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An attractive method of obtaining an effective cosmological constant at the present epoch is through the
potential energy of a scalar field. Considering models with a perfect fluid and a scalar field, we classify all
potentials for which the scalar field energy density scales as a power law of the scale factor when the perfect
fluid density dominates. There are three possibilities. The first two are well known; the much-investigated
exponential potentials have the scalar field mimicking the evolution of the perfect fluid, while for negative
power laws, introduced by Ratra and Peebles, the scalar field density grows relative to that of the fluid. The
third possibility is a new one, where the potential is a positive power law and the scalar field energy density
decays relative to the perfect fluid. We provide a complete analysis of exact solutions and their stability
properties, and investigate a range of possible cosmological applicdi@¥856-282(99)07102-1

PACS numbdrs): 98.80.Cq

[. INTRODUCTION inflation models favored for the early Universe.
The first two of these possibilities are dynamically indis-
The evidence in favor of a cosmological constant, ortinguishable from a true cosmological constant, and so we
something very much like it, playing a significant dynamical shall concentrate on the third, which is often called “quin-
role in our present Universe is becoming overwhelming.tessence.” As stressed in a recent paper by Zlateal. [3],
Most prominent have been the recent measurements of therolling scalar field offers the opportunity to address another
apparent magnitude-redshift relationship using type la supemystery, that of why the cosmological constant took so long
novae| 1], but other factors such as the consistently low meato become dominant. If, for example, the scalar field behaves
surements of the matter density, including the baryon fracin such a way as to remain insignificant during the radiation
tion in galaxy clusterg2], have also been pointing in that domination era, perhaps it can be “triggered” in some way
direction. While many of these latter measurements are into begin to grow in the matter era and come to dominate only
sensitive to the presence of a cosmological constant, there i8 the recent past. Solutions where the scalar field energy
some observational motivation for a flat universe from thedensity follows that of radiation or matter have been called
favored location of the first acoustic peak of the microwave“scaling solutions,” and, more recently, “trackers,” and
background anisotropies and some theoretical motivatioseveral examples have been described in the literature.
from a desire to utilize the simplest models of cosmological For the purposes of this paper, we will define a “scaling
inflation as the source of density perturbations. In combinasolution” as one in which the scalar field energy densgity
tion, these favor a present cosmological constantinits of  scales exactly as a power of the scale fagigre R™", when
the critical density of ), ~0.7. the dominant component has an energy density which scales
Since a genuine cosmological constant requires extremas a(possibly different power:p«R™™. An equivalent, and
fine-tuning in order to have only begun to dominate recentlyperhaps more fundamental, definition is that the scalar field
it is extremely tempting to model the cosmological constankinetic and potential energies maintain a fixed ratio. We will
as an effective one. As the supernova observations are rese the term “tracker solution” to refer to the special case
quiring an accelerating universe, which is precisely the defim=n, i.e., where the scalar field energy density scales in the
nition of inflation, the minimal approach is to assume that thesame way as the dominant component. The case wiere
same mechanism drives inflation now as is presumed in the-n is produced by an exponential potent[@-8], while
early Universe, namely the potential energy of a scalar fieldnegative power-law potentials give<m [3,9].
Three possibilities present themselves. The field could be at In this paper we provide a comprehensive classification of
an absolute minimum of non-zero potential energy. It couldall solutions of this type, when the energy density is domi-
be in a metastable false vacuum, tunneling at some latarated by the perfect fluid. We show that thely potentials
stage into the true vacuum and perhaps even reheating. Onithich lead to this sort of behavior are the previously studied
could be slowly rolling down a potential, as in the chaotic exponential and negative power-law potentials, and a new
class of positive power-law potentials. We study the general
properties of such solutions, including stability, and examine
*Present address: Astrophysics Group, The Blackett Laboratorjhow well they might do in giving the desired cosmological
Imperial College, London SW7 2BZ, United Kingdom behavior.
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II. SCALING SOLUTIONS domination,m= 3,4, and were interested in certain classes of

. . - solutions. Our development parallels and extends their analy-
A spatially flat homogeneous universe containing a per-..

e . sis.
fect fluid with energy density and pressure, plus a scalar L —m .
field ¢ with potential energ\W(¢), satisfies the equations When the perfect fluid witlpoR ™™ dominates,

