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We study the excitonic oscillator strength and energies arising from the binding of an electron and a hole
interacting through an attractive potential in a tunnel-coupled quantum-dot lattice. The effect of interdot
tunneling of the electron and the hole and their attraction on the exciton oscillator strength and exciton binding
is evaluated in one-dimensional �1D� and two-dimensional �2D� lattices. For short-range interaction, we find
that close packing of the quantum dots into a 2D lattice can result in a nearly abrupt loss of electron-hole
binding and the oscillator strength in contrast with a 1D lattice, where the effect is gradual. Numerical
application includes general electron-hole attraction in 1D lattices and on-site plus nearest-neighbor attraction
in 2D lattices. The time-dependent behavior of the oscillator strength is also examined for 1D on-site attraction.
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I. INTRODUCTION

Excitons are a good storage source of light energy and
play an increasingly important role in optoelectronic devices.
The physics of excitons in a single confined structure as well
as in a regular array of confined structures in semiconductors
is of much current interest. In modern devices, dense stacks
of quantum dots �QDs�, quantum wires, and quantum wells
are used to enhance the quantum efficiency. Excitons show
interesting properties in quantum wells,1–7 quantum wires,8,9

coupled quantum-well and QD structures,10,11 and QDs.12–15

With recent advances in the fabrication of a regular array of
QDs, it is possible to control the dot size as well as the
structure of the QD lattice.15–18 The excitonic property of a
single QD such as the oscillator strength is mainly deter-
mined by the confinement effect of the carriers and their
Coulomb interaction. In a regular array of QDs, however,
interdot tunneling of electrons and holes can significantly
affect the energy structure and affect the quantum efficiency
such as the oscillator strength.16,19–22 In this paper, we study
how single-dot excitonic properties evolve in a QD lattice
due to the competition between the electron-hole attraction
which brings the pair closer together and interdot tunneling
which moves them away from each other. In particular, we
focus on the relative role of the dimensionality and the range
of the interaction. The formalism developed here is applied
to evaluate these effects in a one-dimensional �1D� QD lat-
tice for general electron-hole interactions, on-site and
nearest-neighbor interaction in two-dimensional �2D� lat-
tices, and on-site interaction in three-dimensional �3D� lat-
tices. For short-range interactions, we find that close packing
of the QDs into a 2D lattice can result in a nearly abrupt
reduction of the binding energy and the oscillator strength in
contrast to a 1D lattice, where this effect is more gradual.

II. MODEL HAMILTONIAN AND FORMALISM

The Hamiltonian of an electron and a hole tunneling be-
tween the dots in the lattice is given by22–25

H = He
�0� + Hh

�0� + H�, �1�

where He
�0�, Hh

�0� describe single-particle motion for the elec-
tron and hole, respectively, and H� is the electron-hole inter-
action given in the site representation by

H� = �
m,ne

Vmane

† ane
bne+m

† bne+m. �2�

Here, ane

† and ane
�bnh

† and bnh
� are creation and destruction

operators for the electron �hole� at a QD at site ne �nh=ne

+m� and Vm�−U�m� �with U�m��0� is the electron-hole in-
teraction. The quantity �m� is the distance between the elec-
tron and the hole. A cubic or a square lattice structure with a
unit lattice constant is assumed for simplicity. The present
electron-hole problem is reduced to a single-particle problem
as will be shown later. The eigenvalues of He

�0�+Hh
�0� are

given by

�He
�0� + Hh

�0���ke,kh� = ��ke,kh��ke,kh� , �3�

where ��ke ,kh�=�e,ke
+�h,kh

and ke ,kh are wave vectors.
These energies are given in the tight-binding approximation
by

��,k�
= �

m
2J��m�cos�k� · m� , �4�

where J��m� is the tunneling integral for an electron ��=e�
and a hole ��=h� between the sites �i.e., QDs� at n=0 and
n=m. For small QDs, excited levels are far above the ground
state. Therefore, only the ground state of the QDs is consid-
ered in this paper, although the result can be applied to any
QD level.

