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Abstract. Energy levels and oscillator strengths for transitions between the lowest states of an
acceptor in a semiconductor quantum dot with a finite potential barrier have been computed in the
effective-mass approximation, with the valence-band degeneracy in cubic semiconductors taken
into account in the spherical approximation. Variational envelope functions have to satisfy the
appropriate boundary conditions to ensure the hermiticity of the Hamiltonian matrix. In typical
cubic semiconductors the acceptor optical transition energies and oscillator strengths are found to
have enhanced values, larger by one order of magnitude than those in the bulk, in the dots of radius
approximating in value to the diameter of the acceptor ground-state envelope.

1. Introduction

Studies of zero-dimensional semiconductor quantum dots may be aided by systematic quantum
mechanical calculations of the electronic properties of these low-dimensional structures which
are now being constructed with increasingly better specified parameters. The electronic
structure of quantum dots is investigated [1–3] by various methods. An impurity in a quantum
well, quantum wire, or quantum dot has an energy spectrum determined not only by the
potential of the impurity centre but also by the confining potential of the barrier. A carrier
bound to an impurity atom located in a quantum dot of radius comparable to the envelope
function extent has states modified considerably from those in the bulk. The description of
the impurity states in a quantum dot with a low potential barrier can moreover serve further
as a model for the carrier bound states due to the fluctuation-type imperfections in the crystal
lattice.

2. The effective-mass equation for an acceptor in a quantum dot

We consider an impurity located at the centre of a spherical quantum dot of radiusR of
semiconductor ‘I’, embedded in a semiconductor ‘E’. An impurity-bound carrier in this system
is described in the effective-mass approximation by solution of the Schrödinger-type equation

H8 = E8 (1)

with the Hamiltonian

H =
{ HI + V I

C − VB r < R

HE + V E
C r > R

(2)

and an envelope function

8(Er) =
{

8I(Er) r < R

8E(Er) r > R
(3)
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whereHI andHE are the effective-mass kinetic energy operators of the carrier inside and
outside of the dot, respectively. TheVB is the height of the potential barrier between the
respective valence bands in semiconductors I and E, and

V
I,E
C = −Ze2/(εI,Er) (4)

(with Z = 1) is the Coulomb potential energy. The static dielectric constant isεI,E inside
and outside of the dot, respectively. The dielectric mismatch has been taken into account by
various approximations [4–8].

In a cubic semiconductors, in the limit of large spin–orbit splitting in the valence band,
the hole in the upper subband08 can be described as a particle with spinJ = 3/2, due
to the periodic part of the band-edge wave function. The hole kinetic energy is given by
the Luttinger Hamiltonian [9, 10], and the anisotropic effective masses are described by the
Luttinger parametersγ I,E

1 , γ
I,E
2 , γ

I,E
3 . We neglect the warping of the valence band, i.e. we

restrict the calculations to the spherical approximation [2,11–16], and replaceγ
I,E
2 andγ

I,E
3 by

γ̄ I,E = (2γ
I,E
2 + 3γ I,E

3 )/5γ
I,E
1 . Accordingly, the parameterµI,E which describes the strength

of the spherical part of the spin–orbit interaction is

µI,E = 2γ̄ I,E/γ
I,E
1 . (5)

The hole kinetic HamiltoniansHI and HE can be represented with use of the irreducible
tensorsP (2) andJ (2), composed of the momentum operatorEp = −ih̄ E∇ and the spin angular
momentum operatorEJ of the hole, respectively:

HI,E = γ
I,E
1

2m0

[ Ep2 − µI,E(P (2) · J (2))
]

(6)

Baldereschi and Lipari [9, 10] definedP (2) with a prefactor,P (2) = 3(P (1) ⊗ P (1)); we
follow monograph [17] in defining the irreducible tensor operators, and have no prefactor in
the spin–orbit coupling termP (2) · J (2), as described in appendix A. The effective Bohr radius
a0 = h̄2ε0/m0e

2 and the effective Rydberg Ryd= m0e
4/2h̄2ε2

0, with the free-electron mass
m0 andε0 = εI , will be units of length and energy, respectively.

