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A treatment of coherent electron transport in planar media with rough interfaces is developed to first order
within the effective-mass approximation. This approach starts with the exact boundary conditions of a single
rough interface and derives a perturbational expansion dependent upon the magnitude and slope of the rough-
ness. The first-order results are cast into a convenient transfer-matrix formalism for ease of use and interpre-
tation. The model is derived for the purpose of modeling the effects of interface roughness in epitaxial systems
and is demonstrated using double-barrier resonant tunneling devices.

I. INTRODUCTION

Interface roughness in epitaxial structures and its effects
on electron transport have been studied by many groups and
are particularly important in structures with carrier confine-
ment on the scale of an electron wavelength. Rough inter-
faces are an inevitable result of epitaxial growth kinetics,
exacerbated by the fact that the ideal growth conditions for
the requisite two materials that define the interface are rarely
the same.1,2 Treatments of the effects of rough interfaces
typically reduce to three cases: the analysis of transport nor-
mal to3–10or in the plane of the interface11 and of excitons in
roughened quantum wells.7,12,13This paper concentrates ex-
clusively upon coherent transport across heteroepitaxial
structures with rough interfaces. As such, it covers the basic
process of tunneling through single- and multiple-barrier de-
vices upon which inelastic processes are parasitic.

The effects of roughness upon tunneling are expected to
be important when the deviation in thickness is a sizable
fraction of a tunneling barrier, electron wavelength, or
quantum-well width. Quantum-well width variations are par-
ticularly important because the energy of quasibound states
~resonances! is defined by the round-trip phase change in the
well. The effects of roughness on tunneling through het-
eroepitaxial barriers have been measured in photolumines-
cence and photoluminescence excitation spectra in quantum
wells with thin barriers12,13and in electron transport through
resonant tunneling devices~RTD’s!.9 This latter effort is
mainly concerned with the effects of substrate orientation on
the I -V curve of the RTD.

In typical high-quality epitaxy, particularly when the ma-
terials are lattice matched, interface roughness is usually
characterized by monolayer-high island formation and the
typical descriptive parameters are the average island size and
percent of coverage. Another typical characterization is to
use a statistical description of the height-height autocorrela-
tion function of the rough interface.14 Such idealizations are
used because the precise nature of interface roughness is un-
known and sensitive to many epitaxial growth parameters
such as temperature, growth rate, stop growth times, sub-
strate orientation, growth constituent flux ratios, alloy com-
position, etc.15 In addition, the roughness at a solid/solid in-
terface has proven particularly hard to characterize;

extremely sensitive techniques are required, such as high-
resolution transmission electron spectroscopy16 and precision
x-ray diffraction measurements.17 Roughness on the growing
epitaxial surface is typically monitored by grazing incidence
electron beam techniques;18 however, these techniques are
really only qualitative. Finally,surfaceroughness can be pre-
cisely characterized by scanning tunneling microscopy but
the exposed surface may be critically different from the het-
erointerface. In studies of quenched-growth epitaxial sur-
faces, scanning tunneling microscopy reveals several types
of rough surfaces that are difficult to parametrically
characterize.2

Methods used to model the effects of interface roughness
on coherent tunneling generally approach the problem in one
of three ways:~1! transfer-matrix techniques that treat each
rough interface separately,5,19 ~2! diagrammatic techniques
within the Born approximation,3,20 and ~3! diagrammatic
techniques within diffusive perturbation theory that include
the effects of all ladder and maximally crossed Feynman
diagrams often from within a weak localization
approximation.10,21

The transfer-matrix method of Liu and Coon is a partial
application of the techniques developed in this paper to the
problem of electron scattering at solid-state interfaces.5 Un-
fortunately, that treatment only modifies one of the interfa-
cial boundary conditions in the presence of roughness. In
addition, that work usesd functions to model the roughness.
Since no effective mass can be associated with thed func-
tion, the scattering associated with the effective mass differ-
ence is omitted.

Diagrammatic techniques made within the Born approxi-
mation include multiple scattering~from the perturbing po-
tential! with each term in the perturbative expansion. This
has been used to model single and double scattering through
RTD’s due to point impurities,20 alloy scattering,22 and inter-
face roughness.3

Diffusive perturbation theory allows a multiple-scattering
approach by selecting certain types of interaction diagrams
and summing over all of them so as to produce an average
Green’s function for the system. This approach has been used
by Berkovits for scattering due to point impurities in the well
region of a RTD and, by analogy, the resonant cavity of a
Fabry-Pe´rot interferometer. In that application the purely
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specular term for resonant tunneling~no interactions with the
roughness of the interface! is destroyed. It yields a self-
energy shift in the resonant energy and a slight broadening of
the resonance.21 Johansson has adopted this technique to
model surface roughness from wide monolayer islands as
point impurities using three-dimensionald-function poten-
tials, weighted to reflect island size.10 Such a reduction
seems inappropriate for large-size islands.

The perturbative techniques utilize an eigenstate expan-
sion defined by planar interfaces located at the average inter-
face positions. This is problematic in all roughened quantum-
well situations in which bound and quasibound states exist.
The energies for such states are determined by a round-trip
phase matching condition and thus directly affected by the
variable interface location. These two techniques are most
suitable when they are used for scattering due to fixed impu-
rities or alloy clustering.20–22 In these situations the perturb-
ing potential is assumed weak and the planar-interface eigen-
functions are a good approximation to the actual ones.