A numerical study of a similar model based on on-site and
nearest-neighbor attraction was given previously21,22 for sev-
eral QDs on a 1D chain and a ring. With recent advances in
the growth technology, it is possible to stack QDs to make a
1D quantum-dot lattice and stack 1D lattices to make a 2D
lattice for device applications. Analytic solutions are possible
for such extended systems as will be presented here. It is
interesting to see how the electron-hole binding and optical
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properties depend on the dimensionality of the array and the
range of the interaction. In one dimension, our result is con-
sistent with the earlier numerical result in the long-chain
limit.22 The exciton absorption was also studied numerically
for nearest-neighbor tunneling J�=J��1� for a large chain
using U0 for the electron-hole distance r=0 and U1 /r for r
�1 and U1=0.6U0.23 The effect of anisotropic interchain
tunneling and attraction in a large 2D square lattice was stud-
ied numerically using a similar model for U1=0.75U0 and
U0= �Je�1�+Jh�1��.24

The intradot Coulomb attraction U0 is of the order of a
few milli-electron-volts for QDs with a diameter of a few
tens of nanometers. For an average separation of 20 nm, for
example, the intradot electron-hole attraction equals U0
=6 meV for the bulk dielectric constant �=12. The absolute
value of the tunneling integral Je for the electron is about
1 meV for the GaAs/Al0.3Ga0.7As double well structure with
15 nm widths and a 2.5 nm wide barrier and can be much
smaller for wider barriers.27,28 The absolute value of the tun-
neling integral Jh for the hole is much smaller due to the
heavy mass. The strength of the tunneling integral can vary
significantly depending on the material inside the barrier.
The electron and hole QD levels under consideration can be
any of the QD levels as long as they are separated from other
nearest levels by ��J��. This condition is not well satisfied
for large QDs, where exciton-exciton many-body problems
can become important at a high exciton density. The present
study considers only lattices with small dot sizes and is rel-
evant to systems with low exciton densities.

Assume that the electron-hole pair is created at an arbi-
trary site ne=nh=0 at time t=0. The probability amplitude
that the electron and the hole are at sites ne, nh at time t
�0 is then given by26

Gne,nh
�t� = �ne,nh�exp�− itH/���0,0� . �5�

Defining

Gne,nh
�z� =

1

i�
�

0

�

eizt/�Gne,nh
�t�dt , �6�

where z has an infinitesimal positive imaginary part, we find

Gne,nh
�z� = �ne,nh�

1

z − H
�0,0� �7�

and

Gne,nh
�t� =

i

2	
�

−�

�

e−izt/�Gne,nh
�z�dz . �8�

Employing a similar definition for the case H→H�0�=He
�0�

+Hh
�0�, we find

gne,nh
�z� = �ne,nh�

1

z − H�0� �0,0� . �9�

III. GREEN’S FUNCTIONS

The Green’s functions introduced in Eq. �7� in the energy
representation can be evaluated using the standard Dyson
equation

Gne,nh
= gne,nh

+ �
n,n�

gne,nh;n,n�Vn�−nGn,n�. �10�

Here, gne,nh;n,n� has a similar definition as in Eq. �9� except
that the initial sites of the electron and hole are at n ,n�,
respectively. In terms of the plane-wave representation

�ke,kh� =
1

N
�

ne,nh

exp�− ike · ne�exp�− ikh · nh��ne,nh� ,

we find

g�ke,kh� =
1

N
�

ne,nh

eike·neeikh·nhgne,nh
�11�

and

g�ke,kh� =
1

N

1

z − ��ke,kh�
, �12�

where N is the total number of the lattice sites. The z depen-
dence is suppressed for the simplicity of the notation when
there is no confusion. Similarly, we define

G�ke,kh� =
1

N
�

ne,nh

eike·neeikh·nhGne,nh
, �13�

Gne,nh
=

1

N
�

ke,kh

e−ike·nee−ikh·nhG�ke,kh� .

