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Coherent electron transport across semiconductor heterojunctions with rough interfaces
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A treatment of coherent electron transport in planar media with rough interfaces is developed to first order
within the effective-mass approximation. This approach starts with the exact boundary conditions of a single
rough interface and derives a perturbational expansion dependent upon the magnitude and slope of the rough-
ness. The first-order results are cast into a convenient transfer-matrix formalism for ease of use and interpre-
tation. The model is derived for the purpose of modeling the effects of interface roughness in epitaxial systems
and is demonstrated using double-barrier resonant tunneling devices.

I. INTRODUCTION extremely sensitive techniques are required, such as high-
resolution transmission electron spectros¢8pyd precision

Interface roughness in epitaxial structures and its effectg-ray diffraction measurementsRoughness on the growing
on electron transport have been studied by many groups arepitaxial surface is typically monitored by grazing incidence
are particularly important in structures with carrier confine-electron beam techniqué$;however, these techniques are
ment on the scale of an electron wavelength. Rough interreally only qualitative. Finallysurfaceroughness can be pre-
faces are an inevitable result of epitaxial growth kinetics,cisely characterized by scanning tunneling microscopy but
exacerbated by the fact that the ideal growth conditions fothe exposed surface may be critically different from the het-
the requisite two materials that define the interface are rarelgrointerface. In studies of quenched-growth epitaxial sur-
the samé:? Treatments of the effects of rough interfacesfaces, scanning tunneling microscopy reveals several types
typically reduce to three cases: the analysis of transport nolef rough surfaces that are difficult to parametrically
mal to>*°or in the plane of the interfadkand of excitons in  characterizé.
roughened quantum well$2*3This paper concentrates ex-  Methods used to model the effects of interface roughness
clusively upon coherent transport across heteroepitaxiabn coherent tunneling generally approach the problem in one
structures with rough interfaces. As such, it covers the basiof three ways:(1) transfer-matrix techniques that treat each
process of tunneling through single- and multiple-barrier defough interface separately? (2) diagrammatic techniques
vices upon which inelastic processes are parasitic. within the Born approximatiof?® and (3) diagrammatic

The effects of roughness upon tunneling are expected ttechniques within diffusive perturbation theory that include
be important when the deviation in thickness is a sizabldghe effects of all ladder and maximally crossed Feynman
fraction of a tunneling barrier, electron wavelength, ordiagrams often from within a weak localization
quantum-well width. Quantum-well width variations are par- approximation->2*
ticularly important because the energy of quasibound states The transfer-matrix method of Liu and Coon is a partial
(resonancesds defined by the round-trip phase change in theapplication of the techniques developed in this paper to the
well. The effects of roughness on tunneling through hetproblem of electron scattering at solid-state interfaces.-
eroepitaxial barriers have been measured in photoluminedertunately, that treatment only modifies one of the interfa-
cence and photoluminescence excitation spectra in quantunial boundary conditions in the presence of roughness. In
wells with thin barrier$**3and in electron transport through addition, that work uses functions to model the roughness.
resonant tunneling deviced®RTD’s).° This latter effort is  Since no effective mass can be associated withdtienc-
mainly concerned with the effects of substrate orientation ortion, the scattering associated with the effective mass differ-
thel-V curve of the RTD. ence is omitted.

In typical high-quality epitaxy, particularly when the ma-  Diagrammatic techniques made within the Born approxi-
terials are lattice matched, interface roughness is usuallgnation include multiple scatterinGrom the perturbing po-
characterized by monolayer-high island formation and theentia) with each term in the perturbative expansion. This
typical descriptive parameters are the average island size amés been used to model single and double scattering through
percent of coverage. Another typical characterization is tdRTD’s due to point impuritie€® alloy scattering® and inter-
use a statistical description of the height-height autocorrelaface roughness.
tion function of the rough interfacé.Such idealizations are Diffusive perturbation theory allows a multiple-scattering
used because the precise nature of interface roughness is wpproach by selecting certain types of interaction diagrams
known and sensitive to many epitaxial growth parameterand summing over all of them so as to produce an average
such as temperature, growth rate, stop growth times, sulisreen’s function for the system. This approach has been used
strate orientation, growth constituent flux ratios, alloy com-by Berkovits for scattering due to point impurities in the well
position, etct® In addition, the roughness at a solid/solid in- region of a RTD and, by analogy, the resonant cavity of a
terface has proven particularly hard to characterizefFabry-Peot interferometer. In that application the purely
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specular term for resonant tunnelifrp interactions with the  Only the transport of electrons at the same symmetry point is
roughness of the interfages destroyed. It yields a self- considered and spherically symmetric, parabolic bands are
energy shift in the resonant energy and a slight broadening afssumed for simplicity of exposition. This approach will be
the resonancé Johansson has adopted this technique teolely concerned with the envelope portion of the full elec-
model surface roughness from wide monolayer islands ason wave function. The lattice periodic portions of the full
point impurities using three-dimensionatfunction poten- wave function in each material are assumed to be largely the
tials, weighted to reflect island siZ®.Such a reduction same for a given wave vector and the scattering due to the
seems inappropriate for large-size islands. roughness will be assumed to be weak in the sense that only
The perturbative techniques utilize an eigenstate exparsmall changes in the wave vector relative to the Brillouin
sion defined by planar interfaces located at the average interone edge are supported with each interaction.
face positions. This is problematic in all roughened quantum- The effects of differing band structures are felt only in the
well situations in which bound and quasibound states exisariation of the conduction band edge minima and effective
The energies for such states are determined by a round-tripass across the interface and in the gradient boundary con-
phase matching condition and thus directly affected by thjition, for which the wave function gradient is weighted by
variable interface location. These two techniques are moshe inverse effective mag&2’ The interfaces are assumed to
suitable when they are g_szgzd for scattering due to fixed impupg aprypt in the sense that the conduction band edge poten-
rltles or aI.on. clustering”"*?In these S|tuat|0ns_ the perturp- tial and effective masses are treated as step variations. We do
ing potential is assumed weak and the planar-interface 1980t include the scattering between band minima due to the

