparticles grows as fast as their energy and the quasipar-
ticles are not well defined according to the above-mentioned
criterion. By using the Kubo formula, we have shown that
this has no effect on the resistivity, which turns out to be
approximately proportional to the quasiparticle linewidth.18

We can more formally argue that there is a one-to-one
correspondence between the Fermi liquid excitations and
those of the system with the tuned QCP. We will use the
Fermi surface mismatch as the parameter that can be con-
tinuously varied by interpolating between the FL and the
tuned QCP. Assume first that the mismatch parameter �de-
noted below as �� is large; then, at low energies the excita-
tion spectrum is FL-like �see Ref. 17�, i.e., the quasiparticle
linewidth is proportional to 	2 /D or T2 /D and the quasipar-
ticles are well defined. We now gradually reduce the Fermi
surface mismatch. This reduces the energy range of the FL
behavior, which tends to zero at the tuned QCP. As a function
of the mismatch parameter, we can follow each excitation
into the region of the tuned QCP. Hence, there is still a one-
to-one correspondence between the states and the free Fermi
gas statistics still applies �with different a dispersion� despite
of the broad linewidth of the excitations. Hence, the ex-
tended Lifshitz–Kosevich equation is applicable to the
present situation.

III. MARGINAL FERMI LIQUID

In this section, we apply the above formalism to the
simple case of a marginal Fermi liquid.23 In a marginal FL,
the interactions are sufficiently strong so that the discontinu-
ity in the Fermi distribution has shrunk to zero. Conse-
quently, the FL behavior, i.e., the 	2 and T2 dependences of
the self-energy, is replaced by a linear dependence on �	�.
This situation is quite similar to the behavior close to a QCP.

At T=0, the quasiparticle self-energy for a marginal FL
can be parametrized as ��	�=V2�F

2��	�, where V is the in-
teraction strength and �F is the density of states at the Fermi
level. This functional dependence can be used to calculate
X��n� as follows:

iX��n� = − 
−D

D d	

�

��	�
	 − i�n

= − 2i�nV2�F
2 ln

�D2 + �n
2

��n�
, �4�

where D is an electronic cutoff. Note that X is real and nega-
tive if �0. The same expression of X can be obtained by
analytical continuation of ��	� into the complex plane and
then replacing the frequency by i�n.

By inserting X��n� into expression �3� and numerically
evaluating the sum, we obtain the Ar for the marginal FL
case. The result is to be compared to that for the noninter-
acting system, i.e., Ar

0, for the same effective mass and at the
same temperature and magnetic field. The ratio Ar /Ar

0 is
shown in Fig. 1 for the first five amplitudes as a function of
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T for a fixed magnetic field. This quantity is always smaller
than 1. The effect of the self-energy grows with the index r
of the harmonic, as well as with the temperature. As seen in
the resistivities of many compounds, the effect of a QCP
extends out to quite high temperatures. This is also the case
for the amplitudes of the dHvA oscillations. Increasing the
field, on the other hand, reduces the effect of the interactions.
If D corresponds to 1000 K, the magnetic field for the curves
in Fig. 1 is 2 T if m� is the free electron mass m. For other
values of m�, B has to be renormalized by m� /m; i.e., for
m� /m=10, the field corresponds to 20 T.

IV. TWO-POCKET MODEL AND QUASIPARTICLE
LINEWIDTH

The model consists of two pockets, one electronlike and
the other holelike, that are separated by a wave vector Q.
The kinetic energy of the carriers is given by15,16

H0 = �
k�

��1�k�c1k�
† c1k� + �2�k�c2k�

† c2k�	 , �5�

where k is measured from the center of each pocket and
assumed to be small compared to the nesting vector Q. Here,
�1�k�=vF�k−kF1� and �2�k�=vF�kF2−k�, where kF1 and kF2
are the respective Fermi momenta. For simplicity, we assume
that the Fermi velocity is the same for both pockets.