In order to simplify the Dyson equation in Eq. �10�, we use
the translational-symmetry property gne,nh;n,n�=gne−n,nh−n�
and the inversion symmetry, obtaining

G�ke,kh� = g�ke,kh�	1 + �
m

Vm�
k�

cos�k� · m�


G�ke + k�,kh − k��
 . �14�

It is convenient to define

�m = �
n

Gn+m,n = �
k

cos�k · m�G�k,− k� , �15�

where the second equality arises from the second equation in
Eq. �13�. The quantity �m is related to the probability am-
plitude where the electron and the hole are separated by m,
while the quantity �m=0 yields the oscillator strength as will
be shown shortly. Similarly, we define

�m = �
n

gn+m,n = �
k

cos�k · m�g�k,− k� . �16�

The quantity G�k ,−k� in Eq. �15� is obtained from Eq. �14�
by choosing ke=−kh=k:

G�k,− k� = g�k,− k�	1 + �
m

Vm cos�k · m��m
 , �17�

where use is made of the inversion symmetry.
In the self-consistent Eqs. �15� and �17�, the entire infor-

mation from the noninteracting part of the electron and hole
Hamiltonian is contained in the quantity g�k ,−k�= �z
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−��k��−1 in Eq. �17�, where ��k����k ,−k�=��k ,k�=�e�k�
+�h�k�. Thus, the effective motion is given by J=Je+Jh for a
tight-binding model in Eq. �4� with the nearest-neighbor
transfer integrals Je and Jh. This is consistent with an earlier
result.22 In general, we can account for the combined elec-
tron and hole motion by replacing the mth nearest electron
transfer integral Je�m� by the effective J�m�=Je�m�+Jh�m�
for the effective energy dispersion ��k� in view of Eq. �4�
and drop the hole motion. For the effective-mass model, this
corresponds to introducing the reduced mass: 1 /m*=1/me
+1/mh. With this effective ��k�, we can drop the hole mo-
tion, setting nh=0 in Eq. �5� and those that follow. The net
result is equivalent to replacing the n summation in Eq. �15�
with n=0.

The quantity �m in Eq. �15� is then simplified, using Eq.
�7�, as

�m = Gm,0 = �
�

f��m�
z − ��

, f��m� = �m,0������0,0� ,

�18�

where ��� are eigenstates of H :H���=�����. The poles of
�m gives all the eigenstates with nonzero oscillator strength.
In particular, the residue f��0� of �0 is basically the oscilla-
tor strength of the eigenstate �. The quantity �m ,0 ���
= f��m� / �� �0,0� yields information about the mutual
electron-hole separation m of the electron-hole eigenfunction
��� with a finite oscillator strength. The quantity f��m� is
normalized in the sense

�
m

�f��m��2 = f��0� . �19�

Inserting Eq. �17� into Eq. �15�, we obtain

�
m�

�
m,m� − Km,m�Vm���m� = �m, �20�

where �m was defined in Eq. �16� and

Km,m� = �
k

g�k,− k�cos�k · m�cos�k · m��

= 1
2 ��m+m� + �m−m�� . �21�

The expression in Eq. �20� is invariant under m→−m in
view of Vm�=V−m�. The solution �m is then obtained by
inverting the matrix inside the parentheses on the left-hand
side of Eq. �20�. The time-dependent �m�t� is obtained from
Eqs. �8� and �18�:

�m�t� =
i

2	
�

−�

�

exp�− izt/���m�z�dz . �22�

IV. OSCILLATOR STRENGTH

In this section, we study oscillator strengths for several
interesting cases by solving Eq. �20�. We study tunneling
only between nearest-neighbor QDs in a direct-gap semicon-
ductor with the energy dispersion

��k� = − 2�
�

T� cos a�k�, �23�

where T�=T�e+T�h is the net nearest-neighbor transfer inte-
gral in the � direction and a� is the QD-lattice constant. We
introduce a useful identity derived from Eqs. �12� �with ke
=−kh=k� and �23�:

�0�z� = �
k

g�k,− k� = − i�
0

�

exp�i�z�

�

J0��b��d� ,

�24�

where b�=2T� and Jn�x� is the nth-order Bessel function.
Note that the expression in Eq. �24� is independent of the
sign of b�.