funct|_ons are a good approximation to t_he actual ones. detailed interface matching conditions derived from tight-
This paper adopts the transfer-matrix approach by con:.” . ; ;
inding and pseudopotential calculations of the full wave

verting the rough interface/homogeneous boundary Conditioﬁunctionz“*zg

problem to that of a planar interface with inhomogeneou o . L

boundary conditions. Rather than only modeling the rough Th's paper pro_ceeds in Sec. 1l by reviewing the transfer-
interface as a-function sheet potential at the average inter-Matrix formalism in the context of rough interfaces. In Sec.
face positior? we adapt optical techniques used to explain”' we derive a set of boundary conditions at the average

anomalous surface plasmon scattering from metalli¢hterface plane that mimic the usual conditions valid at the
surfaces® By using a transfer-matrix formalism, the effects actual interface. A perturbative expansion is used for the
of Scattering in mu|ti|ayer devicesi particu'ar'y in resonantWaVe funCtionS on either Side Of the interface and the bound'
ones, are easily and naturally calculated. Our transfer-matrigry conditions are written for like terms in these expansions.
technique is an extension of the envelope-function transferf'he first-order derivation is outlined in Sec. 1V, followed in
matrix type of calculation made within the effective-massSec. V with an analysis of the first-order results. In Sec. VI
approximation used with planar interfacé@ds such, itis a the effects of island size on the transmission characteristic
technique that does not suffer the extreme numerical instaare computed for a RTD with one rough well/barrier inter-
bilities of transfer-matrix calculations based on tight-bindingface.
calculationg*?®

We approach the problem of writing approximate inter-
face matching conditions at a plane by expanding the wave Il. THE TRANSFER-MATRIX FORMALISM
function on either side of the interface in a perturbative series
and writing each term in a Taylor expansion around a refer-
ence plane at=2z;. To do this, the wave functions are con-
tinued to or truncated a=z; as if the interface were actu-
ally at that plane. The interface is characterized by the ban

Before proceeding to the detailed solution of the problem
we outline a few points about the transfer-matrix formalism
Hsed here. As shown in Fig. 1, an epitaxial structure such as

: . t tunneling device is made up of nominally planar
edge potential V(X,y,2)=Vy0(z—2z;—f(X,y)), where a resonant it ) : L
@(z) is the unit step function. At each poink§,z,), the layers with interface quality determined by the epitaxial

boundary conditions account for both the deviation of thedrOWth dynamics. Figure 2 shows the conduction band edge
interface from the reference plafx,y) and the slope of the profllg of a double-barrier resonant_tunnellng device unhzmg
roughness. heavily doped n-type electrode regions. The roughened inter-
It is important to note that the continued wave function, faces are indicated schematically.
evaluated at the reference plane, does not represent the actualln typical applications of @lanar effective-mass transfer-
wave function at that point, so the new boundary conditiongnatrix analysis, the structure is further divided into many
are not expected to represdeven in a limiting sengeany  regions of constantor lineay potential. A set of boundary
realizable potential or effective-mass featurezat At this  conditions is then used to link the electron wave function
level, the boundary conditions that we derive are a mathacross each interfageither artificial or actualand the en-
ematical expedient that produce the correct wave functionsrgy eigensolutions are found. The important portions of the
on either side of the actual interface. In this way the electrorull eigensolutions, as far as the global transmission and re-
wave problem differs from the optical one in which the newflection coefficients are concerned, are the coefficients of the
boundary conditions can be interpreted as sheet currents &o plane-wave components in each of the bounding regions.
the reference plan®. A unity amplitude (or flux) plane wave incident from one
This approach treats only the coherent transport of conside is assumed and the resulting plane-wave coefficients
duction band electrons between two semiconductors witltorresponding to the outbound waves yield, with a little ma-
conduction band edge and/or effective-mass discontinuitiesiipulation, the transmission and reflection coefficients. These
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g(_ - wherej is the region index and runs from 1 by v indexes

a set of transverse wave vectogs=(dy, ,dy,) is the trans-

verse wave vectok;, is the wave number for the component

of the total wave vector normal to the average interface plane

for the indicatedy, , andr| is the in-plane coordinate vector.

Here, the average interface plane is taken as normal ta the

) axis. In the above, each set of coefficients can be written in

Growth vector form asy; andb; where the number of elements in the
Direction vector represents the subgef,} retained in the calculation.
The vectora; corresponds to the forward propagating states
in region j, andb; to the backward propagating ones. Be-
Emitter Electrode . .
cause we seek energy eigenfunctioks,andq, are related
via
AlAs Barrier
GaAs Well 2(1.2 2
he(ks +
AlAs Barrier M =E-V,,
2mJ )
Collector Electrode where E is the total electron energy,=|q,|, and m;,
kj,, andV; are the effective masg, wave number, and po-

tential, respectively, in regiop.
FIG. 1. (2 The d ics of epitaxial h and th " The above form of solution forces a strict plane-wave
- 1. (@) The dynamics of epitaxial growth and the resulting ,,qjs for the transverse portion of the wave function. This is

r_ough interfaces. Mobility of the atoms on the surface,_ res'dencereasonable when the average planes for each heterointerface
time, surface free energy, and other parameters determine the aver-

age island size(b) In the Al Ga, _,As system the Al atoms have in the structure are parallel. This plane-wave basis for the

the least mobility on the growing surface resulting in two interfacestransverse portion of the wave function can be cumbersome;

that are rougher than the others in a typical double-barrier structur@.owever' with enough terms the solution can be represented
to high accuracy. It should be noted that the above form for

the transverse wave function implies a finite crystal size in
coefficients are then applied to suitably construdtestrow  the transverse direction defined g andL,. We assume
in energy wave packefs or to the spectral decomposition of periodic boundary conditions at the edges of the crystal and
an arbitrary wave packe. the set{q,} is then limited to the first Brillouin zone.