87G 1 Rect?™, ®
H2=——|V($)+ 5 6°+p|,
3 2 and Eq.(4) becomes
p=—3H(p+p), ) a)_ 6 1¢ dv ©
where overdots are time derivatives. We will assume that the mt de¢’
perfect fluid has an equation of stape=(y—1)p, which
immediately implies The desired scaling behavior fpy, , substituted into Eq.7),
gives
! 3 3
oL —= = .
p Rmv m 7 ( ) ¢Octfn/m_ (10)
The scalar fieldp evolves according to Consider first the cassm=n. Then Eq.(10) can be inte-
dv grated to giveg=In(t). Substituting this into Eq(9) and
d=—3Hp— 9% (4) solving forV(¢), we obtain
e
' . 2 /(6
The total scalar field energy is V(p)= lm™ 1]exp(—\¢). 1y
1.
ps=V(P)+ 5 ¢, (5 This is the well-investigated exponential potenfi) for the
2

limiting case wherep ,<p. Although A can be positive or
and we are interested in solutions for whighxR™" when  negative, those cases are physically identical, simply corre-

py<p andpxR™™ sponding to a reflection of the trajectory about the vertical
Equation(5) allows the scalar field equation to be written 8XIS. _ _ _
in the useful form Provided A2>m, the unique late-time attractor is a
tracker solution withpd,:(m/)\z)ptom [5,9]. For example,
ps=—3H 2. (6)  the scalar field will redshift as a# during radiation domina-

tion, and then switch to &# once matter domination com-
If we divide Eq.(6) by p, and usep,/p,= —n(R/R),  Mences. Although we derived it assuming<p, in fact this
then we obtain solution exists for any fractional scalar field density,,
through the appropriate choice bf

%12 n While mathematically intriguing, such solutions seem un-
—— =% (7) interesting as candidates for a cosmological constant. During
Pe nucleosynthesis they behave as radiation and hence act like

Thus, power-law behavior for the scalar field energy densithtra _neutrino_species, and are limited m/’<(.)'2 during
requires that the scalar field kinetic energy remain a fixedadiation domination and henc@,<0.15 during matter

fraction of the total scalar field energy. The converse is truéiominaﬁon, v_veII below the desirgd dens[@,?]_. A similar :
as well. This makes sense: if the kinetic energy evolves ggonstraint arises from suppression Of. density perturbgUon
become either dominant or negligible, thep will scale as growth[7]. Anyway, such a scalar field is presently evolving

1/a® or remain constant, respectively. The former is not whaflke matter a_nq so wil not_explal_n the supernova measure-
we want, and the latter is no different from a genuine cos/ments even if it were permitted with a more substantial den-
mological constant. These two extreme cases also delimit th%tYI;h bound b ded if the field d h
possible scaling behavior for the scalar field energy density: hese bounds can be evaded | the Ield does no? enter the
0=<n=6, with the lower limit corresponding to potential en- scaling regime untllllate in thg cosmological evolution, e.g.

ergy domination and the upper limit to kinetic-energy domi- &fter nucleosynthesis for the first bound, and after structure
nation formation has been initiated for the second. However, this

requires that the scalar field begin with more or less its
present density, and so provides no answer to the original
fine-tuning problem.

Our basic method of solution is to assume the desired Now consider the casa#n. In this case, integrating Eq.
behavior ofp, and p and substitute into Eq4). A similar  (10) yields
procedure was first undertaken by Ratra and Pe¢Blewho
confined their attention to the cases of matter and radiation =AM (12

A. Exact solutions
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The second integration constant has been absorbed by hori- . 6 1. L
zontal translation of. Substituting the required behavior d=— TP (16)
into the scalar field equation leads to the potential

n\2(6=n) [\ For this rescaled equation, the constanin Eq. (12) is

= 2 —_—— — —
V(e)=A (1 m) ( on )(A) : (13 > \/6 o \Ma-2)
A= a—2/\m a-2 (17
where
Note thatA is well defined, and the solution given by Eq.
a= 2n (14) (12) valid, only for
n—-m’

The constant of integration, which would otherwise appear in m a-2 T>0' (18)
V(¢), vanishes because for scaling we need the kinetic en-

ergy to be a fractiom/6 of the scalar field energy density. which is satisfied automatically as long as6.