The quantity �m�z���m can readily be evaluated in one
dimension, yielding

�m =
���z� − �b��

z�1 − �b/z�2� z

b
−

z

b
�1 − �b/z�2��m�

+
s�z����b� − �z��

2i�b2 − z2 �	 z

b
+ i�1 − �z/b�2
�m�

+ c.c.�, �1D� ,

�25�

where ��x� is the unit step function, and s�z� is the sign of the
infinitesimal imaginary part of z close to the real axis. In two
dimensions, Eq. �24� yields for b=bx=by

�0 � �0�z� =
��2�b� − �z��

�b� � sgn�z�
2

P−1/2�1 −
1

2
�z/b�2�

+
s�z�
i	

Q−1/2�1 −
1

2
�z/b�2��

+
���z� − 2�b��

�b�
sgn�z�

	
Q−1/2�1

2
�z/b�2 − 1�, �2D� ,

�26�

where sgn�z� is the sign of the real part of z and Pn�x�
�Qn�x�� is the Legendre function of the first �second� kind.
Only the real part is relevant for the last term of Eq. �26�.

A. On-site Coulomb interaction

When the electron and the hole interact significantly only
inside the same QD, namely for Vm=−U0
m,0, Eqs. �20� and
�21� yield in all dimensions

�0 =
�0

1 + U0�0
�27�

and

�m =
�m

1 + U0�0
. �28�

We first study Eq. �27� for a simple 1D QD lattice. Insert-
ing Eq. �25� in Eq. �27�, we find
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�0�z� =
���z� − �b��

z�1 − �b/z�2 + U0

+
s�z����b� − �z��

i�b2 − z2 + U0

. �29�

The quantity �0�z� has a cut in the interval −�b��z� �b�
representing the continuum band states and a simple pole at
z0=−�U0

2+b2, yielding near the pole

�0�z� →
R0

�z − z0�
, R0 =

U0

�U0
2 + b2

. �30�

This solution is in the form of Eq. �18� with f��0�=R0 for the
ground state �=0 and is consistent with the fact that an
exciton bound state exists in one dimension, independent of
the strength of the electron-hole attraction as is well known.
The binding energy equals �B=�U0

2+b2− �b� and is reduced
from �B=U0 of an isolated QD. The quantity �m is a mea-
sure of the amplitude for the electron-hole separation at a
distance m as noted earlier in Sec. III and is obtained from
Eq. �28�, yielding at the resonance z=z0

�m →
R0�− sgn�b���m� exp�− �m�/��

�z − z0�
�

f0�m�
z − z0

, �31�

where

� = − �ln���U0/b�2 + 1 − �U0/b���−1. �32�

Here, � is approximately the radius of the ground-state exci-
ton wave function. It should be noted that, for the ground
sublevels of the QDs under consideration in this paper, the
sign of b is negative, indicating naturally that the exciton
ground state has no node. The normalization �m�f0�m��2
= f0�0�=R0 is satisfied in Eq. �31� as proved in Eq. �19� in
general.

We transform �0�z� into the time space for the 1D lattice
inserting Eq. �29� in Eq. �22� and integrating on the complex
z plane

�0�t� = R0 exp�− iz0t/�� +
2

	
�

0

1 �1 − x2 cos�x��
�U0/b�2 + 1 − x2dx ,

�33�

where �=bt /�. Two cases of limiting behavior are of inter-
est. At t=0, the second term on the right-hand side of Eq.
�33� yields 1−R0 and therefore �0�0�=1 as expected. For
U0=0, we find

�0�t� = J0��� →� 2

	�
cos�� −

1

4
	� , �34�

where the arrow indicates the long-time ���1� behavior, for
the time much longer than the nearest-neighbor tunneling
time. In this case, the probability function ��0�t��2 decays as
1/ t due to band motion as expected in the absence of
electron-hole binding. In order to study the long-time behav-
ior for U0�0, we carry out the integration in Eq. �33� and
find

�0�t� = R0 exp�− iz0t/�� +
1

�U0/b�2 + 1


�
n=0

� 	 − d2/d�2

�U0/b�2 + 1

n

�J1���/�� .