We modify the above procedure by using the following  The transfer matrix we shall us#), relates the coeffi-
construction for the full wave function in each constant po-cients in the bounding regions according to

tential region:
al

b,

ay
by

. 1)

(@)
Energy l | In a minimum analysisN equals the number of distinct lay-

; ; ers in the epitaxial structure ard is constructed from the

P product ofN—1 interface transfer matrices, to be derived in

Sec. IV.N will be larger if any of the layers is divided into

‘ ‘ Er multiple regions of constant potential; however, the ensuing
Position , regions should not be thinner than the magnitude of the
b roughness.

Energy To model plane-wave incidence, sat=e, and by=0,
wheree, is a vector with all zero elements except one unity
value corresponding to a state incident with enekgynd
transverse wave vectar,=q,. Typically the set{q,} is
symmetric, spanning the ran@g,— Jmax t0 Jin+ Amax With
Agy andAqy, the granularity of{q,}, equal to 27/L, and
2@/ Ly,. respectively.

Writing

E4-16-4

Position

Ma Mg
Mc Mp

FIG. 2. (a) The conduction band edge energy for a double-
barrier structure shown schematically for a structure with twowe get the usual results
roughened interfacegb) The constant potential approximation to
the actual conduction band for a device biased near resonance. a=e,= Mpay ,
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b;=Mcay, This choice is not uniqué&; however, it has been borne out
by various theoretical calculations for such material systems
which can be solved first foay and thenb;. The first op-  as ALGa,_,As.>"?8
eration can be done by matrix inversion or, more efficiently, ~Unfortunately, in materials or at wave vectors for which
by lower triangular/upper triangular matrikU) decomposi- the effective-mass approximation is invalid, the form of
tion of M, and appropriate forward and back substitution. boundary conditions is much less clear and tight-binding or
The transmission and reflection coefficients are given bypseudopotential methods need to be used to derive the proper
connection relations for the wave function at the

, My Ky KR, interface®*?8 Since the effective-mass equation is only valid
T(E’quﬂqv):Tw:|an| m_NT near a band extremum this approach is similarly restricted.

a Of course (Ih) may be a tensor quantity; however, it is

and assumed scalar for clarity of exposition.
The rough interface is introduced perturbationally using
ki, +K7, the parameteA with z=z;+ Af(x,y), where GsA<1. The

R(E,q,—0q,)= R,uv:|blv|2T1 parametel is used to keep track of the order of the pertur-

e bation and is later set to unity. Assume that the wave function

where it is assumed thdt , is real valued. Total transmis- in each region can be expressed as a Rayleigh-8ityer
sion is given byT == ,T,,, and “specular” transmission by perturbational series

Tspec= Tmm- Total transmission into scattered states is there-
fore Tscatt: Ttot_ Tspec- N4 1= \P&O) + AWV &1) + AZ\P 5_2) + ... (3&)

and
Ill. THE ROUGH INTERFACE BOUNDARY CONDITIONS
_ _ 3 _ W=V + AP + AP 2 4 (3b)
In this section boundary conditions correct to first order
are derived. We do this for a single interface between matewhere each functio (" is a solution to Sctitinger’s equa-
rials 1 and 2, located at=z,+f(x,y), at which both the tion. The indexj indicates the material in which the solution
effective mass and band edge potential can change. It is ni¥ valid andi indicates the order of the term. The normal
required that the average value of roughnd$g,y)) butwe  vector is also split into zeroth- and first-order parts,
do make the stipulation th&{x,y) is single valued and con-
tinuous. This latter requirement is needed below in the defi- n=n%+An"=(0,0,- 1) +A(df,d,f,0), (4)
nition of the normal vector in the boundary conditions. In

practical usage, discontinuities if(x,y) are removed be- somewhat arbitrary as the slope of a general functiony)

cause of the truncation of the Fourl_er expan_sprf@f,y) .is unrelated to its magnitude and expandminto these two
used below to calculate the scattering coefficients. In this

contextz, serves as thesomewhat arbitragyreference plane parts assumes that the roughness is slowly varying. This
1 ! e .
at which new boundary conditions will be derived. seems appropriate on two counts: first, the typical roughness

" o . in high-quality epitaxy is dominated by island growth so the
apgrgii?;?iilnb%lﬁgdary conditions, within the effecnve-masssteps are typically one monolayer in height and, second,

' change in the conduction band edge is distributed over a
distance of one or two monolayers so the transverse steplike
potential at an island edge is expected to be gradual rather
1 than abrupt. This has implications for the “bandwidth” of the

- . Fourier transform off (x,y), keeping that transform largely
Al VP ey.zitf) |-n=0, (@b ithin the first Brillouin zone.
. Since boundary conditions are sought at the plane,

Wherg the operatoA extracts th_e dlfference. between the that mimic the actual ones at=z, + f(x,y), the appropriate
function evaluated on each side of the interface, viz.material in region 1 or 2 is extended up to that plane and

A(hy=hy(xy,(z1+1) ) —ha(x,y,(z,+1)"). The vectorn  gach of thew () is expanded aroung, in a Taylor series,
is normal to the rough surface and given by !

and is exact at first order. Note that splittingn this way is

A[¥(x,y,z;+f)]=0, (2a)

Ui (xy, 2+ ) =W (xy.2) + (AD oW (x,y,21)
n=(dyf,a,f,—1).