A strong interaction between electrons gives rise to
heavy-fermion bands. In the spirit of the FL theory, there are
weak remaining interactions between the heavy quasiparti-
cles after the heavy particles are formed. The heavy electron
bands are described by Eq. �5� and the weak interactions
between quasiparticles are given by15,16

H12 = V �
kk�q���

c1k+q�
† c1k�c2k�−q��

† c2k���

+ U �
kk�q���

c1k+q�
† c2k�−q��

† c1k��c2k��. �6�

Here, V and U represent the interaction strength for a small
��q�� �Q�� and a large �on the order of Q� momentum trans-

fer between the pockets, respectively. The limit of the Hub-
bard model is obtained by choosing V=U.

The interaction between the electrons and the nesting of
the Fermi surface induces itinerant AF or charge-density
waves �CDWs�. For perfect nesting �electron-hole symme-
try�, an arbitrarily small interaction is sufficient for a ground
state with long-range order. The degree of nesting is con-
trolled by the mismatch parameter, �=vF�kF1−kF2� /2. By in-
creasing �, the ordering temperature can be tuned to zero,
leading to a QCP. The QCP is an unstable fixed point and can
be reached only by perfectly tuning the system. Otherwise,
the RG flow will deviate to a phase with long-range order or
the compound remains a paramagnet.15

The leading order corrections to the vertex are the bubble
diagrams of the zero-sound type �antiparallel propagator
lines�, which are logarithmic in the external energy 	. As-
suming that 	 is small compared to the cutoff energy D and
that the density of states for electrons and holes, �F, is con-
stant, we have

Ṽ =
V

1 − �FV�
, 2Ũ − Ṽ =

�2U − V�
1 + �F�2U − V��

, �7�

where �=ln�D / ��	�+2T+ ����	.16 A divergent vertex indicates
a strong coupling and signals an instability.15,16 For a repul-

sive interaction, the vertex Ṽ increases under renormalization
and can give rise to AF long-range order. The vertex

�2Ũ− Ṽ�, on the other hand, leads to a strong coupling if
2U�V and could lead to a CDW. Due to the mismatched
Fermi surfaces, the renormalization ends either at a diver-
gence in Eq. �7� or at �=ln�D /��, whichever is reached first.
Thus, for a sufficiently large Fermi surface mismatch, the
renormalization does not lead to an instability. The tempera-
ture smears the Fermi surface and introduces an effect simi-
lar to the mismatch.16

The key quantity to understand the low T specific heat,
the enhancement of the effective mass, and the resistivity is
the quasiparticle self-energy. In a FL, the damping of a qua-
siparticle is proportional to T2, while the nesting condition
changes this behavior to a linear dependence on T �with
logarithmic corrections�.17 The contributions to the linewidth
can be separated into additive terms of the NFL and FL
types.

The NFL contribution �NFL can be written as17

�NFL�	,T� =
T

2
 dx�coth�x� − tanh�x −

	

2T
���S��x�

��3�Ṽ�2 + �2Ũ − Ṽ�2	�F, �8�

where �S��	 /2T� is a staggered susceptibility �containing the
nesting property�, 	 is the external frequency, and the fre-
quency in the vertices is 2T�x�+ �	� /2. Here, we use the ana-
lytic continuation of the vertex functions; i.e., i� /2 is added
to �. �S��	 /2T� gives rise to the NFL behavior and is self-
consistently calculated by using the quasiparticle linewidth
as follows:

0 0.0005 0.001 0.0015 0.002
T/D

0

0.2

0.4

0.6

0.8

A
r/A

r0

r=1

r=2

r=3

r=4

r=5

FIG. 1. de Haas-van Alphen amplitudes for the first five har-
monics r as a function of T for a fixed magnetic field for a marginal
Fermi liquid normalized to the amplitude for the noninteracting
system. Here, V�F=0.2 and D=10 and if D is equated to 1000 K,
the magnetic field is 2 T with m� being the free electron mass.
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�S��	/2T� �
�F

2
Im ��1

2
+

�NFL

2�T
+ i

	 − 2�� − �0�
4�T

�
+

�F

2
Im ��1

2
+

�NFL

2�T
+ i

	 + 2�� − �0�
4�T

� , �9�

where Im � is the imaginary part of the digamma function, �
is the nesting mismatch defined above, and �0 is the mis-
match corresponding to the QCP. The frequency of �NFL in
Im � is 2T�x�. The self-consistent solution of Eqs. �8� and �9�
yields the quasiparticle NFL linewidth as a function of 	 and
T.17

The FL contribution to the linewidth is17

�FL�	,T� =
�

8
�	2 + ��T�2	�3V2 + �2U − V2�	�F

3 . �10�

The vertices in �FL are not dressed since this contribution
does not arise from the nesting condition.