At a sufficiently long time ��1, only the n=0 contribution
is important in the above summation, yielding

�0�t� = R0 exp�− iz0t/�� +� 2

	

cos�� −
3

4
	�

�3/2��U0/b�2 + 1�
. �35�

Here, the decay to the bound state is faster than in Eq. �34�.
In 2D QD lattices, the continuum band extends over the

energy range −2�b��z�2�b� as shown by the imaginary part
in Eq. �26� representing a cut �s�z� in this range. An ex-
ample of a 2D lattice is InAs QDs grown in
GaAs/AlxGa1−xAs quantum wells. The resonance energy ex-
ists only for z�−2�b� and is given by the pole of

�0�z� =
�b�−1

U
0

�b�
−� 1

	
Q

−1/2�1

2
�z/b�2 − 1��−1

, z � − 2�b�

�36�

obtained by inserting the last term of Eq. �26� in Eq. �27�. A
numerical study of the properties of the pole of Eq. �36� will
be given later in Sec. V.

The result in Eq. �31� can be extended to two and three
dimensions analytically for the case U0� �b��. This condition
prevails often in typical QD structures where tunneling be-
tween QDs is small. Noting that the resonance energy is near
z=z0�−U0 in this case, g�k ,−k� can be written to the first
order in b� /U0 as

g�k,− k� =
zD−1

N


�

g��k,− k�, g��k,− k� =
1

z − ���k��
.

�37�

Here, ���k��=−b� cos�k�� is the energy dispersion in the �
direction and D is the dimension. Employing cos�k·m�
= �exp�ik·m�+exp�−ik·m�� /2, we can transform the k sum
in the numerator of Eq. �28� into the product of the k� sums
using the relationship in Eq. �37�. We find at the resonance
z=z0

�m →
R0
�

�− sgn�b����m��exp�− �m��/���

�z − z0�
=

f0�m�
z − z0

,

�38�

where

��
−1 = ln

2U0

�b��
�39�

and R0=1− 1
2���b� /U0�2 and z0=−U0− 1

2��b�
2 /U0. These re-

sults agree with the 1D case studied above in the limit U0
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� �b�. The normalization �m�f0�m��2= f0�0�=R0 is still satis-
fied in Eq. �38� for the ground state �=0

We now investigate the effect of extended Coulomb inter-
action by studying the effect of nearest-neighbor Coulomb
interaction in one and two dimensions.

B. Extended Coulomb interaction in a 1D lattice

In a 1D lattice, we rewrite Eq. �20� in general as

�
m�=0

�

�
m,m� − �2 − 
m�,0�Km,m�Vm���m� = �m, m � 0,

�40�

where use is made of the inversion-symmetry property of �m
and �m. A numerical study of some interesting examples of
long-range electron-hole attraction will be studied later in
Sec. V. In the following, we first consider on-site plus nearest
neighbor attraction: V0=−U0, V±1=−U1, and Vm=0 for �m�
�1. In this case, Eq. �40� yields

�1 − K0,0V0��0 − 2K0,1V1�1 = �0 �41�

and

− K1,0V0�0 + �1 − 2K1,1V1��1 = �1. �42�

We can rewrite K0,0=�0, K0,1=�1, and K1,1= ��0+�2� /2 in
view of Eq. �21�. Here, �0 is given in Eq. �25�. The reso-
nance energy z0�−�b� is obtained from pole of �0�z� using
�1=zb−1�0−b−1, �2= �2z2b−2−1��0−2zb−2 obtained from
Eq. �16� or Eq. �25�. We find

�0 =
1

�b�
1 + 2zu1 − 2u1��b��0�−1

u0 + 2zu0u1 + 2z2u1 + �1 − 2u0u1 − 2zu1���b��0�−1 ,

�43�

where u0=U0 / �b�, u1=U1 / �b� and z is in units of �b�. All other
�m’s ��m��0� are readily obtained in terms �0 through Eqs.
�40�–�42�. Numerical solutions for a general form of interac-
tion will be considered later. Defining the denominator of Eq.
�43� as D, z=−cosh �, �=exp�−��, and using Eq. �25�, the
bound-state energies are found from