1 )
Hered, andé, indicate partial derivatives with respect to the + E(Af)20§‘P}')(X,y,Zl) +e
coordinatesx andy, respectively.
The above gradient boundary condition is peculiar to thewherej=1,2 andi=0,1,2, ... . It is this step that reduces

effective-mass approximation within the envelope-functionthe rough interface problem with homogeneous boundary
formalism. It is an extension of the condition on the time-conditions to a planar interface with the inhomogeneous
independent Schdinger equation which requird&®¥ to be  boundary conditions derived below and its use mimics the
finite valued everywheréfor finite valued potentia)s This  Rayleigh hypothesis first used in rough-surface acoustic
results in the continuity oW . Since the effective mass scattering® These expansions are substituted into the ex-
makes a step change across the interface)¥AV is as- pressions for the full wave function&3), and used with(4)

sumed continuous in the direction normal to the interfacein the actual boundary conditions &t z; + f(x,y), (2). One
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then extracts relations for the continuity and gradient bound- A similar set of operations leads to the following gradient
ary conditions for the functions evaluatedzt The actual boundary conditions for the total wave function, correct to
continuity boundary condition to second order(#dl terms  zeroth, first, and second order:

are evaluated at=2z,)

1 (0
AP O)+ATA(GTO) + 5 (ADPA(TEZY )+ AN (T m
2 1 2 2 1 ® 1 1
+AZFA (9,7 D)+ A’A(P?)=0. A(Eazq’) =(axf)A(Eax\If +(ayf)A(an\P>
Comparing terms of like order, the continuity boundary con- 1
ditions on the zeroth-, first-, and second-order terms are _m<a§§‘y)' (7b)
A(Y(O)=0,
1 (2) 1 1
AT D)= —fA(9,79), A(E‘“’) :(0xf)[A<a&X\If +A aax(falef)”
©) (1) 1oy 2 (0) 1 1
AW =—TA(0¥) = S F7A (9P, +(oyF)| Al = oy ¥ |+ A —gy(fa,¥)
The continuity boundary condition for tHé¢h-order term in 1 1 1
the wave functon expansion is —fA| =2V |- =f2A| =3 |. (70
m 2 m
APy = — EI f_aA(&aqj(i,a)) To arbitrary order the gradient boundary condition is
i1al Tt ' (i=1)
Note that the order of th& and ¢, operations is not inter- 1 0) 19 1
changeable. A(-—a;y) =(d,) >, —TA(——aAf“aQQU)
SettingA=1, the above relations can be combined to gen- e=0 @ M
erate the continuity boundary condition for thatal wave i-1 1
function correct to zeroth, first, and second order: +(a,f) ZO Jﬁ(aﬁy(faﬁf‘l’)>
A(P)O=A(v?)=0, (5a) i
_ E f_aA _aa+l\If
AP P=A(W O+ ¥ )= —FfA(9,9?), (5b) S1al T m? '
A(W)D=A (PO 4 p@) 4 (2) and is equal to zero wher=0.
= AV O+ W D)) - %sz(agqﬂm). (50) IV. THE FIRST-ORDER TRANSFER MATRIX

_ Now that the problem has been reduced to a planar inter-
Here the superscript” is moved outside the parentheses,face we make the following notation change while discuss-
A(--)®, to denote a boundary condition applicable to theing a single interfacial transfer matrix. The wave functions in
total wave function, correct toth order. These expressions regions 1 and 2 are written as
are suitable for iterative calculations, but awkward for direct
calculations ofA (¥')(". This can be fixed by adding selected

_ ik, —ikq1,2\ ai O,
higher-order terms to the right hand sideq®f without los- ‘1'1—2” (a,e"v*+b e 1)l d (83)
ing accuracy with respect to the prescribed order of each
expression. The result is the following boundary conditions _ _ _
at z=z, accurate to zeroth, first, and second order: V,= > (ceknird e k22t (8b)
0) =
A(Y) 0, (6a) Here the index of each summation specifies the same set of
transverse wave vectofs|,}.
(G5 —— v
A(W)H=—1A(0,Y), (6b) We note in passing the effect of an effective-mass change
1 upon specular tunneling, that is, tunneling across a planar
A(W) D= —fA(9,¥)— = F2A(02P) (6c)  interface with no change ig. Whenq=0,
5 .

hk3  h2k:
To arbitrary order, the continuity boundary condition is _2:_1_Vb
(i=1) 2m, 2my

i e or
AW)V== 2 —A(IY).

a=1

En=En—Vy,
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case a bound interface state is created. All of these cases
E | exist at a rough interface in order to support the actual
QXOE

boundary conditions.

In single-interface problems the bound interface states are
relatively unimportant as they are not included in the asymp-
totic wave function far from the interface. In multilayer
structures these states can be important due to their nonvan-
ishing amplitudes at the next interface.

Eae=0) To generate a set of algebraic relations between the sets of
) coefficientsa and b with ¢ and d, substitute(8) into the
T \N/ | Ver(@=0) first-order boundary condition@b) and (7b), and then take
! the two-dimensional Fourier transform in the plane of the

Material 1 Material 2 interface. The transformed continuity condition is then used
in the transformed gradient condition to remove one set of
coefficients. This process is detailed in the Appendix. The
results are expressions for eachagf andb,, in terms ofc,

FIG. 3. The transverse-wave-vector-dependent effective poten- . - .
tial step. Shown is the conduction band edge depicting a barrie?’ and the Fourier coefficients 6(x,y). The resulting trans-

formed by a heterostructure with a conduction band discontinuity.er matrix of (1) for a single interface is
Material 2 has an effective mass smaller than material 1. The para-
bolic dispersion relations are indicated for each material. For a
given transverse wave vectqyg,, a new barrier potential is speci-
fied by the cut of the dispersion relations defineddyy=q,,. In

this case the potential step is effectively increased by nonzero trangyherem is the reduced transfer matrix, ard, andfbf are

verse wave vector. When the effective masses are the reverse gfagonal submatrices that contain the reference plane phase
those shown above, the effective potential step decreases with ifformation. with

creasing transverse wave vector.

