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SOME REMARKS ON THE
MAXIMAL IDEAL STRUCTURE OF H~

BY D. J. NEWMAN

(Received February 2, 1959)

It has been conjectured [1] that the open disc, |z | < 1, is dense in the
maximal ideal space of H=. (H~= is, as usual, the algebra of functions
analytic and bounded in |z| < 1). This, the so-called ‘‘Corona problem’’,
seems quite difficult and in this paper we content ourselves with proving
the affirmative result only in a special case; namely, for maximal ideals
which do not contain any Blaschke products.

We should mention at this point that such maximal ideals actually exist.
Namely, consider H> as a (closed) subalgebra of L>(|z| = 1). Let .%¥ be
a maximal ideal in L= and set M = 9 N H=. Clearly M is a maximal
ideal in H~ and furthermore .9 (and hence M) does not contain a B-
product. This follows from the fact on |z | = 1 a B-product has modulus
1 almost everywhere, so that it has an inverse in L*. Our Theorem 4 will
show that, conversely, this is the only way to obtain such an M in H~.

It is of some interest to point out that the original ‘‘Corona’’ conjecture
can be stated in purely analytical terms without any reference to algebraic
concepts; namely, let f,(2), -« -, f.(2) be analytic and bounded in |z | < 1,
and suppose that | fi(z)| + --- + | fu(2) | = 1, throughout |z | < 1, then
there exist g,(z), -+ -, g,(2) which are analytic and bounded in |z | < 1, and
such that fig, + «++ + f.9, = 1 throughout |z | < 1.

(Unfortunately the special case with which we deal can not be so clean-
ly interpreted).

We shall have need of the following definitions:

D1. If M isa maximal ideal in H~ and if f(2) € H=, we denote by f(M)
the number for which f(z) — f(M) e M. (If d¢, |¢| < 1, such that
f(M) = f(¢) for all f € H> then we identify M with ¢.)

D2. If f(z) € H~ we denote, for fixed 6, f(¢®) the limit, when it exists,
of f(re*®)as r —1-.

D3. U(z) is said to be an inner function if | U(e*) | = 1 for almost all 6.

D4. B(z)issaid tobea B-productif B(z) =cz"Hn((zn —2)[(1—2,2))-(z,D)/(z,)
where | ¢ | =1, ¢ constant, 0 < |2,| <land Y 1 —|z,|< .

D5. If F(0) is a measurable function, a is said to be an essential value
of F'if for any ¢ > 0 the set of ¢ for which | F(6) — a | < ¢ has positive
measure.

D6. If f(z) € H= then || f|| = sup,,«: | f(2) |
438



MAXIMAL IDEAL STRUCTURE 439

D7. The Corona is the set of all maximal ideals in H*~ which are not
in the closure of | z | < 1; that is, maximal ideals M for which J f1, + <+, f
all in M for which |fi(z)| + -+ + | fu(®) | = 1 forallzin |2 | < 1.

We shall also assume the following fundamental facts [2]:

F1. If f(z) € H~, then f(e) exists for almost all 6.

F2. All B-products are inner functions.

F3. If 2, 2, - -+ are the zeros of f(z) € H>, then there is a B-product,
B(z), whose zeros are precisely these z,.

F4. If f(z) ¢ H> with zeros z, and B(z) is a B-product with these zeros,
then || f(2) || = | f(2)/B(2) Il

F5. If U(z) is an inner function, then || U(z) || = 1.

F6. |f(M)I=IfIl

Our theorem will be proved in two stages. First we will show that any
maximal ideal which contains no Blaschke products contains no inner
functions. Then it will be shown that any maximal ideal containing no
inner functions cannot lie in the Corona.

First, however, we need to prove the following theorem which, in itself,
is of some interest.

THEOREM 1. Every inner function is the uniform limit of Blaschke
products.