This paper adopts the transfer-matrix approach by con-
verting the rough interface/homogeneous boundary condition
problem to that of a planar interface with inhomogeneous
boundary conditions. Rather than only modeling the rough
interface as ad-function sheet potential at the average inter-
face position,5 we adapt optical techniques used to explain
anomalous surface plasmon scattering from metallic
surfaces.19 By using a transfer-matrix formalism, the effects
of scattering in multilayer devices, particularly in resonant
ones, are easily and naturally calculated. Our transfer-matrix
technique is an extension of the envelope-function transfer-
matrix type of calculation made within the effective-mass
approximation used with planar interfaces.23 As such, it is a
technique that does not suffer the extreme numerical insta-
bilities of transfer-matrix calculations based on tight-binding
calculations.24,25

We approach the problem of writing approximate inter-
face matching conditions at a plane by expanding the wave
function on either side of the interface in a perturbative series
and writing each term in a Taylor expansion around a refer-
ence plane atz5z1 . To do this, the wave functions are con-
tinued to or truncated atz5z1 as if the interface were actu-
ally at that plane. The interface is characterized by the band
edge potential V(x,y,z)5VbQ„z2z12 f (x,y)…, where
Q(z) is the unit step function. At each point (x,y,z1), the
boundary conditions account for both the deviation of the
interface from the reference planef (x,y) and the slope of the
roughness.

It is important to note that the continued wave function,
evaluated at the reference plane, does not represent the actual
wave function at that point, so the new boundary conditions
are not expected to represent~even in a limiting sense! any
realizable potential or effective-mass feature atz1 . At this
level, the boundary conditions that we derive are a math-
ematical expedient that produce the correct wave functions
on either side of the actual interface. In this way the electron
wave problem differs from the optical one in which the new
boundary conditions can be interpreted as sheet currents at
the reference plane.19

This approach treats only the coherent transport of con-
duction band electrons between two semiconductors with
conduction band edge and/or effective-mass discontinuities.

Only the transport of electrons at the same symmetry point is
considered and spherically symmetric, parabolic bands are
assumed for simplicity of exposition. This approach will be
solely concerned with the envelope portion of the full elec-
tron wave function. The lattice periodic portions of the full
wave function in each material are assumed to be largely the
same for a given wave vector and the scattering due to the
roughness will be assumed to be weak in the sense that only
small changes in the wave vector relative to the Brillouin
zone edge are supported with each interaction.

The effects of differing band structures are felt only in the
variation of the conduction band edge minima and effective
mass across the interface and in the gradient boundary con-
dition, for which the wave function gradient is weighted by
the inverse effective mass.26,27The interfaces are assumed to
be abrupt in the sense that the conduction band edge poten-
tial and effective masses are treated as step variations. We do
not include the scattering between band minima due to the
detailed interface matching conditions derived from tight-
binding and pseudopotential calculations of the full wave
function.24,28

This paper proceeds in Sec. II by reviewing the transfer-
matrix formalism in the context of rough interfaces. In Sec.
III we derive a set of boundary conditions at the average
interface plane that mimic the usual conditions valid at the
actual interface. A perturbative expansion is used for the
wave functions on either side of the interface and the bound-
ary conditions are written for like terms in these expansions.
The first-order derivation is outlined in Sec. IV, followed in
Sec. V with an analysis of the first-order results. In Sec. VI
the effects of island size on the transmission characteristic
are computed for a RTD with one rough well/barrier inter-
face.

II. THE TRANSFER-MATRIX FORMALISM

Before proceeding to the detailed solution of the problem
we outline a few points about the transfer-matrix formalism
used here. As shown in Fig. 1, an epitaxial structure such as
a resonant tunneling device is made up of nominally planar
layers with interface quality determined by the epitaxial
growth dynamics. Figure 2 shows the conduction band edge
profile of a double-barrier resonant tunneling device utilizing
heavily doped n-type electrode regions. The roughened inter-
faces are indicated schematically.

In typical applications of aplanareffective-mass transfer-
matrix analysis, the structure is further divided into many
regions of constant~or linear! potential. A set of boundary
conditions is then used to link the electron wave function
across each interface~either artificial or actual! and the en-
ergy eigensolutions are found. The important portions of the
full eigensolutions, as far as the global transmission and re-
flection coefficients are concerned, are the coefficients of the
two plane-wave components in each of the bounding regions.
A unity amplitude~or flux! plane wave incident from one
side is assumed and the resulting plane-wave coefficients
corresponding to the outbound waves yield, with a little ma-
nipulation, the transmission and reflection coefficients. These
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coefficients are then applied to suitably constructed~narrow
in energy! wave packets29 or to the spectral decomposition of
an arbitrary wave packet.30

We modify the above procedure by using the following
construction for the full wave function in each constant po-
tential region:

C j5(
n

~ajne
ik jnz1bjne

2 ik jnz!eiqn•r i,

where j is the region index and runs from 1 toN, n indexes
a set of transverse wave vectors,qn5(qxn ,qyn) is the trans-
verse wave vector,kjn is the wave number for the component
of the total wave vector normal to the average interface plane
for the indicatedqn , andr i is the in-plane coordinate vector.
Here, the average interface plane is taken as normal to thez
axis. In the above, each set of coefficients can be written in
vector form asaj andbj where the number of elements in the
vector represents the subset$qn% retained in the calculation.
The vectoraj corresponds to the forward propagating states
in region j , andbj to the backward propagating ones. Be-
cause we seek energy eigenfunctions,kjn andqn are related
via

\2~kjn
2 1qn

2!

2mj
5E2Vj ,

where E is the total electron energy,qn5uqnu, and mj ,
kjn , andVj are the effective mass,z wave number, and po-
tential, respectively, in regionj .

The above form of solution forces a strict plane-wave
basis for the transverse portion of the wave function. This is
reasonable when the average planes for each heterointerface
in the structure are parallel. This plane-wave basis for the
transverse portion of the wave function can be cumbersome;
however, with enough terms the solution can be represented
to high accuracy. It should be noted that the above form for
the transverse wave function implies a finite crystal size in
the transverse direction defined asLx and Ly . We assume
periodic boundary conditions at the edges of the crystal and
the set$qn% is then limited to the first Brillouin zone.

The transfer matrix we shall use,M, relates the coeffi-
cients in the bounding regions according to

Fa1b1G5MFaNbNG . ~1!