D� = �u1�3 + � 1
2 − 2u0u1��2 + �u0 + u1�� − 1

2� = 0,

yielding up to three roots. This solution is equivalent to that
obtained by Ishida et al.23

C. Extended Coulomb interaction in a 2D square lattice

For on-site plus nearest-neighbor interaction in a 2D
square lattice, Eq. �20� yields, after using various symmetry
properties in Eqs. �15�, �16�, and �21� discussed earlier

�1 − K0,0V0��0 − 4K0,1V1�1 = �0 �44�

and

− K1,0V0�0 + �1 − 2K1,1V1 − 2K1,yV1��1 = �1. �45�

Here, the subscript 1 for �1 and �1 indicates the four equiva-
lent sites which are nearest neighbors to the origin at 0. Vec-

torial indices employed for Km,m� signify 0= �0,0�, 1
= �1,0� and y= �0,1�. The K matrices in Eqs. �44� and �45�
are evaluated using Eqs. �12�, �15�, �16�, �21�, and �23� and
are given by K0,0=�0 �cf. Eq. �26��, K1,0=�1= �z�0−1� /2b,

K1,y =
i

�b��0

�

exp�i�z/�b��J1���2d� , �46�

and K1,1=z2�0 /2b2−z /2b2−K1,y. The quantity �0 is then
given from Eqs. �44� and �45� by

�0 =
1

�b�
1 + zu1 − u1/��b��0�

u0 + zu0u1 + z2u1 + �1 − u0u1 − zu1�/��b��0�
.

�47�

The quantity K1,y is cancelled out from the second term in
Eq. �45� and does not appear in the final result in Eq. �47�.
This expression reduces to the on-site interaction result in
Eq. �27� for u1=0.

V. NUMERICAL EVALUATION AND DISCUSSIONS

A. On-Site interaction in 1D and 2D lattices

Figure 1 displays the relationship between the on-site U0
and the bound-state energy �z�0�, measured from the band
center at z=0 �solid curves, left axis�. The right axis shows
the oscillator strength versus the bound-state energy �dashed
curves, right axis�. These curves are obtained from Eqs. �30�
and �36�, respectively, for 1D �thin curves� and 2D �thick
curves� lattices, with band widths 2�b� and 4�b�. There exists
only one bound state in each case, which appears from the
bottom of the band for small U0 / �b�. The asymptotic behav-
ior of the bound-state energy for U0 / �b��1 is given by z=
−U0 �dotted curve� as expected. In this limit, the oscillator

FIG. 1. Bound-state energy �z�0� below the center of the band
�z=0� vs on-site interaction �U0� �solid curves, left axis� and the
oscillator strength vs the bound-state energy �dashed curves, right
axis� in 1D �thin curves� and 2D �thick curves� lattices with band
widths 2�b� and 4�b�, respectively. The dotted curve is the
asymptote.
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strength saturates to the full strength. The 1D result is con-
sistent with the earlier numerical result obtained for a long
chain.22 The steep rise of the thick solid curve for the 2D
case slightly below the band bottom follows z�−2�b�
−32�b�exp�−2	�b� /U0� for U0� �b� according to Eq. �36�,
meaning that a stronger U0 is necessary to pull down a bound
state below the bottom of the 2D continuum compared to the
1D case as expected. The rise is much slower in 1D �thin
solid curve�, in contrast, and follows z− �b��−0.5�U0 /b�2 for
U0� �b� according to Eq. �30�.

In two dimensions, the connectivity is larger than in 1D,
allowing the electron and the hole to dissociate from each
other more easily. The thick curves in Fig. 1 show that a
strong bound state emerges from the bottom of the band only
when U0 / �b� becomes larger than � unity in 2D, where the
oscillator strength jumps to 0.1 nearly abruptly but numeri-
cally continuously in a fine scale from zero. Experimentally,
the photoluminescence �PL� intensity from the excitons in a
2D lattice will jump steeply and rise rapidly, saturating at a
maximum value as the interdot lattice spacing increases for a
constant U0 �i.e., for the same QD size�. In a 1D lattice,
however, the PL intensity will rise continuously and rapidly
without the sudden initial jump. A 2D lattice is formed by
stacking 1D quantum-dot lattices for improved device effi-
ciency. However, the above discussion indicates that the op-
tical efficiency can drop drastically unless the QDs are kept
far apart in a 2D lattice in such a way that the tunneling
energy �b� is small enough to assure sufficiently large
U0 / �b��1. Strong long-range interaction �e.g., second-
neighbor attraction� tends to diminish the above abrupt be-
havior for the electron-hole binding and the oscillator
strength as will be shown later.