The hole from the upper valence subband, bound to a spherically symmetric potential,
has, besides the spinEJ , an orbital angular momentumEL. Since the total angular momentum
EF = EL + EJ commutes with both HamiltoniansHI andHE, and the spin–orbit term couples
states with|L′ − L| = 0, 2, the hole envelope functions can be written in the form [9,11,18]

8(S3/2) = f01(r)|0, 3/2, 3/2, Fz〉 + f02(r)|2, 3/2, 3/2, Fz〉
8(P1/2) = f11(r)|1, 3/2, 1/2, Fz〉
8(P3/2) = f21(r)|1, 3/2, 3/2, Fz〉 + f22(r)|3, 3/2, 3/2, Fz〉
8(P5/2) = f31(r)|1, 3/2, 5/2, Fz〉 + f32(r)|3, 3/2, 5/2, Fz〉
8(D1/2) = f41(r)|2, 3/2, 1/2, Fz〉
8(D5/2) = f51(r)|2, 3/2, 5/2, Fz〉 + f52(r)|4, 3/2, 5/2, Fz〉
8(D7/2) = f61(r)|2, 3/2, 7/2, Fz〉 + f62(r)|4, 3/2, 7/2, Fz〉

(7)

where the kets|L, J, F, Fz〉 are eigenfunctions of the total angular momentumF in theL–J

coupling scheme, and the four figures in the ket represent the eigenvalues of the operators
L2, J 2, F 2, andFz, respectively. We write the simplified index(a) instead of a part, or the
whole set, of quantum numbers, and omit this index when an envelope function of only one
state is considered. The indexi (=1, 2) labels the two components of the envelope. The
components of the radial functions,f1(r) andf2(r), have to satisfy the set of differential
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equations [9,11,18–20][
H11 − E H12

H21 H22 − E

] [
f1(r)

f2(r)

]
= 0 (8)

where

H11 = −γ1(1 +C1)

[
d2

dr2
+

2

r

d

dr
− L(L + 1)

r2

]
+ V (r)

H12 = γ1C2

[
d2

dr2
+

2L + 5

r

d

dr
+

(L + 1)(L + 3)

r2

]
H21 = γ1C2

[
d2

dr2
− 2L + 1

r

d

dr
+

L(L + 2)

r2

]
H22 = −γ1(1 − C1)

[
d2

dr2
+

2

r

d

dr
− (L + 2)(L + 3)

r2

]
+ V (r)

(9)

with the spherically symmetric potential energyV (r) = VC − VB. The coefficientsC1/µ for
the states of equation (7) are listed [9,11,18,20] in table 1, andC2 = (µ2 − C2

1)
1/2.

Table 1. Coefficients in the hole Hamiltonian of equation (9).

S3/2 P1/2 P3/2 P5/2 D1/2 D5/2 D7/2

C1/µ 0 1 −4/5 1/5 1 −5/7 2/7

3. Boundary conditions

To satisfy the requirements of quantum mechanics, in particular to secure the real eigenvalues
of energy, the hermiticity of Hamiltonian (2) has to be assured by a proper choice of boundary
conditions, i.e. the behaviour of8I atr → 0 and of8E atr → ∞, and, in a spatially confined
system, an appropriate relation between functions8I and8E at the system sharp boundary
r = R. The former conditions are that8I has to be non-singular atr = 0, and8E has to decay
exponentially withr whenr → ∞; they ensure the existence of the normalization integral
in a bound system. The relation between functions8I and8E is crucial for a system with a
potential barrier, and has to be established [21–24] according to the particular form [25,26] of
HI andHE.

The general definition of a Hermitian conjugateO† of an operatorO,

〈9|O8〉 = 〈O†9|8〉 (10)

where8 and9 are any functions from the space of states, is used for computation ofH† for
H given by equations (2) and (6) in the space of envelope functions8 and9 of the form of
equation (3). By using the identity

P (2) · J (2) = −∇(2) · J (2) =
√

5/3 ∇1 · (∇1 ⊗ J (2))1 (11)

and Green’s theorem, we find thatH = H† when the integrals over the full solid angle with
the envelope functions (3) are equal on both sides of the boundary atr = R:

