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Abstract. Energy levels and oscillator strengths for transitions between the lowest states of an
acceptor in a semiconductor quantum dot with a finite potential barrier have been computed in the
effective-mass approximation, with the valence-band degeneracy in cubic semiconductors taken
into account in the spherical approximation. Variational envelope functions have to satisfy the
appropriate boundary conditions to ensure the hermiticity of the Hamiltonian matrix. In typical
cubic semiconductors the acceptor optical transition energies and oscillator strengths are found to
have enhanced values, larger by one order of magnitude than those in the bulk, in the dots of radius
approximating in value to the diameter of the acceptor ground-state envelope.

1. Introduction

Studies of zero-dimensional semiconductor quantum dots may be aided by systematic quantum
mechanical calculations of the electronic properties of these low-dimensional structures which
are now being constructed with increasingly better specified parameters. The electronic
structure of quantum dots is investigated [1-3] by various methods. An impurity in a quantum
well, quantum wire, or quantum dot has an energy spectrum determined not only by the
potential of the impurity centre but also by the confining potential of the barrier. A carrier
bound to an impurity atom located in a quantum dot of radius comparable to the envelope
function extent has states modified considerably from those in the bulk. The description of
the impurity states in a quantum dot with a low potential barrier can moreover serve further
as a model for the carrier bound states due to the fluctuation-type imperfections in the crystal
lattice.

2. The effective-mass equation for an acceptor in a quantum dot

We consider an impurity located at the centre of a spherical quantum dot of rRdidis
semiconductor ‘I, embedded in a semiconductor ‘E’. An impurity-bound carrier in this system
is described in the effective-mass approximation by solution of thed8atger-type equation

HO = Ed (1)
with the Hamiltonian

H + Vé — VB r<R
H_{HE+VCE r>R @
and an envelope function
. o'(F) r<R
®0) = { ®EF)  r>R 3
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where”' and HF are the effective-mass kinetic energy operators of the carrier inside and
outside of the dot, respectively. Thé is the height of the potential barrier between the
respective valence bands in semiconductors | and E, and

VEE = —Ze?/(e"Er) (4)

(with Z = 1) is the Coulomb potential energy. The static dielectric constasitSsnside
and outside of the dot, respectively. The dielectric mismatch has been taken into account by
various approximations [4-8].

In a cubic semiconductors, in the limit of large spin—orbit splitting in the valence band,
the hole in the upper subbarit can be described as a particle with sgin= 3/2, due
to the periodic part of the band-edge wave function. The hole kinetic energy is given by
the Luttinger Hamiltonian [9, 10], and the anisotropic effective masses are described by the
Luttinger parameters; 5, v,'5, 155, We neglect the warping of the valence band, i.e. we
restrict the calculations to the spherical approximation [2,11-16], and regj&andy, = by
7"E = 2y, + 3y35)/5y,'F. Accordingly, the parameter'E which describes the strength
of the spherical part of the spin—orbit interaction is

uME = 27E/pLE. 5)

The hole kinetic Hamiltonian${' and +F can be represented with use of the irreducible
tensorsP® andJ @, composed of the momentum operafoe= —ikV and the spin angular
momentum operataf of the hole, respectively:

HI,E — ;ﬁll._E [[-52 _ ,bLI’E(P(Z) . J(Z))] (6)
mo

Baldereschi and Lipari [9, 10] define®l® with a prefactor,P® = 3(P?Y ® PWD); we
follow monograph [17] in defining the irreducible tensor operators, and have no prefactor in
the spin—orbit coupling ter®@ . 7@ as described in appendix A. The effective Bohr radius
ag = h?eo/moe? and the effective Rydberg Ryd moe*/2h%¢2, with the free-electron mass
mo andeg = &', will be units of length and energy, respectively.