Scaling behavior can therefore occur provided the poten- Following Ratra and Peebl¢8], we make the change of
tial has a power-law form. If the exponestis negative, then ygriables

m>n and the scalar field energy density grows compared to

the matter, whereas if it is positive the opposite is true. We ¢(7)
can rewrite Eq(14) as t=e’”, u(n=———, (19
b 7)
n:( @ )m. (15) where ¢(7) is the exact(singulay solution given by Egs.
a—2 (12) and(17). With these changes, E(L6) becomes
Sincem andn are positive, Eq(15) shows that scaling so- , 4 ’ 2 a 6 .
lutions exist for positivex only whena>2 (in Sec. lll be-  U'+|5—_+ - —1|u'+——-———|(u-u*"")=0,

low, we consider what happens far<?2). (20)
We have thus determinedl potentials which give power-
law scaling ofp, when the dominant density component alsowhere the prime denotes the derivative with respect-.to
scales as a power ®&. The negative power-law and expo- This can be split into the autonomous system
nential potentials have been studied in defajb,4-§; our
new result is the existence of scaling solutions with the posiu’ =p,
tive power-law potentials.
For most of these potentials, the differential equation gov- 6 4 2 [6 @
erning the evolution ofp, Eq. (9), is nonlinear, and the so- D'Z(l— o 2_a) e {E— o (u—u*h).
lutions we have derived fog(t) are particular rather than (21)
general solutiongin the study of nonlinear differential equa-
tions, these are known as “singular solutionstence, al-  For positive a, the interesting case is whem is an even
though there can be no other potentials which produce scajnteger, and then there are three critical points, all with
ing behavior, there is as yet no guarantee that the potentials 9 and withu=—1, 0 and 1. All three of these represent
we have derived produce general solutidas opposed to solutions which asymptotically approagh=0, ¢=0. The

singular solutionswhich display the desired scaling behav- u=+1 andu=—1 critical points, when they are attractors,

ior. Put another way, we must show that the singular solu- , . . L
tions we have derived in this section are attractors of th [epresent solutions which asymptotically approach the singu

equations of motion far solution. They give mirror-image trajectories; thel at-

' tractor represents solutions which gog¢e-0 from the posi-
tive ¢ direction, while the—1 attractor gives solutions
B. Attractor structure which approachp=0 from the negativep direction. Theu

The attractor structure of the exponential potential has=0 critical point corresponds to solutions in whigtgoes to
been analyzed in detail elsewhdi®], and so we will not Zzero faster than in the exact solution in Egj2).
concern ourselves with that potential here. The attractor Linearizing Egs(21) about theu=1, p=0 critical point
structure of the negative power-law potentials has been digand solving for the eigenvalues. of small perturbations
cussed by Ratra and Peebl&§ for the casesn=3,4. We about this point, we find
extend their discussion to the case of arbitraryand also

consider the case of positive power laws. N :E_ 3 2
We substitute a potential of the forWi(¢)=Vy¢* into 2 m 2—«a
Eqg. (9). However, note that the multiplicative constant in .
front of dV/d¢ can be absorbed into a rescaling oHence- N \/(E 3 i) N Z(L 3 E) 22
forth, we assume such a rescaling and write - 2 m 2-a a—2 m)’
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For the casesn=3 andm=4, this equation reduces to the a=8,m=+4
Ratra-Peebles resulf8]. The behavior of these eigenvalues r
is somewhat clearer if written in terms of andn, using Eq.
(14):

CMm— A+ —m_pAf\2 —
i:2n m—6=+(2n—m—6)?+8m(n 6). 23
2m
The necessary and sufficient condition for stability is that the
real part of both\ , and A _ be negative. If the quantity
under the square root in ER3) is negative, then this cor- [
responds to the requirement that2m—6<0 and gives a : : '
stable spiral. Note, however, that becamse6, the second
term under the square root is always negative. Hence, if
the quantity under the square root is posititg that
both eigenvalues  are real then Hh—m—-6
+(2n—m—6)*+8m(n—6)<0 whenever 2—m—6<0.
Hence, the condition for stability is justnzZm—-6<0, re-
gardless of the value of the quantity under the square root
(although that will determine whether the stable singular eo
point is a stable spiral or a stable nodln terms of e, the I
stability condition is

0.5

2 6+m i 24 g.

a< 5—m/’ negative «, (24 7 [
>2 6+m iti 25

o 5—ml positive a. (25

The first of these is always satisfied, showing that the
scaling solution for the Ratra-Peebles potentials<Q) is a
stable attractor for all values af (as noted by Ratra and
Peebles form=3,4). For positive @, however, the scaling aol
solution is a stable attractor only for sufficiently largeFor [
example, in the matter-dominated era, attractor scaling solu-
tions exist only fora>6, while in the radiation-dominated e
era, this condition becomes>10. Form=3, a=6, andm
=4, =10, we have a vortex point at the singularity, which
is neutrally stable but not an attractor. -1 -0.5 0 05 1