(L N A - E(ax=axo)

Veff(Qx=ax0)

®" 0
0 &

- 0
M= 0 qrm

. 9

& =ekuis
whereV,=V,—V; is the step in conduction band edge po- my rr
tential energy between materials akg, and E,, are the
kinetic energies associated with motion in théirection in

each material. Wheq# 0, this relation is written as

+  _ aiky,z
7, =efwis, .

If there arep elements in each set of coefficients then these
submatrices are eacpXp. Noting the form of the total
E,2=E;—Ver(q), wave function in(3), it is expected that the reduced transfer
where matrix can also be expanded as a perturbational sum with
—m(0) (1) (2)
m=m®4+mP4+m<+....
2921 1

Veir(d)=Vp+ T(m_z_ m—l)

The first-order results of the Appendix represent the first two
terms in this series, the first of which is
Vei(q) is the effective potential step at the interface acting
upon an electron incident with the transverse wave number 1
g (see Fig. 3 This expression reflects one of the major dif- m(°)=§
ferences that effective mass and band edge potential play in
tunnellng_. An_ effec.t|ve—mass change acts much like the 'nqemherel is the identity matrix andR is a diagonal matrix with
of refraction in optics and produces effects akin to refraction lements specified b
. . ; . pecified by

and total internal reflection. A step in the band edge potentla?
by itself leaves the transverse and normal motion completely
uncoupled and has no simple optical analog. R = ]

Note that the transverse wave numbegsandg, are al- B mgky, Y
ways real valued. While there may be localization due to_ . .
quasibound quantum-well states in the plane of a device, th&iS term does not generate any scattering and reproduces
periodic boundary conditions at the edges of the crystal ddhe specular result for a planar interface located at the refer-
not allow exponential transverse functions. Localization€"C€ Plane. L
must be represented by a superposition of transverse plane The-f|rst-order matrix is ertten. in terms o_f a set of three
waves. On the other hand tkevave number&,; andk, can scattering operatorsp(< p submatricepaccording to
be either real or imaginary. For a given value oqf three _
classes of solution are immediately apparent: wkerand m(l)—l—
k, are both real, only one df; andk, is real, or both are 2
imaginary. In the first case the wave is both transmitted and
reflected, in the second case the wave is reflected with evavhere the elements of the scattering operators within this
nescent penetration into the second material, and in the thindnity amplitude formalism are given by

I+R I—-R
I-R I+R

— Maksy

(Qy+Qs+Q¢) (Qy+Qs—Qc¢)
—(Qy+Qs—Q¢c) —(Qy+Qst+Q¢)]
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my—m;y (5) The operatofy has the alternate form
Qc,szzkzuf,m
2im, _
QVuvszeﬁ(qy)'%,uv' (10)

1 2 2
QVMV:W(mlkzy_mzklv).fuv,
2Mu It is interesting that the effective potential for specular tun-
Mo—Mm neling of the final wave vector acts as the weighting factor
2 1 — . . .
QSM:WSW”/M- for each term in this scattering operator. Wheg=m, then
2%1p V=V, producing the result obtained when the surface
are two-dimensional Fourier series coefficientsroughness is modeled as a planar interface with a variable
specified in(Al) with g=q,—q, andS,,, given in (A4), 5—fun(_:tion potential at the reference pla?he. _ o
contains the dependence of the interface scattering on the Aside from the above general considerations, it is also
slope of the roughness. worthwhile to comment on the accuracy and applicability of
the method. Wheffi(x,y) =d, these boundary conditions are
accurate as long d&|d<1 in each layer. This condition is
easily met in most high-quality epitaxial structures. In struc-
The above interfacial transfer matrix is a particularly tures with large-band-gap semiconductors it becomes some-
pleasing result. At first order, the rough interface couplesvhat  questionable. For  GaAs/AlAs  structures
inbound stategpropagating or evanescgrnb multiple out-  |k|n~2x10°m™?! (for electrons in the barrigrThe maxi-
bound states according to the specified scattering operatonsum allowable reference plane shift from the average inter-
above. This coupling takes the form of weighted convolu-face is therefore expected to be about one-half a monolayer
tions with the Fourier transform of the surface roughness(d~1.4 A) if this method is to remain accurate.
The weighting factors collectively account for the interface  When f(x,y) is not planar, the overall validity of the
deviation, the effective potential step, and the slope oimethod becomes less clear. It is required for all coefficients

Here.7,,

V. ANALYSIS OF THE DERIVED RESULTS

f(x,y). that are “appreciable” thafkk; .7 ,,| < 1. [Another version of
It is interesting to note some of the properties of the scatthis requirement igk; | max(f(x,y)[)<1, which is not as pre-
tering operators. cise but easier to interprétiWhile vague, this is a disturbing

Q¢ : This operator includes all the effects of the continu-requirement because the scattering operators can run to the
ity boundary condition and depends only upon the deviatiorBrillouin zone edge where, under the assumption of para-
of the rough interface from the reference plarez, . bolic bands,|k;,| is large. Fortunately the method is most

Qy: This operator includes the effects of the gradientinaccurate precisely where the coefficients are expected to be
boundary condition dependent upon the deviation of thesmallest.
rough interface from the reference plane. Another consideration with this method is the number of