γ I
1

∫
(〈9 I |(En · E∇)|8I〉 − µI〈9 I |(n1 ⊗ ∇1)2 · J (2)|8I〉) d�

= γ E
1

∫
(〈9E|(En · E∇)|8E〉 − µE〈9E|(n1 ⊗ ∇1)2 · J (2)|8E〉) d�. (12)
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To fulfil equation (12), the radial functions̄f , at the dot boundary,r = R, have to be continuous,
f̄ I = f̄ E, and the radial derivatives have to satisfy

df̄ I/dr = (AI)−1[AE df̄ E/dr + (BE − B I)f̄ E/R] (13)

where the functionsfai are written as two-component vectorsf̄ , and the 2× 2 matricesAI,E

andB I,E are defined in appendix A.

4. Calculation of the envelopes

To find a variational solution of equation (8) we used an expansion of the radial functionsfai(r)

in a series ofN exponential functionscain exp(−qnr/Ramax) with n = 1, 2, . . . , N . The values
of the radiusRamax and of the scale factorq were found by trial and error to minimize the
energy eigenvalueE. The value of the scale parameterq was, in most cases, equal to 2; its
smallest value used was 1.67, the largest 2.2. The numberN of basis exponential functions
was varied, according to the needs of a particular calculated state, between 5 and 20 for the
envelope part inside the dot, and between 3 and 10 outside of the dot. The two conditions
for hermiticity of the Hamiltonian: continuity of the envelope and equation (13), allow one
to eliminate two from theN components of each envelope, and thus to reduce the dimension
of the secular determinant from 2N to 2(N − 2). For the component functionsfai(r) with
L > 0, one of the coefficientscain was adjusted so as to makefai(0) = 0. We have computed
the lowest and the first excited energy levels for the states specified in table 1.

We also calculated the energy levels in a spherical dot with a potential barrier of infinite
height, using finite sets [11–13] of the basis radial functions: [2/R]1/2r−1 sin(nπr/R), and
also exp(−αnr) cos(πr/2R), with integern < N . The hole energy levels, calculated without
the Coulomb potential, recover the closed-form results obtained with the analytical use of
spherical Bessel functions [8,12,13]. To check our calculated envelope functions, at least for
the particular case ofµ = 0, we have computed with them the expectation values of ther-
coordinate, which determine the dipole oscillator strength, and compared them with the values
of analytical expressions for hydrogen atom. The values agreed within an accuracy of 10−3 or
better. Our computed values of the oscillator strengths agreed with the corresponding values
calculated with exact analytical acceptor envelopes [20] to at least two digits.

5. Energy levels

We consider quantum dots in semiconductors with cubic zinc-blende crystallographic structure.
Examples of the computed energy levels for the on-centre acceptor are presented in figure 1,
in units of the effective Rydberg RydHH = Ryd× mHH/m0 of the heavy hole, as function of
the dot radius, expressed in units of the effective Bohr radiusa0HH = a0 × m0/mHH of the
heavy hole with the effective-mass value of the inside of the dot:

mHH = m0/[γ I
1(1 − µI)] = m0/(γ

I
1 − 2γ̄ I).

For the GaAs quantum dot embedded in a Ga1−xAl xAs matrix we adopted [27, 28] the
following parameters: for GaAs,γ I

1 = 6.79, γ̄ I = 2.378,ε0 = 12.56; for AlAs, γ E
1 = 3.79,

γ̄ E = 1.329, εE = 10.06; and for Ga1−xAl xAs, the values of the parameters obtained
by linear interpolation [27]. The band-gap difference [6] is given by1Eg = 1247 meV,
and we assumed [28, 29] the ratio of the valence-band offset to the band-gap difference
1Ev/1Eg = 0.35, so the potential barrier heightVB = 0.35 × 1247× x meV. For the
GaAs quantum dot in a ZnSe matrix we adopted:γ E

1 = 4.212,γ̄ E = 1.465,εE = 9.1, outside
of the dot [28, 30–33]. In GaAs, RydHH = 42.4 meV anda0HH = 13.5 Å. For the CdTe
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Figure 1. The computed energy levels of the on-centre acceptor, in units of the effective Rydberg
RydHH of the heavy hole, as functions of the dot radiusR, expressed in units of the effective Bohr
radiusa0HH of the heavy hole, withγ I