0.5

C. Phase plane analysis FIG. 1. Three phase planes for the radiation-dominaed4

A complete analysis requires a numerical solution. Threease. From top to bottomy=8,10,12. The top panel spirals out-
phase planes are shown in Fig. 1 for the case4 (a  Wards and the bottom one inwards.
radiation-dominated universe From top to bottom, the
choices are for the singular solutiom= =1, p=0) to be tion exhibits a form of scaling behavidsee Sec. Il B be-
unstable ¢=8), to be marginally stablea(=10), and to be low), the scaling exponent is not given by Ed5). The
stable @=12), respectively. To visualize the physical middle figure corresponds to marginal stability and the phase
meaning of these trajectories, note that trajectories whiclrajectories are closed loopsvhich circulate clockwisg
cross thau= 0 vertical axis correspond to solutions in which with the solution oscillating around the singular solution but
the ¢ field is oscillating about the minimum in the potential not approaching it. The trajectories which cross the 0
at ¢=0, while trajectories which are confined to the left or axis represent solutions in whict oscillates forever. The
right side of theu=0 axis correspond to solutions in which trajectories closer to the singular point which do not cross
¢ goes to zero without oscillating. the ¢ =0 axis represent solutions in whighdoes not oscil-

In the top figure, any point in phase space spirals out tdate about the minimum, but approaches zero'a&™ times
infinity. This corresponds to a solution which never stopsan oscillatory function. The bottom figure shows the attractor
oscillating. The amplitude of thé oscillations is decreasing; situation; depending on the initial conditions the trajectory
the spirals move outwards because they lose amplitude moreay circulate several times around the two critical points
slowly than the exact solutiogho( 7). Although such a solu- (which corresponds to the field oscillating about the mini-
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mum) before circulating only about a single poifh which  tial conditions. A possible objection to the above is that in

case the field stops oscillating and falls steadily toward thestandard cosmological scenarios the energy density which

minimum). In the latter case the exact solution given by Eg.today is in non-relativistic particle@specially the baryons

(12) is multiplied by an oscillatory function which has a starts out as highly relativistic, only later to change its equa-

steadily decreasing amplitude. tion of state on cooling, rather than already existing as a trace
We can repeat our stability analysis for the=0, p=0 amount in the early Universe. However, the scenario just

critical point. We find that the eigenvalues are both real, withoutlined bears some similarity to suggestions for the creation

A_=(n—6)/m, which is negative fon<6, and\ ,=n/m  of cold dark matter at the end of the inflationary epfth].

—1, which is positive(sincen>m for positive o). Thus, the

(0,0) critical point is always an unstable saddle point. This B. Positive power laws

may seem bizarre, since tt@,0) critical point corresponds Although positive power-law potentials are more com-

to the field lying motionless at the bottom of the potential. X . - . . X
monly associated with driving an inflationary expansion,

However, remember that the singular solutions also asymp- " . X
totically reach the minimum, and our result simply meansprov'ded they satisfy Eq25), we then have shown that they

that if the field is perturbed slightly from this minimum, it :ﬁg Fs)igg;[ ?itea:zlet)Zgg:Ir?gssorlgtl(r):;ii/lrhIlse(s:zﬂiﬁwn'ore'tggtsgs the
returns to the minimum via the singular solution. prog y P

evolution proceeds, better and better justifying the neglect of
the scalar field terms in the Friedmann equation. The scaling
solution for ¢ goes smoothly to zero ds-, without oscil-

A. Negative power laws lations.

If «is negative, we have a decaying power-law potential Note, however, that these potentidier evena) can also
@ 9 ’ ying p P ‘support oscillatory behavior, witfL2]