Qg: This operator includes the effects of the gradienttransverse wave vectors to retain in the calculation. Because
boundary condition due to the slope of the interface roughef the resonant nature of the problem this set can be larger

ness. than expected. Essentially, each island size requires a certain
Some properties of the first-order interfacial transfer matransverse wave vector to produce the localized state. If the
trix in generalare also worthy of note. interfaces in question have both very large- and very small-

(1) Whenf(x,y)=d, a constant, the Fourier coefficients sized islands and valleys then a large number of terms need
reduce tos-functionsé,,,, and there is no scattering to other to be retained, making simulations of these interfaces com-
transverse wave numbers as the electron interacts with thgutationally difficult.

interface. Each submatrix in the above relations is diagonal From the above, it is seen that this technique is limited to
and the problem reduces to that of the usual two-channadystems with Fourier coefficients in the central portion of the
specular case. Brillouin zone. This is a redundant condition as the effective-

(2) Also, whenf(x,y)=d, the reflection coefficient and mass approximation requires a similar restriction. Such a re-
phase change upon reflection are, to first ordetdniden-  striction is not as limiting as it might seem as it sets the
tical to those of the exact result. This is deemed particularlyninimum island size to around 20 A. The limitations of this
important when modeling large islands in RTD epitaxial method are therefore found in large-band-gap barrier materi-
structures; particularly as regards the different resonant eneals (in which |k| .« can be quite large very rough surfaces
gies due to large scale well-width variations. [for which max(f|) is largg, the assumption of slowly vary-

(3) When my;=m, and V,=V, the scattering operators ing V(z) within any layer of homogeneous material, the
are all zero and there is no reflected wave. This is the apprgarabolic band approximation, the use of simple boundary
priate result a$(x,y) no longer represents an interface; scat-conditions, and the simulation of interfaces with a large
tering results whem;#m, or V,# V5. variation in feature size.

(4) When my=m, both Q=0 andQ=0. This is an It should also be noted that the first-order scattering ma-
interesting result: to first order, only the effective-mass variatrix produces a set of scattering coefficients that obey time
tion across the interface causes scattering due to the slope @versal symmetry. However, because the method does not
f(x,y) and the continuity boundary condition. When theinclude all terms, it does not completely conserve particle
effective-mass change is zero, only the potential step and th&ux. In the simulations that follow, overall particle conser-
interface deviation fronz=z,; contribute to the first-order vation deviates from unity by less than 0.6% in all but the
scattering via(ly . last simulation for which it is 1.5%. This deviation occurs
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only in the peaked portion of the transmission characteristic 2
and reduces to zero far from resonance. -
Finally, we discuss the problematic use &functions to Z1
represent the surface roughness. Some treatmenfuse- =
tions that condense a three-dimensional island to a point with
the same integrated perturbatiohl® This allows impurity-
type formalisms to be used; however, it seems questionable
whether such a formalism can accurately model transverse
localization and transmission via these localized states, espe- y (&) 0 o x (A)
cially in the limit of large island size.
In addition, the transfer-matrix formalism, as imple-
mented by Liu and Coon, approximates the interface rough- FIG. 4. A mesh plot of the roughness function used for the
ness as a sheétfunction at the reference plane in an appli- simulations of single-monolayer two-dimensional roughness.xThe

cation of the Taylor seri@s andy dimensions are arbitrary and scale with the simulations. Here
they indicate the dimensions used for the 50 A island case. The
V(X,Y,2) =V, 0(z—2z,—f(X,y)) vertical scale is in monolayers.

~VbO(z2=20) = Vpf(XY)8(z=2). (1D ier-barieriwell interface and corresponds to extra

This expansion does not converge\¢x,y,z) betweenz, growth of the barrier layer. The sum of the emitter barrier

andz,+ f(x,y) and using the first two terms of this expan- and well widths is kept constant so the ensuing structure has
sion merely preserves the integrated value of the potentidfteral regions where the barrier is 4 or 5 monolayers wide

across the interface. Usir@1) results in an equation of the and the wellis 16 and 15 monolayers wide, respectively. The
form of (10) but with Ve replaced by, . This leaves out resulting transmission line shapes are therefore expected to
the effects of the effective mass upon scattering: whgn be loosely bounded by the transmission characteristics of the
+m, andV, =V, no scattering is predicted. This deficiency WO _structures taken separately: the planar 4-16-4 and the

is also present for the poini-function condensation. Any ©-15-4 monolayer structures.

use of§ functions to approximate interface roughness should Figure 5 shows the transmis.sion. ch.aracteristic in the pres-
therefore be considered perilous at best. ence of 50 A islands. Included in this figure are the transmis-

sion coefficients for the planar 4-16-4 and 5-15-4 structures.
The 50 A roughness shifts the transmission peak and slightly
VI. MODEL CALCULATIONS: RANDOM MONGLAYER broadens it. Clearly the roughness is on such a small scale
ROUGHNESS that only the average interface is important. Note that the

In this section, numerical results for normally incident P€@K Of Ty is slightly wider than the two bounding planar
electrons on an AlAs/GaAs double-barrier structure arecharacteristics. In this regime, the broadening is akin to a
briefly reported. The target device has a double-barrier struccorrection due to the imaginary part of the self-enefgy.
ture with four monolayer barriers and a 16-monolayer well
region which is referred to as the 4-16-4 structure. A 1.0 eV
conduction band edge offset is used and the total, specular 10
and total scattered transmission coefficients are calculated
based on a biased device with the potential shown in Fig.
2(b). This structure has two resonances below the barrier
energy. The lowest of these is responsible for the pe&dkéd
curve and the following simulations concentrate exclusively
upon it.