In a minimum analysis,N equals the number of distinct lay-
ers in the epitaxial structure andM is constructed from the
product ofN21 interface transfer matrices, to be derived in
Sec. IV.N will be larger if any of the layers is divided into
multiple regions of constant potential; however, the ensuing
regions should not be thinner than the magnitude of the
roughness.

To model plane-wave incidence, seta15em and bN50,
whereem is a vector with all zero elements except one unity
value corresponding to a state incident with energyE and
transverse wave vectorqin5qm . Typically the set$qn% is
symmetric, spanning the rangeqin2qmax to qin1qmax with
Dqx andDqy , the granularity of$qn%, equal to 2p/Lx and
2p/Ly , respectively.

Writing

M5FMA MB

MC MD
G ,

we get the usual results

a15em5MAaN ,

FIG. 1. ~a! The dynamics of epitaxial growth and the resulting
rough interfaces. Mobility of the atoms on the surface, residence
time, surface free energy, and other parameters determine the aver-
age island size.~b! In the AlxGa12xAs system the Al atoms have
the least mobility on the growing surface resulting in two interfaces
that are rougher than the others in a typical double-barrier structure.

FIG. 2. ~a! The conduction band edge energy for a double-
barrier structure shown schematically for a structure with two
roughened interfaces.~b! The constant potential approximation to
the actual conduction band for a device biased near resonance.
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b15MCaN ,

which can be solved first foraN and thenb1 . The first op-
eration can be done by matrix inversion or, more efficiently,
by lower triangular/upper triangular matrix~LU! decomposi-
tion of MA and appropriate forward and back substitution.

The transmission and reflection coefficients are given by

T~E,qm→qn!5Tmn5uaNnu2
m1

mN

kNn1kNn*

2k1m

and

R~E,qm→qn!5Rmn5ub1nu2
k1n1k1n*

2k1m
,

where it is assumed thatk1m is real valued. Total transmis-
sion is given byTtot5(nTmn and ‘‘specular’’ transmission by
Tspec5Tmm. Total transmission into scattered states is there-
fore Tscatt5Ttot2Tspec.

III. THE ROUGH INTERFACE BOUNDARY CONDITIONS

In this section boundary conditions correct to first order
are derived. We do this for a single interface between mate-
rials 1 and 2, located atz5z11 f (x,y), at which both the
effective mass and band edge potential can change. It is not
required that the average value of roughness^ f (x,y)& but we
do make the stipulation thatf (x,y) is single valued and con-
tinuous. This latter requirement is needed below in the defi-
nition of the normal vector in the boundary conditions. In
practical usage, discontinuities inf (x,y) are removed be-
cause of the truncation of the Fourier expansion off (x,y)
used below to calculate the scattering coefficients. In this
contextz1 serves as the~somewhat arbitrary! reference plane
at which new boundary conditions will be derived.

The actual boundary conditions, within the effective-mass
approximation, are

D@C~x,y,z11 f !#50, ~2a!

DS 1m“C~x,y,z11 f ! D •n50, ~2b!

where the operatorD extracts the difference between the
function evaluated on each side of the interface, viz.,
D(h)5h1„x,y,(z11 f )2

…2h2„x,y,(z11 f )1
…. The vectorn

is normal to the rough surface and given by

n5~]xf ,]yf ,21!.

Here]x and]y indicate partial derivatives with respect to the
coordinatesx andy, respectively.

The above gradient boundary condition is peculiar to the
effective-mass approximation within the envelope-function
formalism. It is an extension of the condition on the time-
independent Schro¨dinger equation which requires¹2C to be
finite valued everywhere~for finite valued potentials!. This
results in the continuity of“C. Since the effective mass
makes a step change across the interface (1/m)“C is as-
sumed continuous in the direction normal to the interface.

This choice is not unique;31 however, it has been borne out
by various theoretical calculations for such material systems
as AlxGa12xAs.

27,28

Unfortunately, in materials or at wave vectors for which
the effective-mass approximation is invalid, the form of
boundary conditions is much less clear and tight-binding or
pseudopotential methods need to be used to derive the proper
connection relations for the wave function at the
interface.24,28Since the effective-mass equation is only valid
near a band extremum this approach is similarly restricted.
Of course (1/m) may be a tensor quantity; however, it is
assumed scalar for clarity of exposition.

The rough interface is introduced perturbationally using
the parameterA with z5z11Af(x,y), where 0<A<1. The
parameterA is used to keep track of the order of the pertur-
bation and is later set to unity. Assume that the wave function
in each region can be expressed as a Rayleigh-Schro¨dinger
perturbational series

C15C1
~0!1AC1

~1!1A2C1
~2!1••• ~3a!

and

C25C2
~0!1AC2

~1!1A2C2
~2!1•••, ~3b!

where each functionC j
( i ) is a solution to Schro¨dinger’s equa-

tion. The indexj indicates the material in which the solution
is valid and i indicates the order of the term. The normal
vector is also split into zeroth- and first-order parts,

n5n~0!1An~1!5~0,0,21!1A~]xf ,]yf ,0!, ~4!

and is exact at first order. Note that splittingn in this way is
somewhat arbitrary as the slope of a general functionf (x,y)
is unrelated to its magnitude and expandingn into these two
parts assumes that the roughness is slowly varying. This
seems appropriate on two counts: first, the typical roughness
in high-quality epitaxy is dominated by island growth so the
steps are typically one monolayer in height and, second,
change in the conduction band edge is distributed over a
distance of one or two monolayers so the transverse steplike
potential at an island edge is expected to be gradual rather
than abrupt. This has implications for the ‘‘bandwidth’’ of the
Fourier transform off (x,y), keeping that transform largely
within the first Brillouin zone.