in which the field can roll forever. These are the potentials
first investigated by Ratra and Peeb[€d. They were re- pycROl@r2), (27)
cently reexamined in some detail by Zlatewval. [3], in the
context of the current observational situation. Because th®espite the power-law behavior, these solutions are not en-
scalar field density grows relative to the fluid, eventually thecompassed in our definition of scaling, as the scaling law
approximation that the fluid energy density is dominant will arises only after averaging over oscillations, while within
break down. When that happens, the Universe enters an irach oscillation, energy is continually being converted be-
flationary regime, which has in fact been investigated in thaween potential and kinetic. When the field is oscillating, and
early Universe context under the name “intermediate infla-Eq. (27) applies, the scaling gé, with R is independent of
tion” [10]. The expansion rate asymptotically becomes the equation of state of the dominant component of the den-
) sity; this differs from the attractor solution in which the scal-
Rocexdt 1, (260 ing of p 4 With R depends om. Furthermore, such solutions
apply to oscillating fields even when the scalar field density
and the fluid becomes less and less relevant. The inflationai{self is dominant. In our phase diagram, Fig. 1, this oscillat-
regime may be preceded by a period of non-inflationary scaing solution corresponds to the regime in which the phase
lar field domination, if the scalar field comes to dominatespace trajectory winds around both attractors.
while ¢ is sufficiently small. Whether the oscillatory behavior perseveres depends on
The scalar field density grows with respect to the fluidthe stability condition of Eq(25), which if satisfied implies
regardless of whether the Universe is radiation or mattethat the scaling behavior found in Sec. Il is the attractor. The
dominated; so these solutions do not exhibit a “triggered” oscillating solution has an amplitudy,,,~R %2, which
transition into the inflationary regime. Rather, the timing of matches the redshift dependence of the singular scaling so-
that transition is governed by the initial conditions, and forlution if the stability condition is saturated, leading to the
the domination to be a recent event, one has to arrange falosed loops seen in the middle panel of Fig. 1.
the initial scalar field density to be well below the radiation If the stability condition is satisfied, this can lead to some
density. The tuning is not however as severe as with a puriteresting behavior. Consider the limit wherés very large
cosmological constant, since the redshifting of the scalaand positive in the radiation-dominated era. If initiajty,
field may be quite similar to that of the flu[®]. A particu- > p,,q, but @ is oscillating rapidly, then the) energy density
larly interesting case arises far=—6; such a scalar field will scale roughly ap ;> 1/R® and eventually fall below the
will scale as matter during the radiation-dominated era, andadiation density. When this happens, however, the scaling
then grow relative to matter, gs,> R™%4 once the matter- behavior will take over and theé energy density will scale as
dominated era begins. If the field is generated initially with1/R**€ with e<1. We show this evolution withw=30 in
Py~ Pmattei<Prad> then it will continue to evolve withp, Fig. 2. Initially we have inflation, and then the field under-
~ pmatter UNtil Matter domination. The onset of matter domi- goes oscillations which are heavily dominated by the kinetic
nation then triggers a change in the evolution of the scalaenergy; so its energy falls off at nearlyRP] similar to ki-
field energy density, ang, begins to evolve in a manner nation [13]. Finally the scalar field becomes subdominant
close to a curvature density until it comes to dominate. and stops oscillating, instead entering the scaling solution
An interesting question is whether it might be possible towith pqsocllR(‘”z”). This scenario provides yet another
find inflationary scenarios capable of providing suitable ini-“natural” mechanism to give a scaling solution with,,

Ill. APPLICATIONS AND SPECIAL CASES
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o o where A and B are constants to be determined by initial
] conditions. This solution does not display scaling behavior,
and, not surprisingly,$p— —« ast—o; so it is of little
physical interest.

The m=2 case is more interesting. For this case, we get
the linear equation

. 61. _
¢+ET¢+¢_O' (30

logyo »

Taking ¢= 6tY2~3™ this equation reduces to
t26+t0+t2[1— (1/2—3/m)?]6=0. (31)

This is Bessel's equation of ordgt/2— 3/m|; so the general
solution for ¢ is

H=tM23MIAT (1) +BN,(t)], (32)

whereA andB are constants determined by the initial con-
ditions, andJ, andN, are Bessel functions of ordet with
v=|1/2—3/m|. In the limit of larget, the solutions in Eq.
FIG. 2. The evolution of the energy densities in a radiation-(32) all oscillate sinusoidally, with amplitude decaying as
dominated universe witle=30. The vertical axis is in arbitrary t ™, and sop 4R ~3. Thus, the solutions for this potential
units. The dotted line is the radiation energy density, and the soli@lways oscillate, and the density scales as in ().
line is the scalar field potential energy. The scalar field kinetic Finally, some exact solutions exist for the case=3
energy, shown as the dashed line, oscillates through zero out ¢fatter dominatioy for which Eq.(16) reduces to the Lane-
phase with the potential energy, but does so too sharply for th&mden equation. This equation can be solved exddty
plotting resolution. for a=1, 2 and 6, with the Lane-Emden boundary conditions

