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Classification of scalar field potentials with cosmological scaling solutions
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An attractive method of obtaining an effective cosmological constant at the present epoch is through the
potential energy of a scalar field. Considering models with a perfect fluid and a scalar field, we classify all
potentials for which the scalar field energy density scales as a power law of the scale factor when the perfect
fluid density dominates. There are three possibilities. The first two are well known; the much-investigated
exponential potentials have the scalar field mimicking the evolution of the perfect fluid, while for negative
power laws, introduced by Ratra and Peebles, the scalar field density grows relative to that of the fluid. The
third possibility is a new one, where the potential is a positive power law and the scalar field energy density
decays relative to the perfect fluid. We provide a complete analysis of exact solutions and their stability
properties, and investigate a range of possible cosmological applications.@S0556-2821~99!07102-7#
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I. INTRODUCTION

The evidence in favor of a cosmological constant,
something very much like it, playing a significant dynamic
role in our present Universe is becoming overwhelmin
Most prominent have been the recent measurements o
apparent magnitude-redshift relationship using type Ia su
novae@1#, but other factors such as the consistently low m
surements of the matter density, including the baryon fr
tion in galaxy clusters@2#, have also been pointing in tha
direction. While many of these latter measurements are
sensitive to the presence of a cosmological constant, the
some observational motivation for a flat universe from
favored location of the first acoustic peak of the microwa
background anisotropies and some theoretical motiva
from a desire to utilize the simplest models of cosmologi
inflation as the source of density perturbations. In combi
tion, these favor a present cosmological constant~in units of
the critical density! of VL;0.7.

Since a genuine cosmological constant requires extr
fine-tuning in order to have only begun to dominate recen
it is extremely tempting to model the cosmological const
as an effective one. As the supernova observations are
quiring an accelerating universe, which is precisely the d
nition of inflation, the minimal approach is to assume that
same mechanism drives inflation now as is presumed in
early Universe, namely the potential energy of a scalar fi
Three possibilities present themselves. The field could b
an absolute minimum of non-zero potential energy. It co
be in a metastable false vacuum, tunneling at some l
stage into the true vacuum and perhaps even reheating.
could be slowly rolling down a potential, as in the chao
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inflation models favored for the early Universe.
The first two of these possibilities are dynamically ind

tinguishable from a true cosmological constant, and so
shall concentrate on the third, which is often called ‘‘qui
tessence.’’ As stressed in a recent paper by Zlatevet al. @3#,
a rolling scalar field offers the opportunity to address anot
mystery, that of why the cosmological constant took so lo
to become dominant. If, for example, the scalar field beha
in such a way as to remain insignificant during the radiat
domination era, perhaps it can be ‘‘triggered’’ in some w
to begin to grow in the matter era and come to dominate o
in the recent past. Solutions where the scalar field ene
density follows that of radiation or matter have been cal
‘‘scaling solutions,’’ and, more recently, ‘‘trackers,’’ an
several examples have been described in the literature.

For the purposes of this paper, we will define a ‘‘scali
solution’’ as one in which the scalar field energy densityrf
scales exactly as a power of the scale factor,rf}R2n, when
the dominant component has an energy density which sc
as a~possibly different! power:r}R2m. An equivalent, and
perhaps more fundamental, definition is that the scalar fi
kinetic and potential energies maintain a fixed ratio. We w
use the term ‘‘tracker solution’’ to refer to the special ca
m5n, i.e., where the scalar field energy density scales in
same way as the dominant component. The case wherm
5n is produced by an exponential potential@4–8#, while
negative power-law potentials given,m @3,9#.