1 = γ E
1 andµI = µE = 0.7. The potential barrier height is

VB = 5 RydHH.

quantum dot in cubic Cd1−xMnxTe we have takenε0 = 9.7, andγ1 = 5.5, γ̄ = 2.0, inside
and outside of the dot [34,35]. The computed low energy levels of an acceptor at the centre of
a GaAs spherical quantum dot embedded in Ga1−xAl xAs with x = 0.4, corresponding [6,29]
to the potential barrier heightVB = 175 meV, are shown in figure 2 as functions of the dot
radiusR between 10 Å and 200 Å. Figure 3 shows the computed low energy levels of an
acceptor at the centre of the GaAs quantum dot in ZnSe where we adopted [29–32] the barrier
heightVB = 350 meV. Figure 4 shows the computed low energy levels of an acceptor at the
centre of the CdTe in a Cd1−xMnxTe quantum dot withx = 0.24, corresponding [29, 35, 36]
to VB = 25 meV.

6. Optical transitions

With the calculated energies and envelope functions for the acceptor states, we have computed
the oscillator strengthsfab of optical dipole transitions between the acceptor initial state9a

and an excited state8b with the corresponding energiesEa andEb, respectively [8,14,21,37].
The expression for thefab, described in appendix B, is obtained by averaging over the

degenerate statesF0z of the initial (a) = (n0, L0, 3/2, F0, F0z) level, and summing over the
statesFz of the final(b) = (n, L, 3/2, F, Fz) level:

fab = 2m0

h̄2γ R
1

(Eb − Ea)
1

2F0 + 1

∑
F0z,Fz

|〈9 I
a,F0z

|z|8I
b,Fz

〉 + 〈9E
a,F0z

|z|8E
b,Fz

〉|2. (14)

Figure 5(a) shows the computed photon energies, expressed in units of RydHH, of
transitions from the ground state 1S3/2 to the lowest excited states, 2P and 3P3/2, of the
on-centre acceptor in a quantum dot of radiusR, expressed in units ofa0HH. Figure 5(b) shows
the oscillator strengths of the 1S3/2 → 2P and→3P3/2 transitions for the on-centre acceptor
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Figure 2. The low energy levels of an acceptor at the centre of the GaAs quantum dot in
Ga1−xAlxAs, with the potential barrier heightVB = 175 meV.

Figure 3. The low energy levels of an acceptor at the centre of the GaAs quantum dot in ZnSe,
with the potential barrier heightVB = 350 meV.

in a quantum dot of radiusR, expressed in units ofa0HH, with the potential barrier height
VB = 5 RydHH.

For a GaAs quantum dot in Ga1−xAl xAs with x = 0.4, corresponding to the potential
barrier heightVB = 175 meV, the photon energies and the oscillator strengths of the
1S3/2 → 2P and→3P3/2 transitions, for the on-centre acceptor, are shown in figures 6(a)
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Figure 4. The low energy levels of an acceptor at the centre of the CdTe quantum dot in
Cd1−xMnxTe, with the potential barrier heightVB = 25 meV.

Figure 5. (a) Photon energies, expressed in units of RydHH, of the 1S3/2 → 2P and→3P3/2
transitions for an acceptor at the centre of a quantum dot of radiusR, expressed in units ofa0HH.
(b) Oscillator strengths of the 1S3/2 → 2P and→3P3/2 transitions for the on-centre acceptor. The
potential barrier height isVB = 5 RydHH.

and 6(b), respectively, as functions of the dot radius betweenR = 10 Å and 200 Å. In the
GaAs/Ga1−xAl xAs quantum dot of radius between 2a0HH and 4a0HH, the oscillator strength of
the acceptor 1S3/2 → 2P1/2 transition is larger than that in the bulk by one order of magnitude,
and for the transition 1S3/2 → 2P5/2 by a factor of about 1.6. For the on-centre acceptor in
a GaAs quantum dot in ZnSe, with the adopted [29, 32] barrier heightVB = 350 meV, the
photon energies and the oscillator strengths of the 1S3/2 → 2P and→3P3/2 transitions are
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Figure 6. (a) Photon energies and (b) oscillator strengths of the 1S3/2 → 2P and→3P3/2 trans-
itions for an acceptor at the centre of the GaAs quantum dot in Ga1−xAlxAs, with the potential
barrier heightVB = 175 meV.