Since boundary conditions are sought at the planez5z1
that mimic the actual ones atz5z11 f (x,y), the appropriate
material in region 1 or 2 is extended up to that plane and
each of theC j

( i ) is expanded aroundz1 in a Taylor series,

C j
~ i !~x,y,z11 f !5C j

~ i !~x,y,z1!1~Af !]zC j
~ i !~x,y,z1!

1
1

2
~Af !2]z

2C j
~ i !~x,y,z1!1•••,

where j51,2 andi50,1,2, . . . . It is this step that reduces
the rough interface problem with homogeneous boundary
conditions to a planar interface with the inhomogeneous
boundary conditions derived below and its use mimics the
Rayleigh hypothesis first used in rough-surface acoustic
scattering.35 These expansions are substituted into the ex-
pressions for the full wave functions,~3!, and used with~4!
in the actual boundary conditions atz5z11 f (x,y), ~2!. One

3928 53W. T. DIETZE AND R. B. DARLING



then extracts relations for the continuity and gradient bound-
ary conditions for the functions evaluated atz1 . The actual
continuity boundary condition to second order is~all terms
are evaluated atz5z1)

D~C~0!!1AfD~]zC
~0!!1

1

2
~Af !2D~]z

2C~0!!1AD~C~1!!

1A2fD~]zC
~1!!1A2D~C~2!!50.

Comparing terms of like order, the continuity boundary con-
ditions on the zeroth-, first-, and second-order terms are

D~C~0!!50,

D~C~1!!52 fD~]zC
~0!!,

D~C~2!!52 fD~]zC
~1!!2

1

2
f 2D~]z

2C~0!!.

The continuity boundary condition for thei th-order term in
the wave functon expansion is

D~C~ i !!52 (
a51

i
f a

a!
D~]z

aC~ i2a!!.

Note that the order of theD and ]z operations is not inter-
changeable.

SettingA51, the above relations can be combined to gen-
erate the continuity boundary condition for thetotal wave
function correct to zeroth, first, and second order:

D~C!~0!5D~C~0!!50, ~5a!

D~C!~1!5D~C~0!1C~1!!52 fD~]zC
~0!!, ~5b!

D~C!~2!5D~C~0!1C~1!1C~2!!

52 fD~]z@C~0!1C~1!# !2
1

2
f 2D~]z

2C~0!!. ~5c!

Here the superscript( i ) is moved outside the parentheses,
D(•••)( i ), to denote a boundary condition applicable to the
total wave function, correct toi th order. These expressions
are suitable for iterative calculations, but awkward for direct
calculations ofD(C)( i ). This can be fixed by adding selected
higher-order terms to the right hand sides of~5! without los-
ing accuracy with respect to the prescribed order of each
expression. The result is the following boundary conditions
at z5z1 accurate to zeroth, first, and second order:

D~C!~0!50, ~6a!

D~C!~1!52 fD~]zC!, ~6b!

D~C!~2!52 fD~]zC!2
1

2
f 2D~]z

2C!. ~6c!

To arbitrary order, the continuity boundary condition is
( i>1)

D~C!~ i !52 (
a51

i
f a

a!
D~]z

aC!.

A similar set of operations leads to the following gradient
boundary conditions for the total wave function, correct to
zeroth, first, and second order:

DS 1m]zC D ~0!

50, ~7a!

DS 1m]zC D ~1!

5~]xf !DS 1m]xC D1~]yf !DS 1m]yC D
2 fDS 1m]z

2C D , ~7b!

DS 1m]zC D ~2!

5~]xf !FDS 1m]xC D1DS 1m]x~ f ]zC! D G
1~]yf !FDS 1m]yC D1DS 1m]y~ f ]zC! D G
2 fDS 1m]z

2C D2
1

2
f 2DS 1m]z

3C D . ~7c!

To arbitrary order the gradient boundary condition is
( i>1)

DS 1m]zC D ~ i !

5~]xf ! (
a50

i21
1

a!
DS 1m]x~ f

a]z
aC! D

1~]yf ! (
a50

i21
1

a!
DS 1m]y~ f

a]z
aC! D

2 (
a51

i
f a

a!
DS 1m]z

a11C D ,
and is equal to zero wheni50.

IV. THE FIRST-ORDER TRANSFER MATRIX

Now that the problem has been reduced to a planar inter-
face we make the following notation change while discuss-
ing a single interfacial transfer matrix. The wave functions in
regions 1 and 2 are written as

C15(
n

~ane
ik1nz1bne

2 ik1nz!eiqn•r i, ~8a!

C25(
n

~cne
ik2nz1dne

2 ik2nz!eiqn•r i. ~8b!

Here the index of each summation specifies the same set of
transverse wave vectors$qn%.

We note in passing the effect of an effective-mass change
upon specular tunneling, that is, tunneling across a planar
interface with no change inq. Whenq50,

\2k2
2

2m2
5

\2k1
2

2m1
2Vb

or

Ez25Ez12Vb ,
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whereVb5V22V1 is the step in conduction band edge po-
tential energy between materials andEz1 and Ez2 are the
kinetic energies associated with motion in thez direction in
each material. WhenqÞ0, this relation is written as

Ez25Ez12Veff~q!,

where

Veff~q!5Vb1
\2q2

2 S 1

m2
2

1

m1
D .

Veff(q) is the effective potential step at the interface acting
upon an electron incident with the transverse wave number
q ~see Fig. 3!. This expression reflects one of the major dif-
ferences that effective mass and band edge potential play in
tunneling. An effective-mass change acts much like the index
of refraction in optics and produces effects akin to refraction
and total internal reflection. A step in the band edge potential
by itself leaves the transverse and normal motion completely
uncoupled and has no simple optical analog.