The rough interfaces are all assumed to have 50% cover-
age by one-monolayer-high islands. No effort is made to
model any realistic epitaxial growth model, but rather equal
radius islands are distributed at random across a surface five
times the size of the islands. That is, the simulation with 50
A islands covers a square virtual crystal that is 250 A on a
side. Where islands overlap, no additional height is added to
the rough interface. The resulting interface has a variety of 0 0.01 0.02 0.03 0.04
(simulated |sland_ sizes and s_hapes. At_yplcal rough |_nte_rface E; (6V)
generated by this process is shown in Fig. 4. This is the

roughness function used in all cases below. . FIG. 5. A plot of the total, specular, and total scattered trans-

Simulations are performed using a single rough well in-missjon coefficients for a biased RTD with one rough well interface
terface with three island sizes: 50, 500, and 5000 A. Thenaracterized by 50% coverage by 50 A islands. This simulation
results of these simulations are shown in Figs. 5 through 7yses the central’@9 Fourier coefficients of a 250 A sample. In this
Plotted in these figures are the total probability of transmiscase, T o~ Tqpecand Teearis too small to appear in this plot. Also
sion, the probability of specular transmission, and transmisshown (dashed lingsare the planar-interface 4-16-4 and 5-15-4
sion into a scattered state. The roughness is located at thesonances.

-
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FIG. 6. A plot of the total, specular, and total scattered trans

FIG. 8. Monolayer roughness at the well/collector-barrier inter-
face for a biased RTD and 5000 A islands. Also shoiashed

mission coefficients for a biased RTD with one rough well interfac
characterized by 50% coverage by 500 A islands. This simulatio
uses the central 2813 Fourier coefficients of a 2500 A sample.
Also shown (dashed lines are the planar-interface 4-16-4 and

Aines) are thehalf-heightplanar-interface 4-16-4 and 4-15-5 reso-
nances.

5-15-4 resonances.

characteristic has clearly split into two peaks, but it has done
so unevenly, even though the coverage is 50%. Superim-

The overwhelming part of the transmission across thgposed upon the figure are the two planar transmission line
resonance is specular. The lack of a large scattered compghapes for the 4-16-4 and 5-15-4 monolayer structures. Note
nent is due to the large transverse wave vector picked up by Particular the dominance of transmission to scattered
those electrons that do scatter. The characteristic island wawates between the peaks and the weak specular component

vector magnitude isr/50 A~* around which7 is large. For

of the high-energy pealdue to the narrow-well portions of

this size wave vector the scattered states are nonpropagatiftf device. The wide-well regions form laterally localized

in all layers.

states while the narrow-well regions form loosely bound

Figure 6 shows the transmission characteristic for scatteicontinuum states. In the lateral direction, confinement to
ing from the same roughness function used above, but scaldéfese regions is poor and the ensuing resonance is not as
for a 500 A island size. At this larger size, the transmissiorStrong, causing a smaller high-energy peak in the transmis-

Transmission Coefficient

; Tscart

0 0.01 0.02
Ez (eV)

0.03

sion characteristic.

Figure 7 shows the transmission characteristic for the
same roughness function scaled for a 5000 A island size.
Here it is seen that transmission via the islands and valleys is
becoming much more independent: the double-peak charac-
teristic more nearly approximates the sum of two half-height
4-16-4 and 5-15-4 peaks. Between the peaks, the transmis-
sion to scattered states still dominates.

Finally, the effect of monolayer roughness at the well/
collector-barrier is shown in Fig. 8. Here the total, specular,
and total scattered transmission coefficients are shown for
the case of 5000 A islands. Superimposed on this graph are
two half-height 4-16-4 and 4-15-5 planar-interface transmis-
sion resonances. Several effects are apparent in the figure.
First, the scattering effect is stronger. This is due to the
deeper potential well at this interface. Where the well is
deeper, interface roughness has a larger effect on the round-
trip phase changéhe resonance condition in the wellhus
the rough interface transmission coefficient is now spread
out over a wider range of energies. Secondly, the peak ener-

FIG. 7. A plot of the total, specular, and total scattered trans-di€s are slightly less than those of the planar 4-16-4 and
mission coefficients for a biased RTD with one rough well interface4-15-5 resonances. This effect is also seen in the previous
characterized by 50% coverage by 5000 A islands. This simulatiogimulations and is due to the limitations of the first-order
uses the central 2813 Fourier coefficients of a 25 000 A sample. theory. Thirdly, the high-energy peak is now the higher of the

Also shown (dashed lines are the half-height planar-interface

4-16-4 and 5-15-4 resonances.

two. This is due to the higher symmetry of the biased 4-15-5
structure.
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VII. DISCUSSION assume a Gaussian height-height autocorreldttéhSince
. . the epitaxial growth process favors island growth, such an
A transfer-matrix method for calculating the coherent tun'assumption is dubious. The method developed here is free of

neling through heterostructures has been developed to firgliica| assumptions with regard to the statistical nature of
order, starting from the exact boundary conditions within they, o interfaces and can be used in conjunction with an accu-

effective-mass approximation. The method solves for thgate model of the epitaxial growth process or to predict the
electron wave function on either side of a rough heterointergffects of known or presumed interfacial features.