Figure 7. (a) Photon energies and (b) oscillator strengths of the 1S3/2 → 2P and→3P3/2 trans-
itions for an acceptor at the centre of the GaAs quantum dot in ZnSe, with the potential barrier
heightVB = 350 meV.

shown in figures 7(a) and 7(b), respectively. A large enhancement of the oscillator strength
in the dot is seen for the 1S3/2 → 2P1/2 transition and the 1S3/2 → 2P5/2 transition. For the
on-centre acceptor in a CdTe quantum dot [29, 35, 36] in Cd1−xMnxTe with x = 0.24, the
photon energies and the oscillator strengths are shown in figures 8(a) and 8(b), respectively.

The oscillator strengths of transitions from the acceptor ground state 1S3/2 to the first
excited states, 2P1/2 and 2P5/2, have remarkably large values [20,37], sensitively dependent, at
small dot radii, on the dot radius. At dot radii larger thanR = 2a0HH, the oscillator strengths for
the on-centre acceptor in a quantum dot decrease rather slowly with increase of the dot radius.
Thus the enhancement of the oscillator strengths will not be affected by the dispersion [3,38]



An acceptor in a quantum dot 6225

Figure 8. (a) Photon energies and (b) oscillator strengths of the 1S3/2 → 2P and→3P3/2 trans-
itions for an acceptor at the centre of the CdTe quantum dot in Cd1−xMnxTe, with the potential
barrier heightVB = 25 meV.

of the dot radii betweenR = 2a0HH andR = 4a0HH. On taking into account the dielectric
mismatch,εE < ε0, the computed transition energies increase, chiefly in the dots with radii of
about one nanometre, by around 10%, and the oscillator strengths increase by around 1%. For
the dots with larger radius this increase is smaller.

7. Concluding remarks

The low energy states of an acceptor at the centre of a quantum dot with a finite potential
barrier, in cubic semiconductors with valence-band degeneracy, have been calculated in the
effective-mass approximation. In the spherical approximation, the total angular momentum
of the hole commutes with the Hamiltonian, and the use of the angular momentum
eigenstates is convenient. Matching the acceptor multicomponent envelope functions in cubic
semiconductors at the dot heterointerface ensures the hermiticity of the Hamiltonian, whose
eigenvalues are the allowed energies of the acceptor states. If the dot radius is larger than
the diameter of the acceptor ground-state envelope the energies of the transitions between the
low acceptor states increase with decreasing dot size [6,14,39,40]. The corresponding dipole
oscillator strengths for transitions from the acceptor ground state to the first excited states, in a
quantum dot of radius approximating to the diameter of the acceptor ground-state envelope, is
enhanced by one order of magnitude in comparison with the value for the acceptor in the bulk,
as for quantum wells and wires [6,14,40]. The enhancement is due to a favourable overlap of
the excited and the ground-state envelope functions in the quantum dot of appropriate range
of dot radius. The range is larger when the potential barrier is higher. The energies and the
envelope functions in the quantum dot calculated in the effective-mass approximation recover
closely those in the bulk at the dot radius one order of magnitude larger than the acceptor
effective Bohr radius. For the dot radius one order of magnitude smaller than the acceptor
Bohr radius, the effective-bond-orbital model [4, 41, 42] offers a rationally founded method
which requires computations larger by several orders of magnitude.

Examples of the low energy levels of the on-centre acceptor in quantum dot, and of
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the oscillator strengths, are presented here for quantum dots with finite potential barriers
encountered in typical cubic semiconductors. The transitions between the electron and the hole
states with non-zero angular momentum quantum numbers have been observed in cylindrical
quantum dots by luminescence measurements, and the transition energies have been found to
increase with decreasing dot size [39,40,43–46].

