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We present a spin-1 chain with a Hamiltonian which has three exactly solvable ground states. Two of these
are fully dimerized, analogous to the Majumdar-Ghosh �MG� states of a spin-1

2 chain, while the third is of the
Affleck-Kennedy-Lieb-Tasaki �AKLT� type. We use variational and numerical methods to study the low-energy
excitations which interpolate between these ground states in different ways. In particular, there is a spin-1

2
excitation which interpolates between the MG and AKLT ground states; this is the lowest excitation of the
system and it has a surprisingly small gap. We discuss generalizations of our model of spin fractionalization to
higher spin chains and higher dimensions.
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I. INTRODUCTION

Quantum spin systems in one dimension have been stud-
ied extensively for many years. In some seminal papers,
Haldane predicted theoretically that integer spin chains with
nearest-neighbor Heisenberg antiferromagnetic interactions
should have a gap between the ground state and the first
excited state;1 this was then observed experimentally in a
spin-1 system2–4 and confirmed numerically.5–7 Haldane’s
analysis used a field theoretic description of the long-
distance and low-energy modes of the spin system.8–11 Af-
fleck, Kennedy, Lieb, and Tasaki �AKLT� then showed that
the ground state of the spin-1 chain can be variationally un-
derstood as a state in which each spin-1 is thought of as a
symmetric combination of two spin-1

2 ’s, and the two spin-1
2 ’s

at each site form a singlet with the spin-1
2 ’s of the neighbor-

ing sites.12 The excitations are given by variational states in
which one of these singlets is replaced by a triplet. It was
shown later that the AKLT state can be written as a matrix
product state.13

If a spin chain has sufficiently strong next-nearest-
neighbor interactions, the system is frustrated and its low-
energy properties can be quite different from those of the
unfrustrated system. For instance, the spin-1

2 chain with both
nearest-neighbor �J1� and next-nearest-neighbor �J2� antifer-
romagnetic interactions is gapless if J2=0, but is gapped if
J2 /J1�0.2411.14,15 In the latter case, the ground state is dou-
bly degenerate as expected by the Lieb-Schultz-Mattis
theorem.16 In particular, for the Majumdar-Ghosh �MG�
model given by J2 /J1=1/2, the ground states are exactly
solvable17 and consist of products of nearest-neighbor singlet
states as will be described below. The lowest excited states
then consist of spin-1

2 ’s interpolating between the two ground
states.18 Hence the excitations of the MG model have spin-1

2
in contrast to the excitations of the AKLT model which have
spin-1.

The excitations described above exist in the bulk; they
contribute to thermodynamic quantities like the magnetic
susceptibility and the specific heat. In addition to these exci-
tations, a gapped chain with a finite number of sites may also
have degrees of freedom localized at the edges. For instance,
the AKLT model on an open chain has spin-1

2 degrees of
freedom at the edges;7 these can be thought of as remnants of

the two spin-1
2 ’s of which each spin-1 is composed. These

edge degrees of freedom have been studied using field theo-
retic methods.19 It may be interesting to consider spin-1
chains which have spin-1

2 excitations in the bulk, as this
would provide an example of spin fractionalization.

Spin fractionalization was first proposed by Faddeev and
Takhtajan in the spin-1

2 antiferromagnetic chain;20 the idea is
that the elementary excitations, called spinons, carry spin-1

2 .
This was confirmed experimentally in a one-dimensional
spin-1

2 system KCuF3.21 It was later shown by Anderson and
others that spin fractionalization can also occur in higher
dimensional systems with resonating valence bond ground
states.22,23 This idea has been used to understand the low-
lying excitations in a two-dimensional spin-1

2 system
Cs2CuCl4.24,25 In contrast to these examples of spin fraction-
alization in spin-1

2 systems, we are proposing a model of spin
fractionalization in higher spin systems in this paper.