PROOF. Let U(z) be any inner function. We may assume U(0) + 0.
Define:

pr,0) = L[ 1og| BE_L fjdz| forla] <1,

7|

2Tr
and note that, by Jensen’s theorem, if a = U(0),
. U@O0) —«a
P(r, @) = log — al()
[20]+ee |2,

where the z, are the points in | z | < » where U(z) = a. Hence, ¢(r, @) =0,
@(r, ) is non-decreasing in 7, and throughout the region la—U(0)| = 3,
@(r, ) is uniformly bounded.

2Call p(a) = lim,_, ¢(r, @), [p(a) < 0], let o < |U()|, and consider
S: @(pe'®) d6. By the uniform boundedness of ¢(r, a) along |a| = p this

is equal to
limr—vlg i9) dg = lim, ., 1 Shg M 0
#Ar, 0e%) m onr Izl=110g 1 —pe‘“’U(z) ldzld
— T U(Z)
=t | ol 1oe 2O
e P “’U( ) do|dz]|.
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Using Jensen’s theorem again on the inner integral gives

L ("10g | L=L07 [0 = L[
2w So log 1 — pe U = Mt

o —e o
= max (log | U(z) |, log 0) .
Now note that F = Max (log| U(2) |, log p) is bounded and since
log | U(re*) | — 0 as r — 1 for almost all §, we have
lim,ﬂSFldz =0

and so

| #toeny do = 0

Since, however, @(a) < 0, it follows that @(oe®) = 0 for almost all 6.

Let a = pe'® be chosen such that p(a) = 0. Now consider (U(z) — a)/
(1 — aU(z)) and let B(z) be a B-product with the same zeros. Let us form
V(z) = (U(z) — @)/(1 — aU(z))- B(z)). It follows readily that V(2) is an
inner function. We have, however,

n| UO) —a
0 = p(a) = lim,., p(r, @) = lim, ., log——— aU(0)
lzll"’lznl
UO) —a UO) —a
— Jog L= aUO)! _ o, 11— aUO) | _
—loglz1|°"|znl IOg IB(O)I IOglV(O)l.

Hence | V(0) | = 1. By using the maximum modulus theorem, since V{(z)
is an inner function, V{(z) = constant = e'’.

Hence, finally, with B(z) = ¢"*B(z), (U(z) — @)/(1 — aU(z)) = B\(?),
a B-product. Also, |U(z) — B(2)| = |all(1 — U(2))/(1 —aU(2)) |=(20)/(1—0)
and the result follows since o can be made arbitrarily small.

THEOREM 2. If M contains no B-product, then M contains mo inner
function.

LEMMA. If M contains no B-product and if B(z) is a Blaschke pro-
duct, then | B(M) | = 1.

PROOF. Since | B(z) | < 1 it follows that | B(M)| < 1 and we need only
show | B(M) | < 1.

CASE 1. B(z) = z. If | B(M)| < 1 then (z — B(M))/(1 — B(M)z) would
be a Blaschke product in M contradicting the hypothesis.
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CASE 2. B(z) a finite Blaschke product B(z) = H:’,l (z—2,)/(1—2,2).
By case 1 we know that z — ¢*® for some ¢ hence

BM) = II" e — 2z,

n=1 1 — Ene’w

and hence | B(M) | = 1.

CasE 3. B(2) = [],_, (2a — 2)/(1 — 242))- (1 2, )/(2,) where J] |z.|>0.
Here we can find a non-decreasing sequence of positive integers a, — o
such that [] | z, |*» > 0. Consider the Blaschke products

By2) = H;’f_l(—z" —2 M)

1—2z,2 2,

1—2,2 2,

B\(2) = H:,’.1< Ry — 2 M)al\,—an

B2 =1~ ( 2y — 2 m>N

VRN — 2,2 2,

and note that

(B(2))"¥ By(z) = By(2)B.(2)
hence

| B(M) |*v | B{M) | = | B(M) || B(M) |
but by case 2, | B,(M) | = 1, and by hypothesis B,(M) + 0, hence
| B(M) = | B(M) |2~ ,

and letting N — « gives the result.