The hole from the upper valence subband, bound to a spherically symmetric potential,
has, besides the spih an orbital angular momentuih. Since the total angular momentum
F = L+ J commutes with both Hamiltoniarts' andE, and the spin—orbit term couples
states with L’ — L| = 0, 2, the hole envelope functions can be written in the form [9, 11, 18]

D(Sgr2) = f01(r)]0,3/2,3/2, F7) + fo2(r)|2,3/2, 3/2, F)

®(P12) = f11(N11,3/2,1/2, F,

D (P32) = f21(r)11,3/2,3/2, F;

D (Ps2) = f31(r)]1,3/2,5/2, F;

®(Dyy2) = fa1(r)12,3/2,1/2, F,)

®(Dsj2) = f51(r)12,3/2,5/2, F;) + f52(r)|4, 3/2,5/2, F)

®(D7/2) = f61(r)12,3/2,7/2, F;) + fe2(r)|4,3/2,7/2, F)
where the ket$L, J, F, F;) are eigenfunctions of the total angular moment&irim the L—J
coupling scheme, and the four figures in the ket represent the eigenvalues of the operators
L?, J?, F?, and F,, respectively. We write the simplified index) instead of a part, or the
whole set, of quantum numbers, and omit this index when an envelope function of only one
state is considered. The indéX=1, 2) labels the two components of the envelope. The
components of the radial functiong;(r) and f2(r), have to satisfy the set of differential

+ f22(r)13,3/2,3/2, F)
+ f32(r)13,3/2,5/2, F) 7

~ ~ ~ ~
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equations [9,11,18-20]
|:H11—E Hy ]|:f1(")j|:0 ®)

H>, Hy — E || fa(r)
where
His = — (L +C d2+2d L(L+1) V)
1=-N"n 1) a2 v 2 (r
> 2L+5d (L+1)(L+3)
Hiy=1Cy | — + e e
dr r dr r )
oo C & 2L+1 d+L(L+2)
21 =nt2 dr2 r dr r2
& 2d L+2)(L+3
Hyy = —y1(1—Cy) 7*‘---% +V(r)
dr r dr r

with the spherically symmetric potential energyr) = Ve — V. The coefficient;/u for
the states of equation (7) are listed [9, 11,18, 20] in table 1ang (u? — C3)Y2,

Table 1. Coefficients in the hole Hamiltonian of equation (9).

S32 P2 P32 Ps2 Diy2 Dspz  Dip
Ci/u O 1 -4/5 15 1 -57 27

3. Boundary conditions

To satisfy the requirements of quantum mechanics, in particular to secure the real eigenvalues
of energy, the hermiticity of Hamiltonian (2) has to be assured by a proper choice of boundary
conditions, i.e. the behaviour df' atr — 0 and of®F atr — oo, and, in a spatially confined
system, an appropriate relation between functidhsind ®F at the system sharp boundary
r = R. The former conditions are thét has to be non-singular at= 0, and®F has to decay
exponentially withr whenr — oo; they ensure the existence of the normalization integral
in a bound system. The relation between functidhsand ®F is crucial for a system with a
potential barrier, and has to be established [21-24] according to the particular form [25, 26] of
H' andHE.

The general definition of a Hermitian conjugmg of an operato0,

w0d) = (oTw|e) (10)

where® andW¥ are any functions from the space of states, is used for computati)df'i &or
H given by equations (2) and (6) in the space of envelope functtoaadW¥ of the form of
equation (3). By using the identity

PP.j@ = _y®@.5@ = /5/3V,.(V;®J?P), (11)

and Green’s theorem, we find tHat= +T when the integrals over the full solid angle with
the envelope functions (3) are equal on both sides of the boundar: &:

n‘/<<\lf‘|<ﬁﬁ)|¢'> — (W (n1 ® V)2 - JP|@Y)) AR

=y f (WE| (i - V)|DF) — uE(WE|(n1 ® V1), - J?|DF)) d. (12)
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Tofulfilequation (12), the radial functiong atthe dotboundary,= R, have to be continuous,
f' = fE, and the radial derivatives have to satisfy

df'/dr = (A" A" df/dr + (BF — B') f/R] (13)

where the functiong,; are written as two-component vectgfsand the 2x 2 matricesA'-E
andB"E are defined in appendix A.