A spin-1
2 excitation existing in the bulk of a spin-1 chain

must clearly have two different ground states on its left and
right. For instance, the ground state on the left could be of
the MG type in which each spin-1 forms a singlet with one
of its neighbors, while the ground state on the right could be
of the AKLT type. The spin-1

2 excitation can then be thought
of as the edge degree of freedom of the AKLT part of the
chain. To realize this kind of an excitation, we require a
Hamiltonian for which both MG and AKLT states are ground
states. We will present such a Hamiltonian in Sec. II; it con-
tains interactions involving three neighboring sites. We will
present a variational estimate of different possible excitations
of the model, and will show that the spin-1

2 excitation has the
lowest variational energy. In Sec. 3, we will present numeri-
cal results for finite chains, with both open and periodic
boundary conditions. These will confirm that the spin-1

2 ex-
citations indeed have the lowest energy; with periodic
boundary conditions, such excitations must occur in pairs. In
Sec. IV, we will discuss how our model can be generalized to
higher spins and higher dimensions, i.e., how one can con-
struct models which have spin S at each site and spin S�
excitations in the bulk, with S��S. We will make some con-
cluding remarks in Sec. V.
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II. A SPIN-1 CHAIN

A. Hamiltonian and ground states

We will first present what appears to be the simplest
Hamiltonian of an infinite spin-1 chain which has exactly
three ground states. This Hamiltonian is motivated by the

following arguments. Given three spin-1’s S�1, S�2, and S�3, let
us define the projection operators PS which projects on to
states with total spin S, where S can be 0, 1, 2 or 3. Now
consider a three-spin Hamiltonian of the form h=c2P2
+c3P3, where c2 ,c3�0. The ground states of h are all the
states whose total spin is equal to 0 or 1; all such states have
zero energy. All the excited states have strictly positive en-
ergies. If we think of each of the spin-1’s as being a triplet
combination of two spin-1

2 ’s, these ground states correspond
to states in which at least four of the six spin-1

2 ’s form sin-
glets amongst each other. The remaining two spin-1

2 ’s can at
most form a total spin of 1, no matter how they combine with
each other. Now, a particular Hamiltonian of the above type

is h=Stot
2 �Stot

2 −2�, where Stot
2 = �S�1+S�2+S�3�2; this corresponds

to the coefficients c2=24 and c3=120. This is the simplest
Hamiltonian with ground state spins being equal to 0 and 1
in the sense that it has the lowest possible powers of the spin

operators S� i.
We now consider a Hamiltonian for the spin-1 chain of

the form

H = J�
n

hn,

where

hn = �S�n−1 + S�n + S�n+1�2��S�n−1 + S�n + S�n+1�2 − 2� . �1�

�We will set the exchange constant J equal to 1�. The ground
states of this Hamiltonian must have at least two singlet
bonds within every group of three neighboring spins. It is
then easy to see that there are three degenerate ground states
with zero energy of the forms shown in Fig. 1. The analytical
expressions for these three states are as follows. Let us define
the singlet combination of two spin-1’s at sites m and n as
�S�m ,n��= ��1,−1�mn− �0,0�mn+ �−1,1�mn� /�3, where we
have used the Sz components to label the states. Then the first
two ground states of �1� are given by tensor products of
singlets between nearest neighbors of the form

�I� = 	
n=−�

�

�S�2n,2n + 1�� ,

and

�II� = 	
n=−�

�

�S�2n − 1,2n�� . �2�

These are generalizations of the two ground states of the
spin-1

2 chain at the MG point.17

The third ground state of Eq. �1� is the AKLT state. This
can be written as a matrix product state.13 At a site n, let us
define the matrix

Mn = 
 �1/3�0�n
�2/3�− 1�n

− �2/3�1�n − �1/3�0�n
� . �3�

Then the AKLT state is given by the matrix product

�III� = 	
n=−�

�

Mn. �4�

The matrix in Eq. �3� is motivated as follows.26 For a spin-1
2

object, we can use u=cos�� /2�ei�/2 and v=sin�� /2�e−i�/2 to
describe the spin-up and spin-down states, respectively. The
spin operators are given by Sz= �u�u−v�v� /2, S+=u�v, and
S−=v�u; the total spin is S= �u�u+v�v� /2. The inner product
in the �u ,v� space is defined by the integration measure
d�=sin� d�d� / �4��. The correctly normalized spin-1

2 states
are given by �1/2�=�2u and �−1/2�=�2v. For a spin-1 ob-
ject, the normalized states are given by �1�=�3u2, �0�
=�6uv, and �−1�=�3v2. A singlet formed by spin-1

2 ’s at sites
n and n+1 is given by

uivi+1 − viui+1 = �ui vi�
 vi+1

− ui+1
� . �5�

The matrix in Eq. �3� is obtained by combining a column and
a row for site n as

Mn = �2
 vn

− un
��un vn� . �6�

The normalization of Mn has been chosen so that the norm of
the AKLT state in Eq. �4� is given by

Tr
1/3 2/3

2/3 1/3
�N

= 1 in the limit N → � . �7�

The three states defined in Eqs. �2� and �4� are orthonor-
mal for the infinite chain. We do not have an analytical proof
that these are the only ground states of Eq. �1�. However, we
will provide numerical evidence in Sec. III that there are no
other ground states, except for some additional degeneracies
in open chains due to degrees of freedom at the edges.