The time-dependent behavior of ��0�t��2 in Eq. �33� is
shown in Fig. 2 for a 1D lattice for several values of U0 / �b�.
The curves start with the value of unity initially and saturate
at the asymptotic values of 0.2, 0.5 and 0.8, respectively for

U0=0.5�b� �solid curve�, U0= �b� �dotted curve�, and
U0=2�b� �dashed curve� corresponding to R0

2 in Eq. �30�.

B. On-Site and nearest-neighbor attraction in a 1D
lattice

In this case, more than one bound states are possible. The
bound state energies and their oscillator strengths are calcu-
lated from Eq. �43�. Figure 3 displays the energies of the two
lowest symmetric bound states �solid curves, left axis� with
nonzero oscillator strengths �dashed curves, right axis� for
the on-site interaction U0=5�b� as a function of the nearest-
neighbor attraction U1. The oscillator strength of the ground
state decreases with increasing U1 because the nearest-
neighbor sites steal the amplitude from n=0. The onset value
of U1 for the appearance of the upper bound state �thin solid
curve� and its oscillator strength �thin dashed curve� is about
U1=0.7�b�. Experimentally, the effect of strong extended in-
teraction U1 as well as the long-range interactions to be dis-
cussed in Figs. 4 and 5 will give rise to a significant PL
intensity from higher-energy levels. Near the unrealistic but
interesting case of U1=U0, the two dashed curves cross ow-
ing to the fact that the ground state begins to have more
amplitudes at sites n= ±1 away from n=0 for U1�U0.

C. General attractive potential in a 1D lattice

A general 1D potential can be treated using Eq. �40�. We
study two cases here: a short-ranged exponentially decaying
potential and a long-ranged Coulombic potential. An infinite
number of bound states exists in this case. The exponential
potential is of the form

FIG. 2. Time-dependent behavior of ��0�t��2 for U0=0.5�b�
�solid curve�, U0= �b� �dotted curve�, and U0=2�b� �dashed curve� in
a 1D lattice with on-site attraction U0 and bandwidth 2�b�.

FIG. 3. Energies �z�0� of the two lowest bound states with
nonzero oscillator strengths in a 1D lattice �solid curves, left axis�
vs the nearest-neighbor attraction U1. Here, U0=5�b� and z=0 at the
center of the band of width 2�b�. The oscillator strengths for the
bound states are plotted on the right axis �dashed curves�. The onset
value of U1 for the appearance of the upper bound state �thin solid
curve� and its oscillator strength �thin dashed curve� is about U1

=0.7�b�. The thick curves represent the ground state.
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V�n� = − U0 exp�− n/r� , �48�

while the Coulombic potential is given by

V�n� = −
U0

1 + n/r
, �49�

where the range r is in units of the lattice constant and n
=0, ±1, ±2, . . . . We study only the two lowest bound states

with nonzero oscillator strengths �i.e., even parity�.
Figure 4 displays the energies of the two lowest even

bound states �solid curves, left axis� and their oscillator
strengths �dashed curves, right axis� from the exponential
potential in Eq. �48� with the on-site interaction U0=5�b� as a
function of r. The onset value of r for the appearance of the
upper bound state �thin solid curve� and its oscillator strength
�thin dashed curve� is about r=0.51.