corresponding to the initial conditiop=0 att=0. The so-

roughly equal to the density of the dominant componentjutions fora=1 anda=2 are special cases of the solutions
since the scalar field density drops rapidly relative to thediscussed above. The cage:6 corresponds to the transition
radiation density untip,~paq, after whichp; decreases at between attractor and non-attractor behavior and represents
nearly the same rate gs,q. A similar behavior has also the analoguefor the matter-dominated casef the =10
been noted for the case of negative power laws whensthe potential for the radiation-dominated universe shown in Fig.
density is initially much larger than its attractor va[i83; the 1. The phase diagram in this case resembles the middle dia-
difference in the case discussed here is that the attractor @fam in Fig. 1. However, the Lane-Emden solutiomdd the
reached even whep,> p,q initially. u==*1 attractor solution; rather it corresponds to the un-

If the stability condition Eq(25) is not satisfied, then the stable singular point at=0. This arises because the Lane-
oscillations continue indefinitely as in the top panel of Fig. 1.Emden boundary conditions correspond to initial conditions
Depending on parameters, the scalar field energy densityhich lie exactly on the singular point=0, p=0, and the
may be either increasing or decreasing relative to the fluigolution remains there ds-«. The Lane-Emden boundary
energy density, e.g. for the choices in the figygs<1/R*  conditions are unphysical when applied to the scalar field
while p¢0<1/R4'8; so the scalar field becomes less and les€Vvolution equation, since=0 is undefined in the cosmologi-
important. cal context.

What happens for € a<2? Fora=1 or 2 it is easy to
find the exact solutions. First consider=1. Then Eq.(16) C. ZWS potential
becomes

log,o R

Zlatev et al. [3] made a detailed analysis of the rather
unusual potential

., 61. e
¢+a?¢+1=0, (28) V(d))OCEXF{? —1. (33
o This potential is introduced in recognition of the fact that
and the exact solution is simple power laws do not exhibit the ideal cosmological be-

havior, in that the scalar field density grows relative to matter

during the matter-dominated era only if it also grows relative

¢=A+Bt1*6’m—3 2 (29) to radia_tion during the radiation-dominatgd era. While the
2m+6 fine-tuning problem of why the cosmological constant took
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so long to dominate is certainly less severe with these power,, .. are possible for only three classes of potentials:

law potentials than with a purd term, it still remains and . .

one requires either an extremely low density in the scalafl) Exponential potentialsy(, scales apgominan-

field at early times or, alternatively, to have extremely ~ (2) Negative power-law potentialsp(, decreases less rap-

close tom (i.e. very large positive or negative so that the idly than pgominani- _

scalar field requires a very long time to catch up with the(3) Positive power-law potentialsp(, decreases more rap-

conventional matter, say from an initial state of equipartition  idly than pgominani-

with a large number of fluid components. Further, the latter

resolution, while superficially attractive, will fail for the The first two cases have been extensively discussed else-

same reasons that the exponential potential does, namely nithere; the existence of the third class is our major new re-

cleosynthesis and structure formation; its dynamics are exgult. The negative power-law potentials: ¢* have attractor

treme|y close to the exponentia| case. solutions for all values of the exponednf while the positive
The purpose of a potential such as in E2g) is to change ~power-law solutions require an exponeat>2(6+m)/(6

the slope of the scalar field and, hence, alter the character of m) for attractor behavior to occur.

the scaling solutions with epoch. Faw,/ $<1, the potential Our results do have one practical limitation: we have con-

decreases more rapidly than any power law. This initiafined our attention to exact solutions. It is certainly possible,

steepness guaranteas=m, and the field is drawn to this for example, for approximate solutions to exist which are

approximate tracker behavior. Later, whes-mg,, this po-  Very close to scaling behavior, e.gr,<R™"f(R), where

tential asymptotically approaches the fokf¢) <1/, with  f(R) is a slowly varying function oR. If f(R) varies suffi-

the scaling solutiom=m/3, producing scalar field domina- ciently slowly, then there may be no practical distinction

tion. This strategy certainly does yield the attractive obserbetween a solution of this type and our exact solutions. The

vational consequences explored by Zlatval. [3]. The particular potential of Zlateet al. is of this type. It is not

drawback is that the change of behavior is now governed bpractical to systematically classify all such approximate scal-

the form of the potential, and not primarily by the equationing solutions, although it may be possible to provide condi-

of state of the accompanying fluid. That the scalar field betions onV(#) which allow for such solutiong15].

gins to change its behavior around the epoch of matter-
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