The structure factor in a ground state is given by

S�q� =
1

N
�
m,n

e−iq�m−n��S�m · S�n� , �8�

where N is the number of sites in the chain, and we eventu-
ally must take the limit N→�. In the three ground states
given above, we find that26

SI�q� = SII�q� = 2�1 − cos q� ,

and

FIG. 1. The three degenerate ground states. Each solid circle
represents a spin-1

2 , and the lines denote singlet bonds.
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SIII�q� =
6�1 − cos q�
5 + 3 cos q

. �9�

B. Excited states

We will now study the excited states using a variational
technique.18,27,28 Given two ground states A and B, which
could be any of the states I, II or III, one can consider a
“domain wall” state �n� which interpolates between the two
at site n. We can then superpose such states to form momen-
tum eigenstates �k� as shown below, and obtain a variational
estimate of the energy Evar�k�= �k�H�k� / �k �k�. We will now
do this for various possible combinations of the two ground
states A and B on the left and right. There are four different
cases to consider. In each case, we will form an excited state
by breaking as few singlet bonds as possible.

�i� We first consider a state interpolating between ground
states I on the left and II on the right as shown in Fig. 2�i�.
This is given by

�2n�I,II�� = 	
m=−�

n

�S�2m − 2,2m − 1�� � �1�2n � 	
m=n

�

�S�2m

+ 1,2m + 2�� . �10�

This is a state with Stot
z =1. We then find that

�2m�I,II��2n�I,II�� = �1/3��n−m�,

�2m�I,II��H�2n�I,II�� = 40	m,n. �11�

If we form the momentum eigenstate

�k� = �
n

eik2n�2n� , �12�

we find that

�k�k� =
2N

5 − 3 cos�2k�
, �13�

and

�k�H�k� = 20N .

From Eq. �13�, the variational energy is given by

Evar�k� = 10�5 − 3 cos�2k�� . �14�

The minimum of this lies at k=0, where Evar�0�=20.
�ii� Next we consider a state interpolating between ground

states I on both the left-hand side and the right-hand side as

shown in Fig. 2�ii�. This is obtained by replacing a singlet
�S�2n ,2n+1�� by a triplet. We thus have

�2n�I,I�� = 	
m=−�

n

�S�2m − 2,2m − 1�� �
1
�2

��1,0�2n,2n+1

− �0,1�2n,2n+1� � 	
m=n+1

�

�S�2m,2m + 1�� . �15�

This is a state with Stot
z =1. We find that

�2m�I,I��2n�I,I�� = 	m,n,

�2m�I,I��H�2n�I,I�� = 80
3 	m,n. �16�

A momentum eigenstate defined as in Eq. �12� satisfies

�k�k� =
N

2
and �k�H�k� =

40N

3
. �17�

Hence the variational energy is

Evar�k� = 80
3  26.67 �18�

independent of the value of k.
�iii� We now consider a state interpolating between

ground states III on the left-hand side and I on the right-hand
side as shown in Fig. 2�iii�. The ground state III must end
with one singlet bond between the spin-1

2 ’s at site 2n and
2n+1, along with a free spin-1

2 at site 2n+1. We therefore
take a state which is of the AKLT type from −� to site 2n;
this is followed by a column multiplied by a free spin-1

2 at
the site 2n+1 of the form

�2
 v2n+1

− u2n+1
�u2n+1 = 
 �1/3�0�2n+1

− �2/3�1�2n+1
� . �19�

The choice of u2n+1, rather than v2n+1, as the free spin-1
2 at

the end of the AKLT region makes this a state with Stot
z

=1/2. The free spin is then followed on the right-hand side
by the ground state I. The complete state is thus given by

�2n�III,I�� = 	
m=−�

2n

Mm � 
 �1/3�0�2n+1

− �2/3�1�2n+1
� � 	

m=n+1

�

�S�2m,2m

+ 1�� . �20�

We then find that

�2m�III,I��2n�III,I�� = �− 1/�3��n−m�,

�2m�III,I��H�2n�III,I�� = 80
9 	m,n. �21�

A momentum eigenstate defined as in Eq. �12� satisfies

�k�k� =
N

2�2 + �3cos�2k��
, �22�

and

�k�H�k� =
40N

9
.