In this paper we provide a comprehensive classification
all solutions of this type, when the energy density is dom
nated by the perfect fluid. We show that theonly potentials
which lead to this sort of behavior are the previously stud
exponential and negative power-law potentials, and a n
class of positive power-law potentials. We study the gene
properties of such solutions, including stability, and exam
how well they might do in giving the desired cosmologic
behavior.
y,
©1998 The American Physical Society09-1
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II. SCALING SOLUTIONS

A spatially flat homogeneous universe containing a p
fect fluid with energy densityr and pressurep, plus a scalar
field f with potential energyV(f), satisfies the equations

H25
8pG

3 FV~f!1
1

2
ḟ21rG , ~1!

ṙ523H~r1p!, ~2!

where overdots are time derivatives. We will assume that
perfect fluid has an equation of statep5(g21)r, which
immediately implies

r}
1

Rm , m53g. ~3!

The scalar fieldf evolves according to

f̈523Hḟ2
dV

df
. ~4!

The total scalar field energy is

rf5V~f!1
1

2
ḟ2, ~5!

and we are interested in solutions for whichrf}R2n when
rf!r andr}R2m.

Equation~5! allows the scalar field equation to be writte
in the useful form

ṙf523Hḟ2. ~6!

If we divide Eq. ~6! by rf and useṙf /rf52n(Ṙ/R),
then we obtain

ḟ2/2

rf
5

n

6
. ~7!

Thus, power-law behavior for the scalar field energy den
requires that the scalar field kinetic energy remain a fix
fraction of the total scalar field energy. The converse is t
as well. This makes sense: if the kinetic energy evolves
become either dominant or negligible, thenrf will scale as
1/a6 or remain constant, respectively. The former is not w
we want, and the latter is no different from a genuine c
mological constant. These two extreme cases also delimi
possible scaling behavior for the scalar field energy dens
0<n<6, with the lower limit corresponding to potential en
ergy domination and the upper limit to kinetic-energy dom
nation.

A. Exact solutions

Our basic method of solution is to assume the des
behavior ofrf and r and substitute into Eq.~4!. A similar
procedure was first undertaken by Ratra and Peebles@9#, who
confined their attention to the cases of matter and radia
02350
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domination,m53,4, and were interested in certain classes
solutions. Our development parallels and extends their an
sis.

When the perfect fluid withr}R2m dominates,

R}t2/m, ~8!

and Eq.~4! becomes

f̈52
6

m

1

t
ḟ2

dV

df
. ~9!

The desired scaling behavior forrf , substituted into Eq.~7!,
gives

ḟ}t2n/m. ~10!

Consider first the casem5n. Then Eq.~10! can be inte-
grated to givef} ln(t). Substituting this into Eq.~9! and
solving for V(f), we obtain

V~f!5
2

l2 S 6

m
21Dexp~2lf!. ~11!

This is the well-investigated exponential potential@4# for the
limiting case whererf!r. Although l can be positive or
negative, those cases are physically identical, simply co
sponding to a reflection of thef trajectory about the vertica
axis.

Provided l2.m, the unique late-time attractor is
tracker solution withrf5(m/l2)r total @5,9#. For example,
the scalar field will redshift as 1/a4 during radiation domina-
tion, and then switch to 1/a3 once matter domination com
mences. Although we derived it assumingrf!r, in fact this
solution exists for any fractional scalar field densityVf ,
through the appropriate choice ofl.

While mathematically intriguing, such solutions seem u
interesting as candidates for a cosmological constant. Du
nucleosynthesis they behave as radiation and hence act
extra neutrino species, and are limited toVf,0.2 during
radiation domination and henceVf,0.15 during matter
domination, well below the desired density@6,7#. A similar
constraint arises from suppression of density perturba
growth @7#. Anyway, such a scalar field is presently evolvin
like matter and so will not explain the supernova measu
ments even if it were permitted with a more substantial d
sity.

These bounds can be evaded if the field does not ente
scaling regime until late in the cosmological evolution, e
after nucleosynthesis for the first bound, and after struct
formation has been initiated for the second. However, t
requires that the scalar field begin with more or less
present density, and so provides no answer to the orig
fine-tuning problem.