The 	 and T dependence of the self-consistent �NFL can
be understood from the analysis of limiting cases.17 First, for
the perfectly tuned QCP, i.e., �=�0, we set 	=0 and neglect
�NFL in the digamma function and the vertex renormaliza-
tions. The integral on the right-hand side of Eq. �8� is then
independent of T; hence, �NFL�T, and not proportional to
T2, as for a FL. Similarly, as T→0, neglecting �NFL in the
digamma function and neglecting the vertex renormaliza-
tions, we obtain for �=�0 that the right-hand side of Eq. �8�
is proportional to �	�, which again differs from the FL be-
havior
��	2�. By including the vertex functions, we obtain addi-
tional logarithmic corrections, so that approximately

�NFL � �3�Ṽ�2 + �2Ũ − Ṽ�2	�F
2 max��	�,T� . �11�

This result is quite similar to the marginal FL discussed in
Sec. III. Second, for ���0, neglecting again the self-
consistency and the vertex corrections, �NFL is exponentially
activated at low T and gradually crosses over to a linear T
dependence with increasing T. Hence, at low T the FL con-
tribution �proportional to T2� dominates and at higher T there
is NFL behavior. Third, at T=0, �NFL identically vanishes for
�	��2��−�0� and is proportional to �	�−2��−�0� at larger
frequencies. Hence, again, the FL contribution �proportional
to 	2� dominates at low energies.17

The 	 and T dependence of the linewidth has the follow-
ing physical consequences: In the disordered phase for the
tuned QCP, the effective mass �specific heat over T� and the
magnetic susceptibility logarithmically increase as T is low-
ered and signal the breakdown of the FL.15,16 There is a
crossover from the −ln�T� dependence of C /T to a constant �
as T is lowered when the QCP is not perfectly tuned, which
is in agreement with experiments on numerous systems. The
electrical resistivity is roughly proportional to �NFL+�FL for
zero frequency; i.e., ��T� is slightly sublinear in T for the
tuned QCP. For a Fermi surface mismatch that is larger than
the critical one, the resistivity displays a crossover from a
NFL ��T� to a FL ��T2� behavior with increasing nesting
mismatch and decreasing temperature, which is in agreement
with experiments.17 The quasiparticle damping also affects

the linewidth of the quasielastic peak in neutron scattering
experiments. A linear T dependence of the linewidth has
been observed in CeRuxFe2−xGe2 for x=0.48,11 and a cross-
over from NFL to FL behavior occurs as T is lowered when
x substantially differs from the critical value.

V. AMPLITUDE OF DE HAAS-VAN ALPHEN
OSCILLATIONS

In this section, we study the effects of the quasiparticle
linewidth on the dHvA oscillation amplitude close to the
QCP. Our model consists of two Fermi surfaces, namely, the
electron and hole pockets. There are then two orbits corre-
sponding to the extremal cross-sectional areas of the Fermi
surface, which are both circular in our model, with radii kF1
and kF2, respectively. There are then two fundamental fre-
quencies of oscillation. In the absence of interactions, the
oscillatory part of the thermodynamic potential in a uniform
magnetic field B is given by the Lifshitz–Kosevich expres-
sion �Eq. �1�	. The quasiparticle linewidth induced by the
interactions substantially modifies this expression and the
amplitude of the oscillations is now given by Eq. �3�. To
simplify, we assume that both pockets have the same self-
energy and neglect the effect of the Zeeman splitting.