Theorem 2 now follows readily. Let U(z), an inner function, be given.
By Theorem 1, there is a Blaschke product for which || U(z)— B(2)|| < 5
| UM)| = | B(M)| ~—;— and the latter expression is equal to by—;— the
lemma. Hence, U(M) + 0 and the proof is complete.

THEOREM 3. If M € C then M contains no B-product.
We require several lemmas.

LEMMA 1. If M contains no B-product and f € H>, then f(M) is an
essential value of f(e*).

PROOF. Assume otherwise, that, for some f e H=, ¢>0,| f(¢'®)— f(M)|=¢
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for almost all 4. Hence there exists a real bounded harmonic function
u(r, ) with boundary values log | f(¢®) — f(M)|. If v(r, 0) is the conjugate
function to w(r, 8), then g(z) = ¢*** is bounded analytic and has a recipro-
cal 1/(9(z)) = e * which is bounded analytic. Therefore, g(z) ¢ M,
but (f(z)) — f(M))/g(z) is an inner function and so, by Theorem 1,
(f(®) — f(M))/g(z)¢ M. From these two results, we conclude the con-
tradiction f(z) — f(M) ¢ M and the lemma is proved.

We now consider the real algebra, A, of all bounded measurable real
functionson |z | = 1. For f € A, let » = ¢(f) denote the unique bounded
harmonic function in |z | < 1 with f(e') as boundary values. Lety(f) be
the analytic function whose real part is @(f). Let F'= F(f) = ¢¥ and
note that ' € H>, also note that 1/F' = ¢~% is € H> so that F(M) + 0.
Finally, define I(f) = log | F(M) |.

This ! thus defined is then a real functional on the real algebra A.

LEMMA 2. [ is a bounded, linear, multiplicative functional on A.

Proor. We first show [ is linear, so let f,, f, € A, a real. Suppose @,,
¢, are harmonic, bounded, and have f,, f, respectively as boundary values.
Clearly ag, + @, is harmonic, bounded, and has af, + f, as boundary
values. Hence y(af,+f.)=ay(f,)+y(f.) and so Flaf,+1f,) =F(f)*- F(f).
It is now easily shown that if F,1/F' € H>, then | F'*(M)| = |F(M) |*
and so we have, finally

Wafy + 1) = al(f) + UL

As for boundedness, if | | < 1 then, by the maximum modulus principle,
|| =<1 and so 1/e < |F|<e hence 1/e < |F(M)| <e and |I(f)| =
|log | F(M) || = 1.

The multiplicativity is of a less trivial nature and for this we need some
(sub)lemmas.

LEMMA 3. The algebra A is isometric to a real C(X) where X is
compact, Hausdorff, and totally disconnected. Furthermore, if f € A
corresponds to f* € C(X) then Ess range of f = range of f*.

ProoF. In fact this is true of the complex algebra of bounded meas-
urable functions, see [3].

LEMMA 4. Let X be compact, Hausdorff, and totally disconnected. Let
l be a bounded linear functional on real C(X) such that for each fe C(X),
I(f) € range of f. Then | is multiplicative.

ProoF. Since [ is bounded linear it must have the form I(f) = S fan.
X
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To show that ! is multiplicative, it suffices to show that du is a point mass
of mass 1.

Suppose that d¢ were not a point mass, then there exist two points
x,, %, both in X such that all neighborhoods of , or x, have positive
measure. Since X is totally disconnected and Hausdorff, we may choose
neighborhoods N, of x, and N, of x, which are disjoint and both open and
closed. The function f defined as @ on N,, b on N, and 0 elsewhere would
then be C(X) and so

lu>=yMp:aMNo+bMN»

with @ = 0, b = 1, the condition I(f) € range of f insures that p(N,) =1.
Similarly, @ =1, b = 0 gives #(N,) = 1, hence a = 1, b = 1 gives I(f)=2
which contradicts I(f) € range of f.