Now consider the casemÞn. In this case, integrating Eq
~10! yields

f5At12n/m. ~12!
9-2
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The second integration constant has been absorbed by
zontal translation off. Substituting the required behavio
into the scalar field equation leads to the potential

V~f!5A2S 12
n

mD 2S 62n

2n D S f

AD a

, ~13!

where

a5
2n

n2m
. ~14!

The constant of integration, which would otherwise appea
V(f), vanishes because for scaling we need the kinetic
ergy to be a fractionn/6 of the scalar field energy density.

Scaling behavior can therefore occur provided the pot
tial has a power-law form. If the exponenta is negative, then
m.n and the scalar field energy density grows compared
the matter, whereas if it is positive the opposite is true.
can rewrite Eq.~14! as

n5S a

a22Dm. ~15!

Sincem andn are positive, Eq.~15! shows that scaling so
lutions exist for positivea only whena.2 ~in Sec. III be-
low, we consider what happens fora<2!.

We have thus determinedall potentials which give power
law scaling ofrf when the dominant density component al
scales as a power ofR. The negative power-law and expo
nential potentials have been studied in detail@3,9,4–8#; our
new result is the existence of scaling solutions with the po
tive power-law potentials.

For most of these potentials, the differential equation g
erning the evolution off, Eq. ~9!, is nonlinear, and the so
lutions we have derived forf(t) are particular rather than
general solutions~in the study of nonlinear differential equa
tions, these are known as ‘‘singular solutions’’!. Hence, al-
though there can be no other potentials which produce s
ing behavior, there is as yet no guarantee that the poten
we have derived produce general solutions~as opposed to
singular solutions! which display the desired scaling beha
ior. Put another way, we must show that the singular so
tions we have derived in this section are attractors of
equations of motion.

B. Attractor structure

The attractor structure of the exponential potential h
been analyzed in detail elsewhere@8#, and so we will not
concern ourselves with that potential here. The attrac
structure of the negative power-law potentials has been
cussed by Ratra and Peebles@9# for the casesm53,4. We
extend their discussion to the case of arbitrarym, and also
consider the case of positive power laws.

We substitute a potential of the formV(f)5V0fa into
Eq. ~9!. However, note that the multiplicative constant
front of dV/df can be absorbed into a rescaling oft. Hence-
forth, we assume such a rescaling and write
02350
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f̈52
6

m

1

t
ḟ2fa21. ~16!

For this rescaled equation, the constantA in Eq. ~12! is

A5F S 2

a22D S 6

m
2

a

a22D G1/~a22!

. ~17!

Note thatA is well defined, and the solution given by E
~12! valid, only for

6

m
2

a

a22
5

62n

m
.0, ~18!

which is satisfied automatically as long asn,6.
Following Ratra and Peebles@9#, we make the change o

variables

t5et, u~t!5
f~t!

fe~t!
, ~19!

wherefe(t) is the exact~singular! solution given by Eqs.
~12! and ~17!. With these changes, Eq.~16! becomes

u91S 4

22a
1

6

m
21Du81

2

a22 F a

a22
2

6

mG~u2ua21!50,

~20!

where the prime denotes the derivative with respect tot.
This can be split into the autonomous system

u85p,

p85S 12
6

m
2

4

22a D p1
2

a22 F 6

m
2

a

a22G~u2ua21!.

~21!

For positivea, the interesting case is whena is an even
integer, and then there are three critical points, all withp
50 and withu521, 0 and 1. All three of these represe
solutions which asymptotically approachf50, ḟ50. The
u511 andu521 critical points, when they are attractor
represent solutions which asymptotically approach the sin
lar solution. They give mirror-image trajectories; the11 at-
tractor represents solutions which go tof50 from the posi-
tive f direction, while the21 attractor gives solutions
which approachf50 from the negativef direction. Theu
50 critical point corresponds to solutions in whichf goes to
zero faster than in the exact solution in Eq.~12!.