The total linewidth, ��	�=�NFL�	�+�FL�	�, is an even
function of 	. Hence, all of the conditions mentioned in Sec.
II are satisfied. The quantity X��n� is then given by the
Cauchy transform of ��	�,

X��n� = − �n
−D

D d	

�

��	�
	2 + ��T�2n + 1�	2 . �12�

It is straightforward to numerically carry out this integration.
By inserting X��n� into Eq. �3�, we evaluate the amplitude Ar
relative to the amplitude for the noninteracting system, Ar

0

=1 / �2 sinh�2�2kBTr /�	c�	.
Figure 2 shows the oscillation amplitude for the first five

harmonics as a function of temperature for �0=0.07, which
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FIG. 2. de Haas-van Alphen amplitudes for the first five har-
monics r as a function of T for a fixed magnetic field for the two-
pocket model tuned to the QCP, �0=0.07. The amplitudes are nor-
malized to the amplitude for the noninteracting system. Here, V�F

=U�F=0.2 and D=10 and if D is equated to 1000 K, the magnetic
field is 2 T with m� being the free electron mass. For other values of
m�, B has to be renormalized by m� /m, i.e., for
m� /m=10 the field corresponds to 20 T.
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corresponds to the tuned QCP. The T dependence is qualita-
tively similar to that of the marginal FL �see Fig. 1�. The
overall reduction in the amplitudes is, however, considerably
larger close to the QCP. Also, as a function of T, the ampli-
tudes decrease much faster as in Fig. 1 for the marginal FL.
If the bandwidth D of the heavy carriers in Eq. �5� is 1000 K
and the unrenormalized effective mass is 20 times that of
free electrons, then Fig. 2 corresponds to an external field of
40 T and T /D=0.001 to 1 K. It is then necessary to have a
very low Dingle temperature to observe more than the fun-
damental frequency. The situation is more favorable at lower
T.

In Figs. 3 and 4, we present the amplitudes for larger
mismatches of the Fermi surfaces, namely, �=0.09 and
�=0.11, respectively. As we move away from the QCP, the
amplitudes slightly increase but the general trends remain the
same. Since expression �3� involves an integration over the
frequency �actually a sum over the fermion Matsubara
poles�, the crossover between the FL and NFL regions is
smeared and cannot be seen in the amplitudes. The overall
trend, which is independent of the value of �, is that Ar /Ar

0 is
an increasing function as T is lowered.

The magnetic field dependence of the oscillation ampli-
tude for a constant T is shown in Fig. 5 for the first three
harmonics and �=0.07, 0.09, and 0.11. The amplitudes rela-
tive to the noninteracting system increase with increasing
field. In other words, the effects of the self-energy are much
more dramatic at small fields. The amplitude is most reduced
for the tuned QCP. As we increase the nesting mismatch, the
NFL behavior is suppressed at low T and the smaller line-
width due to the FL behavior plays a dominant role.

VI. OSCILLATIONS IN THE ORDERED PHASE

Due to the spin waves that are thermally excited close to
TN, it is difficult to calculate the damping of the dHvA am-
plitudes near the transition. We will limit ourselves to fol-
lowing the periods of oscillations through the transition. A
mean-field approach should be sufficient to obtain the cross
sections of the Fermi surface for the ordered phase. The
mean-field approximation for the present model15 yields a
BCS-type equation for the AF order parameter �,

1 = −
V�F

2


−D

D

d�
f�	+� − f�	−�

��� − �kF1 + kF2�vF/2	2 + �2
, �13�

where

	� = � � ��� − �kF1 + kF2�vF/2	2 + �2 �14�

are the dispersions in the presence of long-range order. Since
the total number of electrons is conserved, the Fermi volume
has to be invariant. Hence, if kF1=kF2, the system becomes
an insulator due to the AF gap opening at the Fermi level. If
��0, on the other hand, the system remains a metal. If
kF2kF1, the 	+ band is empty and 	− is partially filled;
while if kF2�kF1, the 	− band is full and 	+ is partially
populated. The Fermi surface still consists of two spheres,
one electronlike and the other holelike. The new Fermi mo-
menta are determined by the solutions of the quadratic equa-
tion 	=� for �=vFk, where 	 is the partially filled band and
� is the chemical potential so that the Fermi volume is con-
served.
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FIG. 3. de Haas-van Alphen amplitudes for the first five har-
monics r as a function of T for a fixed magnetic field for the two-
pocket model tuned away from the QCP, with �=0.09. The ampli-
tudes are normalized to the amplitude for the noninteracting system.
The remaining parameters are the same as those in Fig. 2.