Hence the variational energy is

FIG. 2. Various possible excitations interpolating between dif-
ferent ground states. The lines denote singlet bonds, and each iso-
lated circle denotes a free spin-1

2 .
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Evar�k� = 80
9 �2 + �3cos�2k�� . �23�

The minimum of this lies at k=� /2, where Evar�� /2�
2.38.

�iv� Finally, we consider a state interpolating between
ground states III lying on both the left-hand side and the
right-hand side as shown in Fig. 2�iv�. We take the AKLT
state on the left-hand side to be of the same form as the one
discussed around Eq. �19�, with 2n replaced by n−1. The
state on the right-hand side begins with a free spin-1

2 multi-
plying a row at site n+1 of the form

�2un+1�un+1 vn+1� = ��2/3�1�n+1
�1/3�0�n+1� . �24�

This is then followed by a state of the AKLT type from site
n+2 to �. The complete state is thus given by

�n�III,III�� = 	
m=−�

n−1

Mm � 
 �1/3�0�n

− �2/3�1�n
�

� ��2/3�1�n+1
�1/3�0�n+1� � 	

m=n+2

�

Mm.

�25�

This is a state with Stot
z =1. We then find that

�m�III,III��n�III,III�� = 1
2	m,n − 1

6 �	m,n−1

+ 	m,n+1�,�m�III,III��H�n�III,III��

= 320
27 	m,n − 80

27�	m,n−1 + 	m,n+1� . �26�

A momentum eigenstate defined as

�k� = �
n

eikn�n� �27�

satisfies

�k�k� = � 1
2 − 1

3 cos k�N , �28�

and

�k�H�k� =
160N

27
�2 − cos k� .

Hence the variational energy is

Evar�k� =
320�2 − cos k�
9�3 − 2 cos k�

. �29�

The minimum of this lies at k=�, where Evar���21.33.
A comparison between the four kinds of excitations dis-

cussed above shows that the gaps of excitations of type �i�,
�ii�, and �iv� are given by 20, 26.67, and 21.33, respectively,
while excitation �iii� has a gap of only 2.38. We note that
excitation �i� leaves one triangle unsaturated by two bonds,
i.e., one group of three neighboring spins has no singlet
bonds within themselves; this can be seen in Fig. 2. Excita-
tions �ii� and �iv� both leave two triangles unsaturated by one
bond each. Excitation �iii� leaves one triangle unsaturated by
one bond. The minimum energy excitation is of type �iii�
which represents a domain wall interpolating between
ground state I �or II� and III, i.e., between ground states of

the MG and AKLT types. The gap of 2.38 for this state is
much less than the excitation energy of 24 of the three-state
Hamiltonian hn appearing in Eq. �1�. Further, this state has
spin-1

2 arising from the free spin-1
2 described around Eq.

�19�.
We have not tried to improve our variational calculations

by considering more extended states which interpolate be-
tween the different ground states. Such extended states do
not seem to greatly improve the energy estimate;27 this is
because our ground states have fairly short correlation
lengths. Further, we will see in Sec. III that the numerical
result for the lowest excitation gap is not very different from
the variational estimate obtained above in Eq. �23�.

III. NUMERICAL RESULTS

We will now study the model defined in Eq. �1� using
exact diagonalization of finite chains, with both open and
periodic boundary conditions �PBC�. We will check whether
the three states discussed in Sec. II A are the only ground
states, and also what the lowest excitation energy is. If the
spin-1

2 excitations described in Sec. II B are indeed the low-
est energy excitations with a gap 
E, we would expect the
gap for open chains to be given by 
E while the gap for a
chain with PBC should be 2
E. This is because an open
chain may have a single spin-1

2 excitation with a gap in the
bulk, and a gapless spin-1

2 degree of freedom localized near
one of the edges which compensates for the spin-1

2 in the
bulk. But a chain with PBC can only have excitations in the
bulk which have integer values of Stot

z ; hence these must
consist of at least two spin-1

2 excitations.
We have studied chains with N ranging from 5 to 10. In

the exact diagonalization procedure, we used the quantum
number Stot

z and symmetry under parity to reduce the sizes of
the Hilbert spaces. For open chains with an even number of
sites, the degeneracy of ground states is found to be 14. This
confirms that the three states discussed in Sec II A exhausts
the list of all ground states since it can be understood as
follows using Fig. 1. There is one state of type I, nine states
of type II �there are two unpaired spin-1’s at the edges giving
a degeneracy of 32�, and four states of type III �the two
dangling spin-1