Appendix A

The gradientE∇ in equation (12) consists of partial derivatives with respect to the radial,r, and
to the angular coordinates [17]:

E∇ = En ∂

∂r
+

1

r
E∇� (A.1)

with En = Er/r = n̂1 = n1(−1,0,1). The tensorial products of the second rank

N2 = (n1 ⊗ n1)2 D2 = (n1 ⊗ (∇�)1)2 (A.2)

appear in the second-rank tensor operator

(n1 ⊗ ∇1)2 = (n1 ⊗ n1)2
∂

∂r
+

1

r
(n1 ⊗ (∇�)1)2 = N2

∂

∂r
+

1

r
D2. (A.3)

Integrals in equation (12) are extended over the full solid angle, and can be expressed with
the use of the 2× 2 matrices

Aij = γ1〈Li, 3/2, F, Fz|−1 +µ(N2 · J (2))|Lj , 3/2, F, Fz〉
Bij = µγ1〈Li, 3/2, F, Fz|(D2 · J (2))|Lj , 3/2, F, Fz〉. (A.4)

Matrix elements of the scalar product of the second-rank tensorsO2 andJ (2), dependent on
the space and spin coordinates, respectively, are expressed [17] with the 6-j symbols

〈L′, 3/2, F ′, F ′
z|O2 · J (2)|L, 3/2, F, Fz〉

= (−1)F+L+3/2δFF ′δFzF ′
z

{
L′ L 2
3/2 3/2 F

}
〈L′||O2||L〉〈3/2||J (2)||3/2〉 (A.5)

where|L′ − L| = 0, 2. The reduced matrix elements connecting the angular momentum
eigenstates are

〈L + 2||N2||L〉 = [(L + 1)(L + 2)/(2L + 3)]1/2

〈L − 2||N2||L〉 = [L(L − 1)/(2L − 1)]1/2

〈L||N2||L〉 = −{2L(L + 1)(2L + 1)/[3(2L − 1)(2L + 3)]}1/2

〈L + 2||D2||L〉 = −L[(L + 1)(L + 2)/(2L + 3)]1/2

〈L − 2||D2||L〉 = (L + 1)[L(L − 1)/(2L − 1)]1/2

〈L||D2||L〉 = −{3L(L + 1)(2L + 1)/[2(2L − 1)(2L + 3)]}1/2

〈3/2||J (2)||3/2〉 =
√

30.

(A.6)

The radial functionsf̄ (r) of the envelope8, the radial functionsḡ(r) of 9, in
equation (12), and the matricesA andB of equation (A.4), depend on the respective values
of the Luttinger parameters in semiconductors I, E. The hermiticity of the Hamiltonian matrix
requires, at the dot boundary,r = R, besides the equalities

f̄ I = f̄ E ḡI = ḡE (A.7)

also the equality of the products

ḡI

[
AI df̄ I

dr
+ B I f̄

I

R

]
= ḡE

[
AE df̄ E

dr
+ BE f̄ E

R

]
. (A.8)



An acceptor in a quantum dot 6227

Appendix B

In the space inside (I) and outside of (E) the quantum dot, the values of the Luttinger parameter
γ1 are γ I

1 and γ E
1 , and the corresponding parts of the envelope function are8I

a and 8E
a ,

respectively. The normalization integral of the envelope functions, and the matrix element of
the dipole moment, consist of contributions from the space inside (I)

cI
a = 〈8I

a|8I
a〉 =

∫
d�

∫ R

0
|8I

a|2r2 dr (B.1)

and outside of (E) the dot,

cE
a = 〈8E

a |8E
a 〉 =

∫
d�

∫ ∞

R

|8E
a |2r2 dr (B.2)

andcI
a + cE

a = 1. Since the normalization integral of the envelope is composed of parts from
the space inside and outside of the quantum dot, in the formula for the oscillator strength, we
use for theγ1-parameter the averageγ R

1 of the two valuesγ I,E
1 of the Luttinger parameter,

weighted with the normalization coefficients of the initial-state envelope:

γ R
1 = cI

aγ
I
1 + cE

a γ E
1 . (B.3)