Linearizing Eqs.~21! about theu51, p50 critical point
and solving for the eigenvaluesl6 of small perturbations
about this point, we find

l65
1

2
2

3

m
2

2

22a

6AS 1

2
2

3

m
2

2

22a D 2

12S a

a22
2

6

mD . ~22!
9-3
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For the casesm53 andm54, this equation reduces to th
Ratra-Peebles results@9#. The behavior of these eigenvalue
is somewhat clearer if written in terms ofm andn, using Eq.
~14!:

l65
2n2m266A~2n2m26!218m~n26!

2m
. ~23!

The necessary and sufficient condition for stability is that
real part of bothl1 and l2 be negative. If the quantity
under the square root in Eq.~23! is negative, then this cor
responds to the requirement that 2n2m26,0 and gives a
stable spiral. Note, however, that becausen,6, the second
term under the square root is always negative. Hence
the quantity under the square root is positive~so that
both eigenvalues are real!, then 2n2m26
1A(2n2m26)218m(n26),0 whenever 2n2m26,0.
Hence, the condition for stability is just 2n2m26,0, re-
gardless of the value of the quantity under the square
~although that will determine whether the stable singu
point is a stable spiral or a stable node!. In terms ofa, the
stability condition is

a,2S 61m

62mD , negative a, ~24!

a.2S 61m

62mD , positive a. ~25!

The first of these is always satisfied, showing that
scaling solution for the Ratra-Peebles potentials (a,0) is a
stable attractor for all values ofa ~as noted by Ratra an
Peebles form53,4!. For positivea, however, the scaling
solution is a stable attractor only for sufficiently largea. For
example, in the matter-dominated era, attractor scaling s
tions exist only fora.6, while in the radiation-dominated
era, this condition becomesa.10. Form53, a56, andm
54, a510, we have a vortex point at the singularity, whi
is neutrally stable but not an attractor.

C. Phase plane analysis

A complete analysis requires a numerical solution. Th
phase planes are shown in Fig. 1 for the casem54 ~a
radiation-dominated universe!. From top to bottom, the
choices are for the singular solution (u561, p50) to be
unstable (a58), to be marginally stable (a510), and to be
stable (a512), respectively. To visualize the physic
meaning of these trajectories, note that trajectories wh
cross theu50 vertical axis correspond to solutions in whic
the f field is oscillating about the minimum in the potenti
at f50, while trajectories which are confined to the left
right side of theu50 axis correspond to solutions in whic
f goes to zero without oscillating.

In the top figure, any point in phase space spirals ou
infinity. This corresponds to a solution which never sto
oscillating. The amplitude of thef oscillations is decreasing
the spirals move outwards because they lose amplitude m
slowly than the exact solutionfe(t). Although such a solu-
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tion exhibits a form of scaling behavior~see Sec. III B be-
low!, the scaling exponent is not given by Eq.~15!. The
middle figure corresponds to marginal stability and the ph
trajectories are closed loops~which circulate clockwise!,
with the solution oscillating around the singular solution b
not approaching it. The trajectories which cross thef50
axis represent solutions in whichf oscillates forever. The
trajectories closer to the singular point which do not cro
thef50 axis represent solutions in whichf does not oscil-
late about the minimum, but approaches zero ast12n/m times
an oscillatory function. The bottom figure shows the attrac
situation; depending on the initial conditions the trajecto
may circulate several times around the two critical poi
~which corresponds to the field oscillating about the mi

FIG. 1. Three phase planes for the radiation-dominatedm54
case. From top to bottom,a58,10,12. The top panel spirals ou
wards and the bottom one inwards.
9-4
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CLASSIFICATION OF SCALAR FIELD POTENTIALS . . . PHYSICAL REVIEW D 59 023509
mum! before circulating only about a single point~in which
case the field stops oscillating and falls steadily toward
minimum!. In the latter case the exact solution given by E
~12! is multiplied by an oscillatory function which has
steadily decreasing amplitude.