face and includes the evanescent, or “near field’ portion of The utility of this method has been demonstrated in a
the solution. This technique can be used in single- andouble-barrier structure. The method can be used over a
multiple-barrier structures. The first-order results show thE}arge range of rough interfaces from very short-range order
different roles of effective-mass and band edge discontinuito very long-range order. Most importantly this method can
ties in roughened interface scattering as well as the roles dfe used in the intermediate range where the lateral features
interface deviation and slope. of interface roughness are on the order of the resonant wave-
The class of problems for which this theory is expected tdength.
be most useful are tunneling problems through single and

double barriers. Single-barrier tunneling is sufficiently fast ppENDIX: DERIVING THE FIRST-ORDER TRANSFER

that the exclusion of inelastic processes is deemed quite MATRIX
reasonablé® In resonant transport though double-barrier de- o _ _ _
vices such as RTD's, this is not always trtféfhe tunneling Substituting(8) into (6b) and using the orthogonality con-

time for various RTD’s is estimated to run from hundreds ofdition

femtoseconds to nanoseconds, depending on the barrier

thicknesses involvetf For the fastest devices in this range,

inelastic processes may not be important. For the slower de- LyLy

vices, this approach outlines the baseline coherent process

upon which the inelastic processes are parasitic. In additioRig|qs

this approach can provide information as to the degree o

localization present in quasibound two-dimensional systems

and can be expanded to cover the effects of interface rough-

ness in optical systems such as FabryeP@terferometers , ,

with thickness variations in both the reflectors and cavity. =i kpu(c,eeni—d e )7,
The flexibility of this method is due to the interfacial na- ’

ture of the technique. Rather than starting with a complete ) )

planar structure and calculating the first-order correction to —i2 ky(a,fwn—pe ka7,

its eigenstates due to interfacial roughness, this technique g

finds the first-order scattering terms at each rough interface,

. X Where.7 ,,=.%7, _4 is one of the two-dimensional Fourier
The transfer matrices for the rough interfaces can be com- my 9u= %

bined to form the global transfer matrix for the entire struc-Co€fficients off (x,y). Note that the finite sized crystal with
ture. The scattered waves are then allowed to constructiveljeriodic  boundary — conditions used here makes
or destructively interfere or scatter again, depending on th&(X,y)=f(x+nL,,y+mL,), wheren andm are integers. In
form of the global transfer matrix. This can be applied tothis case the sgt),} used in(8) is used for these coefficients
both single- and multiple-barrier devices without previous@s Well; however, the Fourier coefficients are not limited to
knowledge of the planar eigenstates. the first Brillouin zone. The Fourier coefficients are given by

One drawback of this technique is that the accuracy of théhe usual definition:
numerical calculations depends not only upon the validity of
the first-order approximation, but also on the number and _ 1 iger
choice of transverse plane waves used in the full expansion ""/qZHJ’Ader(rH)e . (A1)
of the wave function. Structures with both long- and short- Y

range lateral roughness features require a large number of . . . '
transverse states and it is difficult to tell ahead of time how . Absorbing the phase factors €xik;,z} into the coeffi-

many states should be included. This is particularly true irfi€Nts for now and collecting terms witiy, andb,, on one

resonant situations where multiple scattering can excite loSide Yields
cally bound resonant states that require a large change in the
transverse wave vector of the incident plane wave. In addi-
tion, as the barriers are made thicker, the effective electrofi~
lifetime (escape timeis longer and a broader range of reso-
nant states can be excited.

Another feature of this method is the ability to explore :CMJFdMHE ko, (C,—d,).7,, . (A2)
scattering due to correlated rough interfaces and scattering v
from roughness with arbitrary statistics. This is noteworthy
in that many approaches treat the rough surface statisticallfgy the same set of operations, the gradient boundary condi-
losing the correlations among the interfaces, and typicallyion of (7b) transforms to

fAdrlle_i(qv_q#)‘rH = Snm

aﬂe‘kleH— b#ef k1,29 Cﬂeikz,,zl_ d#ef iky,z1

+b,+i 2 ky,(a,—b,).7,,
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This is almost the desired form. To evaluate the second term
on the left hand side, we need an expression, accurate to
zeroth order, for 4, (this term is already at first ordefThis

is readily obtained from this equation by dropping all first-
order terms,

mzklﬂ(aﬂ— bM) + imzzl; S#V(ay+ bv)'7,uv

. 2 —
— |m22 ki (a,+b,).7,,
14

=myky,(c,—d,)+ im@y S,.(c,+d,).7,, —

kzy) ( m1k2v)
1+ +dg | 1———]|.
myk, u MoKy,

—im; > k3,(c,+d,).7,,. (A3)

o _ This results in the following first-order relation far, :
Here the slope dependence is included in

SMV:qXV(QXV_qx;;,)"'qyn(qyn_qym)- (A4)
To arrive at this result one uses relations of the form MKy, MKy,
2a,=c,| 1+ d

MoKy, Mok,

1 I ﬁ
L a0 1=~ 7

1__)2 k2V v ,uV

The sums that includg,,, are zero when the slope bfx,y)

is zero.
To solve fora, or b,, substitute the continuity relation > (c, +d,)(mk3, mzkiy)-‘/@y
into the gradient relation. SolvingA2) for b, yields 2k1u v
i iz s g d
bM:Cﬂ+dﬂ_aM+lzy [kZV(CV_dV)_klv(aV_bV)]'%;LV —| mzklM m MV(C + )/HV’

“C;ﬁdu_au“Ey [kay(c,—d,)+ky,(C,+d,)]7,, A similar set of operations fob,, results in

—2i2 k2,7 ,,.
v

. . miKz, Mk,
In this last step we use only the zeroth-order portioAH). 2b,=c,|1— K +d,| 1+ K
Substituting this intd/A3) results in 2K1u MaK1,

- ~ 1- 2> K,y (c,~d,).7
2aﬂ+2|21} kl,,a,,%w )2 2V v V) v

myk myk c,+d,)(mk3,—myki,).7,
1+ k2ﬂ)+d#(l 1k2M +i2 [ka(c,~d,) mzk]—ME":( (s 24
mo 1u my 1w
4l E S +d
7,
ka0, 81t S (et (M, ek, 2 St )7
y7 14
—mzkiy)-7 m k E S,.(C,+d,).7,,. These relations, along with the reference plane phase factors
201y v

extracted from the coefficients, are used fbandm in (9).
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