2 ’s at the edges give a degeneracy of 22�. For
an open chain with an odd number of sites, we find 10 de-
generate ground states. This can be counted as three states
each of types I and II arising from an unpaired spin-1 at one
of the edges, and four states of type III due to the two dan-
gling spin-1

2 ’s at the edges.
For chains with PBC and an even number of sites, we

expect three degenerate ground states corresponding to each
of the three types. For an odd number of sites, ground states
of types I and II are not allowed because they would leave
one triangle unsaturated; thus we expect a unique ground
state of type III. These expectations have been confirmed by
the numerics.

Next we consider the first excited state. Figure 3 shows
the energy gaps as a function of the chain length N, for
chains with PBC �upper two lines� and for open chains
�lower two lines�. Although the results differ significantly
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between even and odd values of N, they extrapolate to about
the same values for N→�. We have fitted the gaps to the
form 
E�N�=
E���+a /N2. The reason for this fitting form
is that an excited state with a gap is expected to behave like
a particle in a box;7,29 in a system of length N, the leading
N-dependent term in the energy of such an object is 1 /N2.
The inset of Fig. 3 shows the ratio 
per /
open as a function of
1/N2 for even and odd values of N; the lines in the inset are
obtained by taking the ratio of the fitted lines in the main
figure.

In Table I, we summarize the results shown in Fig. 3 by
listing the gap for various values of N for open �
open� and
periodic �
per� boundary conditions as well as the ratio

per /
open. We see that the gap for the open chain extrapo-
lates to a value of about 
E=2.5 which is not very different
from the value of 2.38 obtained variationally in Eq. �23�.
Further, the gap for the chain with PBC extrapolates to a
value which is about 2 times that of the open chain gap. This
implies, for instance, that there is no bound state of two spin-

1
2 excitations which has an energy which is significantly less
than 2
E.

For open chains, we find that the total spin of the lowest
excitation is Stot=1 for even N and Stot=2 for odd N. The
latter value can be understood as follows: If this excitation is
the state �iii� discussed in Sec. II B �see Fig. 2�iii��, which
interpolates between AKLT and a fully dimerized ground
state, then it is possible to have an unpaired spin-1 at the
edge of the fully dimerized side without costing any energy.
This edge spin can combine with the spin-1

2 at the edge of the
AKLT side and the spin-1

2 in the bulk to form Stot=2.

IV. GENERALIZATIONS

We can construct models involving higher spins or higher
dimensions in which excitations in the bulk can carry spins
which are a fraction of the spin at each site. We will discuss
some examples below.

A. Higher spin chains

The idea of a Hamiltonian with multiple ground states in
which there are varying numbers of singlet bonds between
neighboring sites can be generalized to higher spin chains.
Consider a chain of spin-S sites with a Hamiltonian such that
all ground states must have at least 2S singlet bonds amongst
every group of three neighboring sites. In analogy with Eq.
�1�, we can write such a Hamiltonian as H=�hn, where hn is
a sum of projection operators on to values of total spins
ranging from S+1 to 3S for sites n−1, n, and n+1. A state in
which there are p singlet bonds between sites 2n−1 and 2n
and 2S− p singlet bonds between sites 2n and 2n+1, for
every value of n, is a ground state of such a Hamiltonian. In
terms of the variables u and v, such a state can be written
as30

��p� = 	
n=−�

�

��u2n−1v2n − v2n−1u2n�p�u2nv2n+1 − v2nu2n+1�2S−p� .

�30�

Now, each value of p from 0 to 2S corresponds to a ground
state of the Hamiltonian; hence there are 2S+1 ground states.
The case S=1/2 corresponds to the MG model,17 while the
case S=1 corresponds to the model studied in Secs. II and
III. The states in Eq. �30� have appeared in the literature as
variational ground states of a dimerized spin-S chain, with
the integer p changing as the dimerization parameter is
varied.30

One can now consider excitations which are domain walls
interpolating between ground states ��p1� on the left-hand
side and ��p2� on the right-hand side, where, for instance,
p1� p2. A state of this kind is

�2n�p1,p2� = 	
m=−�

n−1

��u2m−1v2m − v2m−1u2m�p1 � �u2mv2m+1

− v2mu2m+1�2S−p1� � u2n−1
p1−p2 	

m=n

�

��u2m−1v2m

− v2m−1u2m�p2 � �u2mv2m+1 − v2mu2m+1�2S−p2� .