0 0.0005 0.001 0.0015 0.002
T/D

0

0.2

0.4

0.6

A
r/A

r0

r=1

r=2

r=3

r=4

r=5

δ=0.11

FIG. 4. de Haas-van Alphen amplitudes for the first five har-
monics r as a function of T for a fixed magnetic field for the two-
pocket model tuned away from the QCP, with �=0.11. The ampli-
tudes are normalized to the amplitude for the noninteracting system.
The remaining parameters are the same as those in Fig. 2.
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FIG. 5. Magnetic field dependence of the oscillation amplitudes
�normalized to the amplitude for the noninteracting system� for con-
stant T=0.001 and r=1, 2, and 3. The solid lines correspond to the
tuned QCP with �0=0.07, the dotted curves to that with �=0.09 and
the long dashed curves to that with �=0.11. The remaining param-
eters are the same as those in Fig. 2.
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With increasing AF order, the Fermi momenta gradually
evolve from the Fermi momenta in the paramagnetic phase,
kF1 and kF2. There is no abrupt change in the dHvA frequen-
cies of oscillation at the QCP. This is in contrast to experi-
mental evidence for YbRh2Si2, for which the Hall constant
indicates that the heavy electrons are abruptly localized by
the magnetism.24 The sudden jump in RH is obtained as an
extrapolation to zero temperature. Changes in the Fermi vol-
ume at the QCP can only be achieved within a two-band
model, i.e., the Anderson lattice with conduction and local-
ized f electrons. In the paramagnetic heavy-fermion phase,
the two type of states merge into a single heavy-fermion
band. The present model is sufficient to describe the heavy
fermions but not their breaking up. If at the QCP the heavy
electron states are broken up, giving rise to the AF order of
local magnetic moments rather than itinerant AF as for a
spin-density wave, then the more complex Anderson lattice
model needs to be considered.

VII. CONCLUSIONS

We calculated the amplitudes of the dHvA oscillations in
the FL and NFL phases for a model consisting of spherical
Fermi surfaces of one parabolic electron pocket and one
parabolic hole pocket, which are assumed to be part of the
heavy electron bands of a rare earth �actinide� compound.
The electrons of both pockets interact with each other via a
weak repulsive force, which �in the sense of a Fermi liquid�
is the remainder of the strong correlations after the heavy
particles are formed. The interaction and the nesting of the
two Fermi surfaces give rise to instabilities of the spin-
density and charge-density wave type. For perfect nesting
�electron-hole symmetry�, an arbitrarily small interaction is
sufficient for a ground state with long-range order. The de-
gree of nesting is controlled by the mismatch parameter �
and by varying � the ordering temperature can be tuned to
zero, leading to a QCP.

The QCP itself is elusive to experiment, and the NFL
behavior is concluded by extrapolating the data to zero tem-

perature. Landau’s Fermi liquid theory predicts that for nor-
mal metals, the quasiparticle linewidth is proportional to 	2

and T2. The nesting condition of the Fermi surface modifies
this behavior to a �	� and T dependence for the tuned QCP.17

For ��0, at low T there is a crossover from FL to NFL
behavior with increasing T.

The Lifshitz–Kosevich expression for the oscillatory part
of the thermodynamic potential is modified due to the pres-
ence of interactions between the carriers.22 The oscillation
amplitudes can be expressed as a sum over the quasiparticle
self-energy evaluated at the fermion Matsubara poles. The
interactions always reduce the oscillation amplitudes. In the
present case, the sum over the Matsubara poles smears the
details of the crossover from FL to NFL behavior. Hence,
qualitatively, the temperature dependence of the amplitudes
is quite similar to that of a marginal FL. The suppression of
the amplitudes is strongest for the tuned QCP. The NFL ef-
fects can be seen even far away from the QCP. For the
present model, the frequencies of oscillation smoothly
change through the QCP. This is in contrast to the experi-
mental observations for the Hall constant of YbRh2Si2,
wherein a change of carrier density at the QCP was
concluded.24

The dHvA oscillations in the magnetization or the de
Haas–Shubnikov oscillations in the resistivity are periodic as
a function of B−1. Hence, they are measured over a magnetic
field interval. The amplitude of oscillation cannot be then
associated with a given field, but it corresponds to that inter-
val. On the other hand, the magnetic field also frequently
acts as a tuning parameter for the QCP. Hence, a discussion
of the oscillation amplitudes is only meaningful if the mag-
netic field, within the regime of measurement, does not affect
the tuning of the QCP.
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