Note that the transverse wave numbersqx andqy are al-
ways real valued. While there may be localization due to
quasibound quantum-well states in the plane of a device, the
periodic boundary conditions at the edges of the crystal do
not allow exponential transverse functions. Localization
must be represented by a superposition of transverse plane
waves. On the other hand thez wave numbersk1 andk2 can
be either real or imaginary. For a given value ofq, three
classes of solution are immediately apparent: whenk1 and
k2 are both real, only one ofk1 and k2 is real, or both are
imaginary. In the first case the wave is both transmitted and
reflected, in the second case the wave is reflected with eva-
nescent penetration into the second material, and in the third

case a bound interface state is created. All of these cases
exist at a rough interface in order to support the actual
boundary conditions.

In single-interface problems the bound interface states are
relatively unimportant as they are not included in the asymp-
totic wave function far from the interface. In multilayer
structures these states can be important due to their nonvan-
ishing amplitudes at the next interface.

To generate a set of algebraic relations between the sets of
coefficientsa and b with c and d, substitute~8! into the
first-order boundary conditions~6b! and ~7b!, and then take
the two-dimensional Fourier transform in the plane of the
interface. The transformed continuity condition is then used
in the transformed gradient condition to remove one set of
coefficients. This process is detailed in the Appendix. The
results are expressions for each ofam andbm in terms ofc,
d, and the Fourier coefficients off (x,y). The resulting trans-
fer matrix of ~1! for a single interface is

M5FF2 0

0 F2GmFF1 0

0 F1G . ~9!

wherem is the reduced transfer matrix, andF1
2 andF1

1 are
diagonal submatrices that contain the reference plane phase
information, with

F2
mn5eik1mz1dmn ,

F1
mn5eik2mz1dmn .

If there arep elements in each set of coefficients then these
submatrices are eachp3p. Noting the form of the total
wave function in~3!, it is expected that the reduced transfer
matrix can also be expanded as a perturbational sum with

m5m~0!1m~1!1m~2!1•••.

The first-order results of the Appendix represent the first two
terms in this series, the first of which is

m~0!5
1

2 F I1R I2R

I2R I1RG ,
whereI is the identity matrix andR is a diagonal matrix with
elements specified by

Rmn5
m1k2m

m2k1m
dmn .

This term does not generate any scattering and reproduces
the specular result for a planar interface located at the refer-
ence plane.

The first-order matrix is written in terms of a set of three
scattering operators (p3p submatrices! according to

m~1!5
i

2 F ~V¹1VS1VC! ~V¹1VS2VC!

2~V¹1VS2VC! 2~V¹1VS1VC!
G ,

where the elements of the scattering operators within this
unity amplitude formalism are given by

FIG. 3. The transverse-wave-vector-dependent effective poten-
tial step. Shown is the conduction band edge depicting a barrier
formed by a heterostructure with a conduction band discontinuity.
Material 2 has an effective mass smaller than material 1. The para-
bolic dispersion relations are indicated for each material. For a
given transverse wave vectorqx0 , a new barrier potential is speci-
fied by the cut of the dispersion relations defined byqx5qx0 . In
this case the potential step is effectively increased by nonzero trans-
verse wave vector. When the effective masses are the reverse of
those shown above, the effective potential step decreases with in-
creasing transverse wave vector.
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VCmn5
m22m1

m2
k2nF mn ,

V¹mn5
1

m2k1m
~m1k2n

2 2m2k1n
2 !F mn ,

VSmn5
m22m1

m2k1m
SmnF mn .

Here F mn are two-dimensional Fourier series coefficients
specified in~A1! with q5qm2qn andSmn , given in ~A4!,
contains the dependence of the interface scattering on the
slope of the roughness.

V. ANALYSIS OF THE DERIVED RESULTS

The above interfacial transfer matrix is a particularly
pleasing result. At first order, the rough interface couples
inbound states~propagating or evanescent! to multiple out-
bound states according to the specified scattering operators
above. This coupling takes the form of weighted convolu-
tions with the Fourier transform of the surface roughness.
The weighting factors collectively account for the interface
deviation, the effective potential step, and the slope of
f (x,y).
It is interesting to note some of the properties of the scat-

tering operators.
VC : This operator includes all the effects of the continu-

ity boundary condition and depends only upon the deviation
of the rough interface from the reference planez5z1 .

V¹ : This operator includes the effects of the gradient
boundary condition dependent upon the deviation of the
rough interface from the reference plane.

VS : This operator includes the effects of the gradient
boundary condition due to the slope of the interface rough-
ness.

Some properties of the first-order interfacial transfer ma-
trix in generalare also worthy of note.

~1! When f (x,y)5d, a constant, the Fourier coefficients
reduce tod-functionsdmn , and there is no scattering to other
transverse wave numbers as the electron interacts with the
interface. Each submatrix in the above relations is diagonal
and the problem reduces to that of the usual two-channel
specular case.

~2! Also, when f (x,y)5d, the reflection coefficient and
phase change upon reflection are, to first order inkd, iden-
tical to those of the exact result. This is deemed particularly
important when modeling large islands in RTD epitaxial
structures; particularly as regards the different resonant ener-
gies due to large scale well-width variations.

~3! Whenm15m2 and V15V2 the scattering operators
are all zero and there is no reflected wave. This is the appro-
priate result asf (x,y) no longer represents an interface; scat-
tering results whenm1Þm2 or V1ÞV2 .

~4! Whenm15m2 both VS50 andVC50. This is an
interesting result: to first order, only the effective-mass varia-
tion across the interface causes scattering due to the slope of
f (x,y) and the continuity boundary condition. When the
effective-mass change is zero, only the potential step and the
interface deviation fromz5z1 contribute to the first-order
scattering viaV¹ .

~5! The operatorV¹ has the alternate form

V¹mn5
2im1

\2k1m
Veff~qn!F mn . ~10!