4. Calculation of the envelopes

To find a variational solution of equation (8) we used an expansion of the radial fungjons
in a series oV exponential functions,;, exp(—q"r/ Rumax) Withn = 1,2, ..., N. The values
of the radiusR,max and of the scale factay were found by trial and error to minimize the
energy eigenvalu&. The value of the scale parametewas, in most cases, equal to 2; its
smallest value used was 1.67, the largest 2.2. The nuiib#rbasis exponential functions
was varied, according to the needs of a particular calculated state, between 5 and 20 for the
envelope part inside the dot, and between 3 and 10 outside of the dot. The two conditions
for hermiticity of the Hamiltonian: continuity of the envelope and equation (13), allow one
to eliminate two from thév components of each envelope, and thus to reduce the dimension
of the secular determinant from\2to 2(N — 2). For the component functiong,; () with
L > 0, one of the coefficients,;, was adjusted so as to makg (0) = 0. We have computed
the lowest and the first excited energy levels for the states specified in table 1.

We also calculated the energy levels in a spherical dot with a potential barrier of infinite
height, using finite sets [11-13] of the basis radial functiong:R|??r~* sin(nrr/R), and
also exg—a,r) cognr/2R), with integern < N. The hole energy levels, calculated without
the Coulomb potential, recover the closed-form results obtained with the analytical use of
spherical Bessel functions [8, 12, 13]. To check our calculated envelope functions, at least for
the particular case gi = 0, we have computed with them the expectation values of the
coordinate, which determine the dipole oscillator strength, and compared them with the values
of analytical expressions for hydrogen atom. The values agreed within an accuracy of 10
better. Our computed values of the oscillator strengths agreed with the corresponding values
calculated with exact analytical acceptor envelopes [20] to at least two digits.

5. Energy levels

We consider quantum dots in semiconductors with cubic zinc-blende crystallographic structure.
Examples of the computed energy levels for the on-centre acceptor are presented in figure 1,
in units of the effective Rydberg Ryd = Ryd x mpy/mq of the heavy hole, as function of

the dot radius, expressed in units of the effective Bohr radiyg = ag x mo/mpn of the

heavy hole with the effective-mass value of the inside of the dot:

mun = mo/[y1 (1 — 1] = mo/(y{ — 27").

For the GaAs quantum dot embedded in a GAl,As matrix we adopted [27, 28] the
following parameters: for GaAs, = 6.79, 7' = 2.378,¢o = 12.56; for AlAs, y£ = 3.79,
7B = 1.329,¢F = 1006; and for Ga_,Al,As, the values of the parameters obtained
by linear interpolation [27]. The band-gap difference [6] is givend¥, = 1247 meV,
and we assumed [28, 29] the ratio of the valence-band offset to the band-gap difference
AE,/AE, = 0.35, so the potential barrier height = 0.35 x 1247 x x meV. For the
GaAs quantum dot in a ZnSe matrix we adoptefi:= 4.212,7F = 1.465,¢F = 9.1, outside
of the dot [28,30-33]. In GaAs, Ryd = 424 meV andagyy = 135 A. For the CdTe
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Figure 1. The computed energy levels of the on-centre acceptor, in units of the effective Rydberg
Rydyy of the heavy hole, as functions of the dot raditisexpressed in units of the effective Bohr

radiusagnn of the heavy hole, witly] = y£ andu! = uE = 0.7. The potential barrier height is
Ve = 5 Rydyn.

quantum dot in cubic Gd,Mn, Te we have takeny = 9.7, andy; = 5.5, y = 2.0, inside

and outside of the dot [34, 35]. The computed low energy levels of an acceptor at the centre of
a GaAs spherical quantum dot embedded in_GAl ,As with x = 0.4, corresponding [6,29]

to the potential barrier heights = 175 meV, are shown in figure 2 as functions of the dot
radius R between 10 A and 200 A. Figure 3 shows the computed low energy levels of an
acceptor at the centre of the GaAs quantum dot in ZnSe where we adopted [29-32] the barrier
heightVg = 350 meV. Figure 4 shows the computed low energy levels of an acceptor at the

centre of the CdTe in a Gd,Mn, Te quantum dot withk = 0.24, corresponding [29, 35, 36]
to Vg = 25 meV.