We can repeat our stability analysis for theu50, p50
critical point. We find that the eigenvalues are both real, w
l25(n26)/m, which is negative forn,6, andl15n/m
21, which is positive~sincen.m for positivea!. Thus, the
~0,0! critical point is always an unstable saddle point. Th
may seem bizarre, since the~0,0! critical point corresponds
to the field lying motionless at the bottom of the potenti
However, remember that the singular solutions also asy
totically reach the minimum, and our result simply mea
that if the field is perturbed slightly from this minimum,
returns to the minimum via the singular solution.

III. APPLICATIONS AND SPECIAL CASES

A. Negative power laws

If a is negative, we have a decaying power-law potent
in which the field can roll forever. These are the potenti
first investigated by Ratra and Peebles@9#. They were re-
cently reexamined in some detail by Zlatevet al. @3#, in the
context of the current observational situation. Because
scalar field density grows relative to the fluid, eventually t
approximation that the fluid energy density is dominant w
break down. When that happens, the Universe enters a
flationary regime, which has in fact been investigated in
early Universe context under the name ‘‘intermediate in
tion’’ @10#. The expansion rate asymptotically becomes

R}exp@ t4/~42a!#, ~26!

and the fluid becomes less and less relevant. The inflatio
regime may be preceded by a period of non-inflationary s
lar field domination, if the scalar field comes to domina
while f is sufficiently small.

The scalar field density grows with respect to the flu
regardless of whether the Universe is radiation or ma
dominated; so these solutions do not exhibit a ‘‘triggere
transition into the inflationary regime. Rather, the timing
that transition is governed by the initial conditions, and
the domination to be a recent event, one has to arrange
the initial scalar field density to be well below the radiati
density. The tuning is not however as severe as with a p
cosmological constant, since the redshifting of the sca
field may be quite similar to that of the fluid@3#. A particu-
larly interesting case arises fora526; such a scalar field
will scale as matter during the radiation-dominated era,
then grow relative to matter, asrf}R29/4, once the matter-
dominated era begins. If the field is generated initially w
rf'rmatter!rrad, then it will continue to evolve withrf
'rmatter until matter domination. The onset of matter dom
nation then triggers a change in the evolution of the sc
field energy density, andrf begins to evolve in a manne
close to a curvature density until it comes to dominate.

An interesting question is whether it might be possible
find inflationary scenarios capable of providing suitable i
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tial conditions. A possible objection to the above is that
standard cosmological scenarios the energy density w
today is in non-relativistic particles~especially the baryons!
starts out as highly relativistic, only later to change its eq
tion of state on cooling, rather than already existing as a tr
amount in the early Universe. However, the scenario j
outlined bears some similarity to suggestions for the crea
of cold dark matter at the end of the inflationary epoch@11#.

B. Positive power laws

Although positive power-law potentials are more com
monly associated with driving an inflationary expansio
provided they satisfy Eq.~25!, we then have shown that the
too permit stable scaling solutions. In this casem.n, and so
the scalar field becomes progressively less important as
evolution proceeds, better and better justifying the neglec
the scalar field terms in the Friedmann equation. The sca
solution forf goes smoothly to zero ast→`, without oscil-
lations.

Note, however, that these potentials~for evena! can also
support oscillatory behavior, with@12#

rf}R26a/~a12!. ~27!

Despite the power-law behavior, these solutions are not
compassed in our definition of scaling, as the scaling l
arises only after averaging over oscillations, while with
each oscillation, energy is continually being converted
tween potential and kinetic. When the field is oscillating, a
Eq. ~27! applies, the scaling ofrf with R is independent of
the equation of state of the dominant component of the d
sity; this differs from the attractor solution in which the sca
ing of rf with R depends onm. Furthermore, such solution
apply to oscillating fields even when the scalar field dens
itself is dominant. In our phase diagram, Fig. 1, this oscill
ing solution corresponds to the regime in which the ph
space trajectory winds around both attractors.