Hence dy is a point mass. Choosing f as 1 in an open and closed
neighborhood of this point and 0 elsewhere insures that mass must be 1
and the lemma is proven.

PROOF OF LEMMA 2. To prove that our ! is multiplicative it suffices, by
Lemmas 3 and 4 to show that for each fe A I(f) is an essential value of
f(¢"®). But, by Lemma 1, F(M) is an essential value of F(e”), and so
log | F(M) | is an essential value of f(e"®), and the proof is complete.

LEMMA 5. Let f,, -+, fi be in A. Suppose U(f)=Uf)="-++=U(fr)=0,
and let € > 0. There exists a set S of positive measure on |z| =1 such
that | fi(e”®) | + -+ + | fule”) | < & fore? e S.

PrOOF. Suppose not, then |fi(e®)]| + «-- + | fu(e?®) | = ¢ almost every-
where and so

fiaeewniz s
hence

___1___..eA
it 7

and so, | being multiplicative

D) = U g E) + e BAT = 0

a contradiction since, directly from the definition of I, I(1) = 1.

LEMMA 6. Let fi, f, *++, fn € M, M containing no B-products and let
e > 0. There exists a set S of positive measure on |z | = 1 wherein

lfjl<€ j=1,-~,n.
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PROOF. We may assume || f,|| < k forallj =1, -+, n. Now consider
the following 2n functions in A, namely

1+ f4(e*)
2k

logl and logll—ﬁg%i).]

clearly
l<‘1 ¥ ff;i%\ — log ‘1 n f,(M)i

and

(- 22

) 40—
By lemma 5, then, it follows that
1+ L <14, - LD c14s
2k 2k
throughout some set S, of positive measure. By the parallelogram law
2(1 + lf - ’1 + L

through S. Therefore (assuming & < 1)

li L5 | 2
l1 Zk‘ <21 +9)

| fi 2 < 4K*(28 + &%) = 12K*8 in S.
The proof is completed upon choosing & = min(1, */12K?).

PROOF OF THEOREM 3. Letf, f,, -+ f, € M. We must display a
¢, 1¢1<1, where |fi|+ «++ 4+ |f.| < 1. By Lemma 6. |fy(e?)] < 1/2n
throughout S of positive measure but f,(re'®) — f,(¢'°) almost everywhere,
thus there exists an ¢ e S for which f,(re®®) — fy(e*),j =1, -+, n and
so, for some r < 1,

lf;(re“’)l<—17; j=1,+--,m.

The choice ¢ = re® completes the proof.

THEOREM 4. If M is a maximal ideal in H= then M can be extended to
a maximal ideal in L>(|z | = 1) if and only if M contains no B-product.
ProoF. The ““‘only if’’ part has already been proven in our introductory
remarks. Conversely, assume M contains no B-products, we must show
that the ideal generated by M in L= is proper, i.e., F,f,+---+F,f,=1
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a. e. is impossible with F;, € L=, f, € M. This, however, follows immedi-
ately from Lemma 6, and the proof is complete.

A COUNTER-EXAMPLE. It might be felt that what is left is the easy
case; namely, if M is a maximal ideal in H= and the Blaschke product B(z)
with zeros at z, lies in M, then M is actually a limit point of these z,.
Such is not the case, however, as the following example illustrates:

Let B(z) be a B-product with zeros at 1 —1/n* n =1, 2, --- and let
F(z) = e[(1 + 2)/(1 — 2)]' — 1. Then it can be shown that B and F' both
tend to zero along the sequence (¢**! — 1)/(e*"*! + 1) and so AM, con-
taining both B and F. Consider the neighborhood of M, consisting of all
M > |F(M) — F(M,)| < 1. This neighborhood contains no point 1 — 1/’
for | FQ — 1/») | =e—1>1and F(M,) = 0.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY AND
BROWN UNIVERSITY
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