6. Optical transitions

With the calculated energies and envelope functions for the acceptor states, we have computed
the oscillator strengthg,,, of optical dipole transitions between the acceptor initial st@&te
and an excited statk, with the corresponding energi€s andE,,, respectively [8,14,21,37].

The expression for thg,,, described in appendix B, is obtained by averaging over the
degenerate statdg, of the initial (a) = (no, Lo, 3/2, Fo, Fo,;) level, and summing over the
statesF, of the final(b) = (n, L, 3/2, F, F,) level:
fur = 228 (B, — E)

ab = — g \Lp — Lqg
R2yft

DU g 21D )+ (WE 2| OF )% (14)

2Fp+1 Fo F.

Figure 5(a) shows the computed photon energies, expressed in units gf,Ryd
transitions from the ground state 3l5to the lowest excited states, 2P and;3Pof the
on-centre acceptor in a quantum dot of radiygxpressed in units afyy. Figure 5(b) shows
the oscillator strengths of the 3% — 2P and— 3P5; transitions for the on-centre acceptor
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Figure 2. The low energy levels of an acceptor at the centre of the GaAs quantum dot in
Gay_, Al As, with the potential barrier heighis = 175 meV.
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Figure 3. The low energy levels of an acceptor at the centre of the GaAs quantum dot in ZnSe,
with the potential barrier heights = 350 meV.

in a quantum dot of radiu®, expressed in units afgyy, With the potential barrier height
Ve = 5 Rydhy.

For a GaAs quantum dot in Ga Al As with x = 0.4, corresponding to the potential
barrier heightVg

= 175 meV, the photon energies and the oscillator strengths of the
1%, — 2P and— 3P, transitions, for the on-centre acceptor, are shown in figures 6(a)
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Figure 4. The low energy levels of an acceptor at the centre of the CdTe quantum dot in
Cdy_,Mn, Te, with the potential barrier heighg = 25 meV.
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Figure 5. (a) Photon energies, expressed in units of Rydof the 13, — 2P and—3P3/,
transitions for an acceptor at the centre of a quantum dot of ratiegpressed in units @fony.

(b) Oscillator strengths of the 3% — 2P and— 3P transitions for the on-centre acceptor. The
potential barrier height i¥s = 5 Rydyy.

and 6(b), respectively, as functions of the dot radius betweea 10 A and 200 A. In the
GaAs/Ga_, Al As quantum dot of radius betweengn and 4ioqH, the oscillator strength of
the acceptor 15, — 2Py, transition is larger than that in the bulk by one order of magnitude,
and for the transition 15 — 2Ps,, by a factor of about 1.6. For the on-centre acceptor in
a GaAs quantum dot in ZnSe, with the adopted [29, 32] barrier hdight 350 meV, the
photon energies and the oscillator strengths of thg,1S 2P and— 3P/, transitions are
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Figure 6. (a) Photon energies and (b) oscillator strengths of thg;1S 2P and— 3P3), trans-
itions for an acceptor at the centre of the GaAs quantum dot in @4, As, with the potential
barrier heightVg = 175 meV.
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Figure 7. (a) Photon energies and (b) oscillator strengths of thg;1S 2P and—3P3), trans-
itions for an acceptor at the centre of the GaAs quantum dot in ZnSe, with the potential barrier
heightVg = 350 meV.

shown in figures 7(a) and 7(b), respectively. A large enhancement of the oscillator strength

in the dot is seen for the 35 — 2P/, transition and the 15» — 2P, transition. For the

on-centre acceptor in a CdTe quantum dot [29, 35, 36] in-Qdn, Te with x = 0.24, the

photon energies and the oscillator strengths are shown in figures 8(a) and 8(b), respectively.
The oscillator strengths of transitions from the acceptor ground staje ttSthe first

excited states, 2R and 2B, have remarkably large values [20,37], sensitively dependent, at

small dot radii, on the dot radius. Atdot radiilarger thaa= 2agny, the oscillator strengths for

the on-centre acceptor in a quantum dot decrease rather slowly with increase of the dot radius.