In the spherical approximation,γ2 = γ3, we find the oscillator strength for the dipole transition
from the initial energy levelEa to the final levelEb:

fab = 2m0

h̄2γ R
1

(Eb − Ea)
1

2F0 + 1

∑
F0z,Fz

|〈9a,F0z
|z|8b,Fz

〉|2 (B.4)

with the summation over the degenerate statesF0z of the initial (a) = (n0, L0, 3/2, F0, F0z)

level and the statesFz of the final(b) = (n, L, 3/2, F, Fz) level. In a quantum dot,

〈9a,F0z
|z|8b,Fz

〉 = 〈9 I
a,F0z

|z|8I
b,Fz

〉 + 〈9E
a,F0z

|z|8E
b,Fz

〉. (B.5)

The matrix element ofz = rn1(0) is a product of the matrix elements ofn1(0) and ofr. The
matrix elements ofr are given by the integrals

〈ga,F0z
|r|fb,Fz

〉 = 〈gI
a,F0z

|r|f I
b,Fz

〉 + 〈gE
a,F0z

|r|f E
b,Fz

〉

=
∫ R

0
gI

a,F0z
f I

b,Fz
r3 dr +

∫ ∞

R

gE
a,F0z

f E
b,Fz

r3 dr. (B.6)

The matrix elements ofn1(0) can be expressed in terms of the 3-j and 6-j symbols [17]
with |L − L0| = 1,

〈L0, 3/2, F0, F0z|n1(0)|L, 3/2, F, Fz〉 = δF0z,Fz
[(2F0 + 1)(2F + 1)(2L0 + 1)(2L + 1)]1/2

× (−1)2F−1/2+F0z

(
F 1 F0

Fz 0 −F0z

) {
L0 1 L

F 3/2 F0

} (
L0 1 L

0 0 0

)
. (B.7)

The sum of the squared dipole matrix elements in equation (14) can be evaluated [37] in
terms of the summation(l0; l) over(L0, L0 + 2; L, L + 2)∑
F0z,Fz

|〈9(n0, L0, 3/2, F0, F0z)|z|8(n, L, 3/2, F, Fz)〉|2

= [(2F0 + 1)(2F + 1)/3]

∣∣∣∣ ∑
l0;l

[(2l0 + 1)(2l + 1)]1/2

(
l0 1 l

0 0 0

)

×
{

l0 1 l

F 3/2 F0

}
〈gn0,l0,F0|r|fn,l,F 〉

∣∣∣∣2. (B.8)
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In particular, the(n0, L0, 3/2, F0, F0z) = (1, 0, 3/2, 3/2, F0z) are the quantum numbers of
the 1S3/2 ground state08. The ground state08 will not be split by cubic terms [10] in the
Hamiltonian, whereas the levels withF > 3/2 will be split [37]. In the semiconductor with
the refractive indexn(ω) at frequencyω, the linear absorption cross section [8,14,27,37]

σ(ω) = 2π2e2h̄

m0cn(ω)
γ R

1

∑
b

fabδ(Eb − Ea − h̄ω) (B.9)

corresponds to transitions between the bound statesa, b. Equations (14) and (B.9) with
equation (B.3) apply in the general case of different values of the Luttinger parameters inside
and outside of the dot.

References

[1] Yoffe A D 1993Adv. Phys.42173
[2] Nomura S, Segawa Y and Kobayashi T 1994Phys. Rev.B 4913 571
[3] Hatami Fet al 1998Phys. Rev.B 574635
[4] Einevoll G T and Chang Y-C 1989Phys. Rev.B 409683
[5] Deng Z-Y, Guo J-K and Lai T-R 1994Phys. Rev.B 505736
[6] Pasquarello A, Andreani L C and Buczko R 1989Phys. Rev.B 405602
[7] Fraizzoli S, Bassani F and Buczko R 1990Phys. Rev.B 415096
[8] Buczko R and Bassani F 1996Phys. Rev.B 542667
[9] Baldereschi A and Lipari N O 1973Phys. Rev.B 8 2697

[10] Baldereschi A and Lipari N O 1974Phys. Rev.B 101525
[11] Xia J-B 1989Phys. Rev.B 408500
[12] Sercel P C and Vahala K J 1990Phys. Rev.B 423690
[13] Buczko R 1992Acta Phys. Pol.A 82789
[14] Buczko R and Bassani F 1992Phys. Rev.B 455838
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