It is interesting that the effective potential for specular tun-
neling of the final wave vector acts as the weighting factor
for each term in this scattering operator. Whenm15m2 then
Veff5Vb , producing the result obtained when the surface
roughness is modeled as a planar interface with a variable
d-function potential at the reference plane.5

Aside from the above general considerations, it is also
worthwhile to comment on the accuracy and applicability of
the method. Whenf (x,y)5d, these boundary conditions are
accurate as long asukud!1 in each layer. This condition is
easily met in most high-quality epitaxial structures. In struc-
tures with large-band-gap semiconductors it becomes some-
what questionable. For GaAs/AlAs structures
ukumax'23109m21 ~for electrons in the barrier!. The maxi-
mum allowable reference plane shift from the average inter-
face is therefore expected to be about one-half a monolayer
(d'1.4 Å! if this method is to remain accurate.

When f (x,y) is not planar, the overall validity of the
method becomes less clear. It is required for all coefficients
that are ‘‘appreciable’’ thatukjnF mnu!1. @Another version of
this requirement isukjnumax(uf(x,y)u)!1, which is not as pre-
cise but easier to interpret.# While vague, this is a disturbing
requirement because the scattering operators can run to the
Brillouin zone edge where, under the assumption of para-
bolic bands,ukjnu is large. Fortunately the method is most
inaccurate precisely where the coefficients are expected to be
smallest.

Another consideration with this method is the number of
transverse wave vectors to retain in the calculation. Because
of the resonant nature of the problem this set can be larger
than expected. Essentially, each island size requires a certain
transverse wave vector to produce the localized state. If the
interfaces in question have both very large- and very small-
sized islands and valleys then a large number of terms need
to be retained, making simulations of these interfaces com-
putationally difficult.

From the above, it is seen that this technique is limited to
systems with Fourier coefficients in the central portion of the
Brillouin zone. This is a redundant condition as the effective-
mass approximation requires a similar restriction. Such a re-
striction is not as limiting as it might seem as it sets the
minimum island size to around 20 Å. The limitations of this
method are therefore found in large-band-gap barrier materi-
als ~in which ukumax can be quite large!, very rough surfaces
@for which max(ufu) is large#, the assumption of slowly vary-
ing V(z) within any layer of homogeneous material, the
parabolic band approximation, the use of simple boundary
conditions, and the simulation of interfaces with a large
variation in feature size.

It should also be noted that the first-order scattering ma-
trix produces a set of scattering coefficients that obey time
reversal symmetry. However, because the method does not
include all terms, it does not completely conserve particle
flux. In the simulations that follow, overall particle conser-
vation deviates from unity by less than 0.6% in all but the
last simulation for which it is 1.5%. This deviation occurs

53 3931COHERENT ELECTRON TRANSPORT ACROSS SEMICONDUCTOR . . .



only in the peaked portion of the transmission characteristic
and reduces to zero far from resonance.

Finally, we discuss the problematic use ofd functions to
represent the surface roughness. Some treatments used func-
tions that condense a three-dimensional island to a point with
the same integrated perturbation.3,8,10 This allows impurity-
type formalisms to be used; however, it seems questionable
whether such a formalism can accurately model transverse
localization and transmission via these localized states, espe-
cially in the limit of large island size.

In addition, the transfer-matrix formalism, as imple-
mented by Liu and Coon, approximates the interface rough-
ness as a sheetd function at the reference plane in an appli-
cation of the Taylor series5

V~x,y,z!5VbQ„z2z12 f ~x,y!…,

'VbQ~z2z1!2Vbf ~x,y!d~z2z1!. ~11!

This expansion does not converge toV(x,y,z) betweenz1
andz11 f (x,y) and using the first two terms of this expan-
sion merely preserves the integrated value of the potential
across the interface. Using~11! results in an equation of the
form of ~10! but with Veff replaced byVb . This leaves out
the effects of the effective mass upon scattering: whenm1
Þm2 andV15V2 no scattering is predicted. This deficiency
is also present for the pointd-function condensation. Any
use ofd functions to approximate interface roughness should
therefore be considered perilous at best.

VI. MODEL CALCULATIONS: RANDOM MONOLAYER
ROUGHNESS

In this section, numerical results for normally incident
electrons on an AlAs/GaAs double-barrier structure are
briefly reported. The target device has a double-barrier struc-
ture with four monolayer barriers and a 16-monolayer well
region which is referred to as the 4-16-4 structure. A 1.0 eV
conduction band edge offset is used and the total, specular
and total scattered transmission coefficients are calculated
based on a biased device with the potential shown in Fig.
2~b!. This structure has two resonances below the barrier
energy. The lowest of these is responsible for the peakedI -V
curve and the following simulations concentrate exclusively
upon it.

The rough interfaces are all assumed to have 50% cover-
age by one-monolayer-high islands. No effort is made to
model any realistic epitaxial growth model, but rather equal
radius islands are distributed at random across a surface five
times the size of the islands. That is, the simulation with 50
Å islands covers a square virtual crystal that is 250 Å on a
side. Where islands overlap, no additional height is added to
the rough interface. The resulting interface has a variety of
~simulated! island sizes and shapes. A typical rough interface
generated by this process is shown in Fig. 4. This is the
roughness function used in all cases below.

Simulations are performed using a single rough well in-
terface with three island sizes: 50, 500, and 5000 Å. The
results of these simulations are shown in Figs. 5 through 7.
Plotted in these figures are the total probability of transmis-
sion, the probability of specular transmission, and transmis-
sion into a scattered state. The roughness is located at the

emitter-barrier/well interface and corresponds to extra
growth of the barrier layer. The sum of the emitter barrier
and well widths is kept constant so the ensuing structure has
lateral regions where the barrier is 4 or 5 monolayers wide
and the well is 16 and 15 monolayers wide, respectively. The
resulting transmission line shapes are therefore expected to
be loosely bounded by the transmission characteristics of the
two structures taken separately: the planar 4-16-4 and the
5-15-4 monolayer structures.