�31�

FIG. 3. Energy gap as a function of 1/N2, where N is the chain
length. The upper two lines are for periodic boundary conditions,
while the lower two lines are for open chains. Dashed and solid
lines denote even and odd values of N, respectively. The inset
shows the ratio 
per /
open as a function of 1/N2.

TABLE I. Gaps for chains with open and periodic boundary
conditions for different chain lengths. The last two lines give the
gaps extrapolated to the thermodynamic limit for an odd and even
number of sites, respectively.

N 
open 
per 
per /
open

5 6.08 9.28 1.53

6 6.29 11.28 1.79

7 4.34 7.09 1.63

8 4.63 8.72 1.88

9 3.61 6.30 1.75

10 3.82 7.29 1.91

�odd 2.51 4.93 1.96

�even 2.45 5.14 2.10
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This state has Stot
z = �p1− p2� /2 due to the factor of up1−p2 at

site 2n−1. We can now superpose states like this to form a
momentum eigenstate, and calculate its variational energy. A
similar procedure can be used to construct excited states in-
terpolating between ground states with any two values of p1
and p2 lying in the range 0 p2� p12S. We thus see that
the excited states of this spin-S chain can have any value of
the spin �p1− p2� /2 going from 1

2 to S.

B. Higher dimensional models

One can construct spin models in higher than one dimen-
sion in which the excited states exhibit spin fractionalization.
Two examples are as follows.

�i� Consider a spin-1 model on a square lattice in which
the Hamiltonian H is a sum over Hamiltonians H� of squares
for which the ground state has at least two singlet bonds in
each square;31 H� must be a sum of the projection operators
P3 and P4 for the total spin of a square. The ground states of
H consist of a number of unbroken lines of singlet bonds
such that each square has exactly two such lines running
along two of its sides. Each line of singlet bonds can either
extend all across the system or form a closed loop. In the
limit of large system size N, the number of ground states
grows as the exponential of �N. Hence the entropy per site
vanishes at zero temperature, even though the number of
ground states goes to infinity in the thermodynamic limit.
Next, we can consider excited states in which one of the lines
ends at a free spin-1

2 at one site; this leaves one square un-
saturated. Two such excitations are shown in Fig. 4. One can
then consider variational states in which the free spin-1

2 is
allowed to move around the lattice in order to reduce its
energy.

�ii� Next we consider a spin-1 model on a triangular lat-
tice in which the Hamiltonian H is a sum over Hamiltonians
H� of triangles for which the ground state has at least two
singlet bonds in each triangle; H� must be the projection
operator P3 for the total spin of a triangle. The ground states
of H consist of unbroken lines of singlet bonds such that
each triangle has exactly one line running along one of its
sides. Once again, the number of ground states grows as the
exponential of �N for a system with N sites. There are ex-
cited states in which one of the lines ends at a free spin-1

2 at
one site; this leaves one triangle unsaturated. The free spin-1

2
can again move around so as to reduce its energy.

V. CONCLUSIONS

We have introduced a Hamiltonian for a spin-1 chain
which has three degenerate ground states, two of the MG

type and one of the AKLT type. The lowest energy excitation
carries spin-1

2 and interpolates between the AKLT state and
one of the MG states; it has a gap 
E2.38J. In the ther-
modynamic limit N→� and temperatures much lower than

E /kB, the system will consist of a dilute gas of the spin-1

2
excitations.28,29 Hence a quantity like the magnetic suscepti-
bility will go as ��exp�−�
E� at low temperatures. The
spin-1

2 nature of these excitations can, in principle, be ob-
served in ESR experiments.

Although the model has three ground states, they will not
appear with equal weights in the limit of very low but non-
zero temperature. Since the spin-1

2 excitations interpolate be-
tween the AKLT state and either one of the MG states, we
expect that one-half of the chain will be in the AKLT state,
and one-quarter will be in each of the two MG states. This
implies that the structure factor S�q� at very low tempera-
tures will be given by �SI�q�+SIII�q�� /2, where SI�q� and
SIII�q� are given in Eq. �9�.

Finally, we have indicated how the spin-1 chain with spin-
1
2 excitations can be generalized to both higher spins and
higher dimensions. This provides one particular way of real-
izing the idea of spin fractionalization.
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