Whether the oscillatory behavior perseveres depends
the stability condition of Eq.~25!, which if satisfied implies
that the scaling behavior found in Sec. II is the attractor. T
oscillating solution has an amplitudefmax;R26/(a12), which
matches the redshift dependence of the singular scaling
lution if the stability condition is saturated, leading to th
closed loops seen in the middle panel of Fig. 1.

If the stability condition is satisfied, this can lead to som
interesting behavior. Consider the limit wherea is very large
and positive in the radiation-dominated era. If initiallyrf
@r rad, butf is oscillating rapidly, then thef energy density
will scale roughly asrf}1/R6 and eventually fall below the
radiation density. When this happens, however, the sca
behavior will take over and thef energy density will scale as
1/R41e with e!1. We show this evolution witha530 in
Fig. 2. Initially we have inflation, and then the field unde
goes oscillations which are heavily dominated by the kine
energy; so its energy falls off at nearly 1/R6, similar to ki-
nation @13#. Finally the scalar field becomes subdomina
and stops oscillating, instead entering the scaling solu
with rf}1/R(412/7). This scenario provides yet anothe
‘‘natural’’ mechanism to give a scaling solution withrf
9-5
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ANDREW R. LIDDLE AND ROBERT J. SCHERRER PHYSICAL REVIEW D59 023509
roughly equal to the density of the dominant compone
since the scalar field density drops rapidly relative to
radiation density untilrf'r rad, after whichrf decreases a
nearly the same rate asr rad. A similar behavior has also
been noted for the case of negative power laws when thf
density is initially much larger than its attractor value@3#; the
difference in the case discussed here is that the attract
reached even whenrf@r rad initially.

If the stability condition Eq.~25! is not satisfied, then the
oscillations continue indefinitely as in the top panel of Fig.
Depending on parameters, the scalar field energy den
may be either increasing or decreasing relative to the fl
energy density, e.g. for the choices in the figure,r rad}1/R4

while rf}1/R4.8; so the scalar field becomes less and l
important.

What happens for 0,a<2? Fora51 or 2 it is easy to
find the exact solutions. First considera51. Then Eq.~16!
becomes

f̈1
6

m

1

t
ḟ1150, ~28!

and the exact solution is

f5A1Bt126/m2
1

2

m

m16
t2, ~29!

FIG. 2. The evolution of the energy densities in a radiatio
dominated universe witha530. The vertical axis is in arbitrary
units. The dotted line is the radiation energy density, and the s
line is the scalar field potential energy. The scalar field kine
energy, shown as the dashed line, oscillates through zero ou
phase with the potential energy, but does so too sharply for
plotting resolution.
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where A and B are constants to be determined by initi
conditions. This solution does not display scaling behav
and, not surprisingly,f→2` as t→`; so it is of little
physical interest.

The m52 case is more interesting. For this case, we
the linear equation

f̈1
6

m

1

t
ḟ1f50. ~30!

Taking f5ut1/223/m, this equation reduces to

t2ü1t u̇1t2@12~1/223/m!2#u50. ~31!

This is Bessel’s equation of orderu1/223/mu; so the general
solution forf is

f5t ~1/223/m!@AJn~ t !1BNn~ t !#, ~32!

whereA andB are constants determined by the initial co
ditions, andJn andNn are Bessel functions of ordern, with
n5u1/223/mu. In the limit of large t, the solutions in Eq.
~32! all oscillate sinusoidally, with amplitude decaying a
t23/m, and sorf}R23. Thus, the solutions for this potentia
always oscillate, and the density scales as in Eq.~27!.