Figure 5 shows the transmission characteristic in the pres-
ence of 50 Å islands. Included in this figure are the transmis-
sion coefficients for the planar 4-16-4 and 5-15-4 structures.
The 50 Å roughness shifts the transmission peak and slightly
broadens it. Clearly the roughness is on such a small scale
that only the average interface is important. Note that the
peak ofTtot is slightly wider than the two bounding planar
characteristics. In this regime, the broadening is akin to a
correction due to the imaginary part of the self-energy.32

FIG. 4. A mesh plot of the roughness function used for the
simulations of single-monolayer two-dimensional roughness. Thex
andy dimensions are arbitrary and scale with the simulations. Here
they indicate the dimensions used for the 50 Å island case. The
vertical scale is in monolayers.

FIG. 5. A plot of the total, specular, and total scattered trans-
mission coefficients for a biased RTD with one rough well interface
characterized by 50% coverage by 50 Å islands. This simulation
uses the central 939 Fourier coefficients of a 250 Å sample. In this
case,Ttot'TspecandTscatt is too small to appear in this plot. Also
shown ~dashed lines! are the planar-interface 4-16-4 and 5-15-4
resonances.
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The overwhelming part of the transmission across the
resonance is specular. The lack of a large scattered compo-
nent is due to the large transverse wave vector picked up by
those electrons that do scatter. The characteristic island wave
vector magnitude isp/50 Å21 around whichF q is large. For
this size wave vector the scattered states are nonpropagating
in all layers.

Figure 6 shows the transmission characteristic for scatter-
ing from the same roughness function used above, but scaled
for a 500 Å island size. At this larger size, the transmission

characteristic has clearly split into two peaks, but it has done
so unevenly, even though the coverage is 50%. Superim-
posed upon the figure are the two planar transmission line
shapes for the 4-16-4 and 5-15-4 monolayer structures. Note
in particular the dominance of transmission to scattered
states between the peaks and the weak specular component
of the high-energy peak~due to the narrow-well portions of
the device!. The wide-well regions form laterally localized
states while the narrow-well regions form loosely bound
continuum states. In the lateral direction, confinement to
these regions is poor and the ensuing resonance is not as
strong, causing a smaller high-energy peak in the transmis-
sion characteristic.

Figure 7 shows the transmission characteristic for the
same roughness function scaled for a 5000 Å island size.
Here it is seen that transmission via the islands and valleys is
becoming much more independent: the double-peak charac-
teristic more nearly approximates the sum of two half-height
4-16-4 and 5-15-4 peaks. Between the peaks, the transmis-
sion to scattered states still dominates.

Finally, the effect of monolayer roughness at the well/
collector-barrier is shown in Fig. 8. Here the total, specular,
and total scattered transmission coefficients are shown for
the case of 5000 Å islands. Superimposed on this graph are
two half-height 4-16-4 and 4-15-5 planar-interface transmis-
sion resonances. Several effects are apparent in the figure.
First, the scattering effect is stronger. This is due to the
deeper potential well at this interface. Where the well is
deeper, interface roughness has a larger effect on the round-
trip phase change~the resonance condition in the well!. Thus
the rough interface transmission coefficient is now spread
out over a wider range of energies. Secondly, the peak ener-
gies are slightly less than those of the planar 4-16-4 and
4-15-5 resonances. This effect is also seen in the previous
simulations and is due to the limitations of the first-order
theory. Thirdly, the high-energy peak is now the higher of the
two. This is due to the higher symmetry of the biased 4-15-5
structure.

FIG. 7. A plot of the total, specular, and total scattered trans-
mission coefficients for a biased RTD with one rough well interface
characterized by 50% coverage by 5000 Å islands. This simulation
uses the central 13313 Fourier coefficients of a 25 000 Å sample.
Also shown ~dashed lines! are the half-height planar-interface
4-16-4 and 5-15-4 resonances.

FIG. 8. Monolayer roughness at the well/collector-barrier inter-
face for a biased RTD and 5000 Å islands. Also shown~dashed
lines! are thehalf-heightplanar-interface 4-16-4 and 4-15-5 reso-
nances.

FIG. 6. A plot of the total, specular, and total scattered trans-
mission coefficients for a biased RTD with one rough well interface
characterized by 50% coverage by 500 Å islands. This simulation
uses the central 13313 Fourier coefficients of a 2500 Å sample.
Also shown ~dashed lines! are the planar-interface 4-16-4 and
5-15-4 resonances.
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VII. DISCUSSION

A transfer-matrix method for calculating the coherent tun-
neling through heterostructures has been developed to first
order, starting from the exact boundary conditions within the
effective-mass approximation. The method solves for the
electron wave function on either side of a rough heterointer-
face and includes the evanescent, or ‘‘near field’ portion of
the solution. This technique can be used in single- and
multiple-barrier structures. The first-order results show the
different roles of effective-mass and band edge discontinui-
ties in roughened interface scattering as well as the roles of
interface deviation and slope.

The class of problems for which this theory is expected to
be most useful are tunneling problems through single and
double barriers. Single-barrier tunneling is sufficiently fast
that the exclusion of inelastic processes is deemed quite
reasonable.33 In resonant transport though double-barrier de-
vices such as RTD’s, this is not always true.34 The tunneling
time for various RTD’s is estimated to run from hundreds of
femtoseconds to nanoseconds, depending on the barrier
thicknesses involved.13 For the fastest devices in this range,
inelastic processes may not be important. For the slower de-
vices, this approach outlines the baseline coherent process
upon which the inelastic processes are parasitic. In addition,
this approach can provide information as to the degree of
localization present in quasibound two-dimensional systems
and can be expanded to cover the effects of interface rough-
ness in optical systems such as Fabry-Pe´rot interferometers
with thickness variations in both the reflectors and cavity.

The flexibility of this method is due to the interfacial na-
ture of the technique. Rather than starting with a complete
planar structure and calculating the first-order correction to
its eigenstates due to interfacial roughness, this technique
finds the first-order scattering terms at each rough interface.
The transfer matrices for the rough interfaces can be com-
bined to form the global transfer matrix for the entire struc-
ture. The scattered waves are then allowed to constructively
or destructively interfere or scatter again, depending on the
form of the global transfer matrix. This can be applied to
both single- and multiple-barrier devices without previous
knowledge of the planar eigenstates.