Figure 5 shows the energies of the two lowest even bound
states �solid curves, left axis� and their oscillator strengths
�dashed curves, right axis� from the Coulombic potential in
Eq. �49� with the on-site interaction U0=5�b� as a function of
r. The onset value of r for the appearance of the upper bound
state �thin solid curve� and its oscillator strength �thin dashed
curve� is about r=0.14, much smaller than that of the expo-
nential potential. This arises from the fact that the long-range
Coulombic interaction allows the formation of an exciton
with a large radius in contrast to the case of the exponential
potential which cuts off the electron-hole interaction beyond
a certain range. For the same reason, much more higher-
energy bound states are found for Coulombic interaction than
for the exponential potential. The results in Figs. 4 and 5
show reduced oscillator strength for the ground state for
long-range interactions due to the increased exciton radius.

D. On-site and nearest-neighbor attraction in a square
lattice

More than one bound states are possible in this case. Fig-
ure 6 displays the energies of the two lowest even bound
states with nonzero oscillator strengths in a 2D square lattice
�solid curves, left axis� calculated from Eq. �47� as a function
of the nearest-neighbor attraction U1. Here, U0=5�b� and

FIG. 4. Energies �z�0� of the two lowest bound states �solid
curves, left axis� with nonzero oscillator strengths �dashed curves,
right axis� for a 1D exponential attraction in Eq. �48� as a function
of the range of the interaction. Here, U0=5�b� and z=0 at the center
of the band of width 2�b�. The onset range r for the upper bound
state �thin solid curve� and its oscillator strength �thin dashed curve�
is about r=0.51. The thick curves represent the ground state.

FIG. 5. Energies �z�0� of the two lowest bound states �solid
curves, left axis� with nonzero oscillator strengths �dashed curves,
right axis� for a 1D Coulombic attraction in Eq. �49� as a function
of the range of the interaction. Here, U0=5�b� and z=0 at the center
of the band of width 2 �b�. The onset range r for the upper bound
state �thin solid curve� and its oscillator strength �thin dashed curve�
is about r=0.14. The thick curves represent the ground state.

FIG. 6. Energies �z�0� of the two lowest bound states with
nonzero oscillator strengths in a 2D square lattice �solid curves, left
axis� vs the nearest-neighbor attraction U1. Here, U0=5�b� and
z=0 at the center of the band of width 4�b�. The oscillator strengths
for the bound states are plotted on the right axis �dashed curves�.
The onset value of U1 for the appearance of the upper bound state
�thin solid curve� and its oscillator strength �thin dashed curve� is
about U1=1.2�b�. The thick curves represent the ground state.
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z=0 at the center of the band of width 4�b�. The oscillator
strengths for the bound states are plotted on the right axis
�dashed curves�. The onset value of U1 for the appearance of
the upper bound state �thin solid curve� and its oscillator
strength �thin dashed curve� is about U1=1.2�b� which is
much larger than U1=0.7�b� obtained for the 1D lattice in
Sec. V B. Experimentally, this means that it is harder to ob-
serve PL lines from excited levels from a 2D lattice than
from a 1D lattice with the same band-lattice parameters.

Figure 7 displays the relationship between the on-site U0

and the ground bound-state energy for several values of the
second-nearest-neighbor attraction U1 for a square lattice
�left axis�. The right axis displays the oscillator strength for a
given bound-state energy. The curves show that long-range
interaction tends to diminish the abrupt behavior for the
electron-hole binding and the oscillator strength in a 2D lat-
tice discussed in Fig. 1. However, it should be noted that
relatively strong U1 /U0�0.5 is required to cause a signifi-
cant deviation from the U1=0 behavior shown in Fig. 1.

VI. CONCLUSIONS

We have studied excitonic binding of an electron and a
hole interacting through an attractive potential in a tunnel-
coupled quantum-dot lattice using a tight-binding model. The
effect of interdot tunneling of the electron and the hole and
their attraction on the exciton oscillator strength was as-
sessed in 1D and 2D lattices. We examined general electron-
hole attraction in 1D lattices and on-site and nearest-
neighbor attraction in 2D square lattices. The time-dependent
behavior of the oscillator strength was also examined for 1D
on-site attraction. The present analysis shows that the reduc-
tion of the binding energy and the oscillator strength can be
more drastic in 2D lattices than in 1D lattices for close pack-
ing of quantum dots, resulting in a reduced optical efficiency
unless the quantum dots are kept sufficiently far apart for
reduced inter-dot tunneling.
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