Thus the enhancement of the oscillator strengths will not be affected by the dispersion [3, 38]
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Figure 8. (a) Photon energies and (b) oscillator strengths of thg;1S 2P and—3P3), trans-
itions for an acceptor at the centre of the CdTe quantum dot in (dn, Te, with the potential
barrier heightVg = 25 meV.

of the dot radii betwee® = 2apyy and R = 4aguy. On taking into account the dielectric
mismatchgE < &g, the computed transition energies increase, chiefly in the dots with radii of
about one nanometre, by around 10%, and the oscillator strengths increase by around 1%. For
the dots with larger radius this increase is smaller.

7. Concluding remarks

The low energy states of an acceptor at the centre of a quantum dot with a finite potential
barrier, in cubic semiconductors with valence-band degeneracy, have been calculated in the
effective-mass approximation. In the spherical approximation, the total angular momentum
of the hole commutes with the Hamiltonian, and the use of the angular momentum
eigenstates is convenient. Matching the acceptor multicomponent envelope functions in cubic
semiconductors at the dot heterointerface ensures the hermiticity of the Hamiltonian, whose
eigenvalues are the allowed energies of the acceptor states. If the dot radius is larger than
the diameter of the acceptor ground-state envelope the energies of the transitions between the
low acceptor states increase with decreasing dot size [6,14,39,40]. The corresponding dipole
oscillator strengths for transitions from the acceptor ground state to the first excited states, in a
quantum dot of radius approximating to the diameter of the acceptor ground-state envelope, is
enhanced by one order of magnitude in comparison with the value for the acceptor in the bulk,
as for quantum wells and wires [6, 14,40]. The enhancement is due to a favourable overlap of
the excited and the ground-state envelope functions in the quantum dot of appropriate range
of dot radius. The range is larger when the potential barrier is higher. The energies and the
envelope functions in the quantum dot calculated in the effective-mass approximation recover
closely those in the bulk at the dot radius one order of magnitude larger than the acceptor
effective Bohr radius. For the dot radius one order of magnitude smaller than the acceptor
Bohr radius, the effective-bond-orbital model [4, 41, 42] offers a rationally founded method
which requires computations larger by several orders of magnitude.

Examples of the low energy levels of the on-centre acceptor in quantum dot, and of
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the oscillator strengths, are presented here for quantum dots with finite potential barriers
encountered in typical cubic semiconductors. The transitions between the electron and the hole
states with non-zero angular momentum quantum numbers have been observed in cylindrical
quantum dots by luminescence measurements, and the transition energies have been found to
increase with decreasing dot size [39, 40, 43-46].

Appendix A

The gradienﬁ in equation (12) consists of partial derivatives with respect to the radliahd
to the angular coordinates [17]:

> 0 1-

V=i—+=Vq (A1)
or r
with 77 = 7/r = n1 = n11.01. The tensorial products of the second rank
Ny = (n1 ®ny)» Dy = (n1 ® (Vo)1)2 (A.2)

appear in the second-rank tensor operator

9 1 a 1
(M ®Vi)z=m1®n1)z2—+-n1® (Vo)1)2 = N2 — +—Da. (A.3)
ar r or r
Integrals in equation (12) are extended over the full solid angle, and can be expressed with
the use of the X 2 matrices
Aij = r1(Li, 3/2, F, FJ|=1+u(Nz - J?)IL;, 3/2, F, F.)
Bij = un(Li, 3/2, F, F|(D2- J®)|L;,3/2, F, F.).
Matrix elements of the scalar product of the second-rank ter@@pend J®, dependent on
the space and spin coordinates, respectively, are expressed [17] with sigenbols
(L',3/2,F',F/|0,- J®|L,3/2, F, F,)
L L 2
— (1) F*L¥3/25 s / @
=(-1 SFFOF.F, {3/2 32 F } (L'|O2IL)(3/21177113/2)  (A.D)

where|L’ — L| = 0,2. The reduced matrix elements connecting the angular momentum
eigenstates are

(L +2||No||L) = [(L + 1)(L+2)/2L + 3)]/?

(L = 2|IN2l|L) = [L(L — 1)/ 2L — D]?