Finally, some exact solutions exist for the casem53
~matter domination!, for which Eq.~16! reduces to the Lane
Emden equation. This equation can be solved exactly@14#
for a51, 2 and 6, with the Lane-Emden boundary conditio
corresponding to the initial conditionḟ50 at t50. The so-
lutions for a51 anda52 are special cases of the solutio
discussed above. The casea56 corresponds to the transitio
between attractor and non-attractor behavior and repres
the analogue~for the matter-dominated case! of the a510
potential for the radiation-dominated universe shown in F
1. The phase diagram in this case resembles the middle
gram in Fig. 1. However, the Lane-Emden solution isnot the
u561 attractor solution; rather it corresponds to the u
stable singular point atu50. This arises because the Lan
Emden boundary conditions correspond to initial conditio
which lie exactly on the singular pointu50, p50, and the
solution remains there ast→`. The Lane-Emden boundar
conditions are unphysical when applied to the scalar fi
evolution equation, sincet50 is undefined in the cosmologi
cal context.

C. ZWS potential

Zlatev et al. @3# made a detailed analysis of the rath
unusual potential

V~f!}expS mPl

f D21. ~33!

This potential is introduced in recognition of the fact th
simple power laws do not exhibit the ideal cosmological b
havior, in that the scalar field density grows relative to mat
during the matter-dominated era only if it also grows relat
to radiation during the radiation-dominated era. While t
fine-tuning problem of why the cosmological constant to
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so long to dominate is certainly less severe with these pow
law potentials than with a pureL term, it still remains and
one requires either an extremely low density in the sca
field at early times or, alternatively, to haven extremely
close tom ~i.e. very large positive or negativea! so that the
scalar field requires a very long time to catch up with t
conventional matter, say from an initial state of equipartiti
with a large number of fluid components. Further, the la
resolution, while superficially attractive, will fail for the
same reasons that the exponential potential does, namel
cleosynthesis and structure formation; its dynamics are
tremely close to the exponential case.

The purpose of a potential such as in Eq.~33! is to change
the slope of the scalar field and, hence, alter the charact
the scaling solutions with epoch. FormPl /f!1, the potential
decreases more rapidly than any power law. This ini
steepness guaranteesn.m, and the field is drawn to this
approximate tracker behavior. Later, whenf@mPl , this po-
tential asymptotically approaches the formV(f)}1/f, with
the scaling solutionn5m/3, producing scalar field domina
tion. This strategy certainly does yield the attractive obs
vational consequences explored by Zlatevet al. @3#. The
drawback is that the change of behavior is now governed
the form of the potential, and not primarily by the equati
of state of the accompanying fluid. That the scalar field
gins to change its behavior around the epoch of mat
radiation equality is because the feature of changing ste
ness in the potential has been placed in the appropriate p
This represents tuning of a different sort to the usual tun
of L models, but a tuning nonetheless.

IV. DISCUSSION

Our results indicate that exact solutions for the sca
field, which give scaling behavior when the expansion of
universe is driven by a dominant component with dens
k

02350
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rdominant, are possible for only three classes of potentials

~1! Exponential potentials (rf scales asrdominant!.
~2! Negative power-law potentials (rf decreases less rap

idly than rdominant!.
~3! Positive power-law potentials (rf decreases more rap

idly than rdominant!.

The first two cases have been extensively discussed e
where; the existence of the third class is our major new
sult. The negative power-law potentialsV}fa have attractor
solutions for all values of the exponenta, while the positive
power-law solutions require an exponenta.2(61m)/(6
2m) for attractor behavior to occur.

Our results do have one practical limitation: we have co
fined our attention to exact solutions. It is certainly possib
for example, for approximate solutions to exist which a
very close to scaling behavior, e.g.,rf}R2nf (R), where
f (R) is a slowly varying function ofR. If f (R) varies suffi-
ciently slowly, then there may be no practical distinctio
between a solution of this type and our exact solutions. T
particular potential of Zlatevet al. is of this type. It is not
practical to systematically classify all such approximate sc
ing solutions, although it may be possible to provide con
tions onV(f) which allow for such solutions@15#.
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