One drawback of this technique is that the accuracy of the
numerical calculations depends not only upon the validity of
the first-order approximation, but also on the number and
choice of transverse plane waves used in the full expansion
of the wave function. Structures with both long- and short-
range lateral roughness features require a large number of
transverse states and it is difficult to tell ahead of time how
many states should be included. This is particularly true in
resonant situations where multiple scattering can excite lo-
cally bound resonant states that require a large change in the
transverse wave vector of the incident plane wave. In addi-
tion, as the barriers are made thicker, the effective electron
lifetime ~escape time! is longer and a broader range of reso-
nant states can be excited.

Another feature of this method is the ability to explore
scattering due to correlated rough interfaces and scattering
from roughness with arbitrary statistics. This is noteworthy
in that many approaches treat the rough surface statistically,
losing the correlations among the interfaces, and typically

assume a Gaussian height-height autocorrelation.3,4,8 Since
the epitaxial growth process favors island growth, such an
assumption is dubious. The method developed here is free of
critical assumptions with regard to the statistical nature of
the interfaces and can be used in conjunction with an accu-
rate model of the epitaxial growth process or to predict the
effects of known or presumed interfacial features.

The utility of this method has been demonstrated in a
double-barrier structure. The method can be used over a
large range of rough interfaces from very short-range order
to very long-range order. Most importantly this method can
be used in the intermediate range where the lateral features
of interface roughness are on the order of the resonant wave-
length.

APPENDIX: DERIVING THE FIRST-ORDER TRANSFER
MATRIX

Substituting~8! into ~6b! and using the orthogonality con-
dition

1

LxLy
E
A
dr ie

2 i ~qn2qm!•r i5dnm

yields

ame
ik1nz11bme

2 ik1nz12cme
ik2nz12dme

2 ik2nz1

5 i(
n

k2m~cne
ik2mz12dne

2 ik2mz1!F mn

2 i(
n

k1m~ane
ik1mz12bne

2 ik1mz1!F mn ,

whereF mn5F qm2qn
is one of the two-dimensional Fourier

coefficients off (x,y). Note that the finite sized crystal with
periodic boundary conditions used here makes
f (x,y)5 f (x1nLx ,y1mLy), wheren andm are integers. In
this case the set$qn% used in~8! is used for these coefficients
as well; however, the Fourier coefficients are not limited to
the first Brillouin zone. The Fourier coefficients are given by
the usual definition:

F q5
1

LxLy
E
A
dr i f ~r i!e

2 iq•r i. ~A1!

Absorbing the phase factors exp$6ikjnz1% into the coeffi-
cients for now and collecting terms witham andbm on one
side yields

am1bm1 i(
n

k1n~an2bn!F mn

5cm1dm1 i(
n

k2n~cn2dn!F mn . ~A2!

By the same set of operations, the gradient boundary condi-
tion of ~7b! transforms to
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m2k1m~am2bm!1 im2(
n

Smn~an1bn!F mn

2 im2(
n

k1n
2 ~an1bn!F mn

5m1k2m~cm2dm!1 im1(
n

Smn~cn1dn!F mn

2 im1(
n

k2n
2 ~cn1dn!F mn . ~A3!

Here the slope dependence is included in

Smn5qxn~qxn2qxm!1qyn~qyn2qym!. ~A4!

To arrive at this result one uses relations of the form

1

LxLy
E
A
dr i@]xf ~r i!#e

2 i ~qm2qn!•r i5 i ~qxm2qxn!F mn .

The sums that includeSmn are zero when the slope off (x,y)
is zero.

To solve foram or bm , substitute the continuity relation
into the gradient relation. Solving~A2! for bm yields

bm5cm1dm2am1 i(
n

@k2n~cn2dn!2k1n~an2bn!#F mn

'cm1dm2am1 i(
n

@k2n~cn2dn!1k1n~cn1dn!#F mn

22i(
n

k1nanF mn .

In this last step we use only the zeroth-order portion of~A2!.
Substituting this into~A3! results in

2am12i(
n

k1nanF mn

5cmS 11
m1k2m

m2k1m
D1dmS 12

m1k2m

m2k1m
D1 i(

n
@k2n~cn2dn!

1k1n~cn1dn!#F mn1
i

m2k1m
(

n
~cn1dn!~m1k2n

2

2m2k1n
2 !F mn2 i

m22m1

m2k1m
(

n
Smn~cn1dn!F mn .

This is almost the desired form. To evaluate the second term
on the left hand side, we need an expression, accurate to
zeroth order, for 2an ~this term is already at first order!. This
is readily obtained from this equation by dropping all first-
order terms,

2an'cnS 11
m1k2n

m2k1n
D1dqmS 12

m1k2n

m2k1n
D .

This results in the following first-order relation foram :

2am5cmS 11
m1k2m

m2k1m
D1dmS 12

m1k2m

m2k1m
D

1 i S 12
m1

m2
D(

n
k2n~cn2dn!F mn

1
i

m2k1m
(

n
~cn1dn!~m1k2n

2 2m2k1n
2 !F mn

2 i
m22m1

m2k1m
(

n
Smn~cn1dn!F mn ,

A similar set of operations forbm results in

2bm5cmS 12
m1k2m

m2k1m
D1dmS 11

m1k2m

m2k1m
D

1 i S 12
m1

m2
D(

n
k2n~cn2dn!F mn

2
i

m2k1m
(

n
~cn1dn!~m1k2n

2 2m2k1n
2 !F mn

1 i
m22m1

m2k1m
(

n
Smn~cn1dn!F mn .

These relations, along with the reference plane phase factors
extracted from the coefficients, are used forM andm in ~9!.
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