(L||N2||L) = —{2L(L + 1)(2L + 1)/[3(2L — 1)(2L + 3)]}¥/2

(L+2||D2||L) = —L[(L + /(L +2)/(2L + 3)]*? (A.6)

(

(

(

(A.4)

L —2||Da||L) = (L + D[L(L - 1)/2L — D]*?
L||D5||L) = —{3L(L + 1)(2L + 1)/[2(2L — 1)(2L + 3)]}*/?
3/2|17?113/2) = +/30.

The radial functionsf(r) of the envelope®, the radial functionsg(r) of W, in
equation (12), and the matricésand B of equation (A.4), depend on the respective values
of the Luttinger parameters in semiconductors I, E. The hermiticity of the Hamiltonian matrix
requires, at the dot boundary= R, besides the equalities

fl=rF &=z (A7)
also the equality of the products

d £l £l d E rE
g [A'd—j; +B %] = iF [AE% + BE%] : (A8)
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Appendix B

In the space inside (I) and outside of (E) the quantum dot, the values of the Luttinger parameter
y1 are y] and yF, and the corresponding parts of the envelope functiondgreand @£,
respectively. The normalization integral of the envelope functions, and the matrix element of
the dipole moment, consist of contributions from the space inside (1)

R
¢ = (@) :/dsz/ |®! 272 dr (B.1)
0
and outside of (E) the dot,
cE = (oF|0F) :/dQ/ |®E |22 dr (B.2)
R

andc! +cE = 1. Since the normalization integral of the envelope is composed of parts from
the space inside and outside of the quantum dot, in the formula for the oscillator strength, we
use for they,-parameter the averagg® of the two valuesg/l"E of the Luttinger parameter,
weighted with the normalization coefficients of the initial-state envelope:

le = cLyll + cf)/lE. (B.3)

In the spherical approximatiogp; = y3, we find the oscillator strength for the dipole transition
from the initial energy leveE, to the final levelE,:
2mg 1 2
= ——(Ep — E)) ———— W, r |z|® B.4
Fab hzle( b )2Fo+1p;p:|< o |21 P, )| (B.4)

with the summation over the degenerate st#gf the initial () = (no, Lo, 3/2, Fo, Fo,)
level and the statek, of the final(b) = (n, L, 3/2, F, F,) level. In a quantum dot,

(W, 7o, |21 P 1) = (V) g 121D} ) + (Vg 12]D5 7). (B.5)

The matrix element of = rny is a product of the matrix elements of g and ofr. The
matrix elements of are given by the integrals

(Sa.rc P fo.r) = (8h po 1P o k) * (80 o I | i E)

R e}
— [ et [ g o (©.6)
The matrix elements ofy can be expressed in terms of th¢ &id 6§ symbols [17]
with |[L — Lo| = 1,
(Lo, 3/2, Fo, FoIn1)|L. 3/2, F, F.) = 85, . [(2Fo + D(2F + 1)(2Lo + 1)(2L + D]Y?

2r-12+k, (1 Fo Lo 1 L Lo 1 L
<D (FZ 0 —FOZ){F 32 Rilo o o) ®D

The sum of the squared dipole matrix elements in equation (14) can be evaluated [37] in
terms of the summatio(q; [) over(Lo, Lo+ 2; L, L +2)

3" (W, Lo. 3/2, Fo, Fo)lz|®(n. L. 3/2, F. F.))|?

Fo, F.

=[@F+D(2F +1)/3]

v2(lo 11
lozl:[(zzo+1)(2z+1)] <o 0 0)
2

(B.8)

l 1 1
8 { Ig 3/2 Fo} (&noto. Fol7 | 1. F)
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In particular, the(ng, Lo, 3/2, Fo, Fo,) = (1,0, 3/2, 3/2, Fy,) are the quantum numbers of
the 1§, ground statd’s. The ground stat&s will not be split by cubic terms [10] in the

Hamiltonian, whereas the levels with > 3/2 will be split [37]. In the semiconductor with

the refractive index (w) at frequencyw, the linear absorption cross section [8, 14,27,37]

W) = D fad(Ep — Eq — ho) (B.9)
b

corresponds to transitions between the bound statés Equations (14) and (B.9) with
equation (B.3) apply in the general case of different values of the Luttinger parameters inside
and outside of the dot.
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