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Spin-orbit interaction of electrons on a curved surface
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Spin-orbit ~SO! interaction of electrons confined near a curved semiconductor surface is studied. The cur-
vature of the surface determines an interesting mechanism of SO interaction which complements the known
mechanisms occurring in planar systems. The specific cases of nanosphere and nanotube are considered and the
electron spin-split spectra in these systems are found.
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I. INTRODUCTION

It is well known that the Hamiltonian for electrons co
fined near an oriented planar two-dimensional system c
tains linear in lateral momentum terms which describe
spin-orbit~SO! interaction.1,2 The surface orientation may b
conditioned by the asymmetry of the confining potential~the
Rashba model1! or by the inversion asymmetry of the initia
crystal together with the spatial quantization~the Dressel-
haus model3,4,2!.

In the first case the SO Hamiltonian has the form

Ĥso5aR~s@p3n# !, ~1!

wheres are Pauli matrices,p is the two-dimensional~2D!
electron momentum, andn is the normal to the plane of th
system.

The Hamiltonian~1! leads to linear inp spin splitting of
the electron energy bands. This Hamiltonian has been wid
applied to different problems of low-dimensional physics.
particular, it determines such phenomena as electric-fi
induced spin-flip transitions,2 phase decoherence time
weak localization theory,5,6 beating of the Shubnikov–d
Haas oscillations,7–9 mixed spin-plasmon polaritons,10 and
spin orientation by the lateral electric field.11–13

The occurrence of the term~1! requires the inversiona
asymmetry of the system. The Rashba mechanism vani
in symmetric quantum wells, such as double heterostruct
with symmetric band offsets ord-doped layers. What is
more, the confinement of an electron even by the asymme
quantum well does not result in linear terms unless a cry
structure is taken into account. This follows from the fa
that the mean force vanishes in a bound state. Conseque
the effective SO interaction disappears in the envelope fu
tion approximation and remains relatively weak if to allo
for the crystal structure.

Curved 2D systems have been the subject of exten
recent interest~see, e.g., Refs. 14–16!. In particular, the
Rashba and Dresselhause models of SO interaction
been exploited for a study of electrons located on a cylin
cal surface.17

In the present paper we find the effective Hamiltonian
spin-orbit interaction for electrons confined near the curv
surface. We show that surface curvature marks the sur
orientation and therefore causes an additional SO interac
This idea can be accented by comparison of an atom and
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above-mentioned empty-lattice planar confining system.
the first case linear SO level splitting appears, while in
second case it does not. The splitting is retained if an atom
replaced by a potential well concentrating electrons nea
spherical shell. As the shell radius grows, the shell flatt
and the splitting falls down proportionally to the ratio of th
quantum well widthd to the radius of curvatureR. Thus the
curved system has an additional effective SO interaction
to curvature.

II. SCHRÖ DINGER EQUATION ON THE CURVED
SURFACE

The effective Hamiltonian for electrons on curved surfa
with no SO interaction has been obtained in Ref. 18 and
We shall study the spinor problem using the same appro
starting from the Schro¨dinger equation~SchE! for an elec-
tron with quadratic nondegenerate spectrum:

S 2
1

2m
D1V~r !1ĤsoDC5EC, ~2!

Ĥso52 ia@s,¹V#¹.

Here and below we set\51; m is the effective electron
mass,Ĥso is the Hamiltonian of the basic SO interaction,a
is the SO coupling constant. For free electronsa
51/4(m0c)2, wherem0 is the electron mass,c is the velocity
of light. In A3B5 crystals a5(2Egm)21@D(2Eg1D)/(Eg
1D)(3Eg12D)#, whereEg is the width of the forbidden
band andD is the SO splitting of the valence band.

Let a(u1,u2) parametrically specify the surface in 3
space. The parametersu1 andu2 may be considered as cu
vilinear coordinates on the surface~we use the traditiona
notations with super- and subscripts referring to the con
and covariant components of tensors!. Any point in some
finite layer surrounding the surface can be expressed as
lows:

r ~u1,u2,w!5a~u1,u2!1wn, uwu<d, ~3!

wheren5]1a3]2a/u]1a3]2au is the normal to the surface
] i[]/]ui , the layer widthd is assumed to be less than th
curvature radii. The triad$u1,u2,w% forms a curvilinear co-
ordinate system in 3D space.

We shall consider an electron confined near the surf
w50 by a potential wellV(w) with minimum atw50. The
©2001 The American Physical Society30-1
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bottom of the wellw50 is an equipotential surface. The we
width d,d and the transversal size of the electron wa
function are assumed to be much less than geometric siz
the curved surface, in particular, the curvature radii of
surface. Since the wave function is small enough whenw
;d, we impose zero conditionsC50 at w→6`. If d/R
!1, the well is locally planar, so that in the first approxim
tion the motion of an electron along the well is adiabatic
means conservation of the transversal quantum numbern and
the kinetic energy of longitudinal motion.

In the curvilinear coordinatesui the space and surface~at
w50) intervals are defined byds25Gi j duiduj1dw2 and
ds25gi j duiduj5] ia•] jaduiduj , respectively. The spac
and surface metrics are linked together:

Gi j 5gi j 22whi j 1w2] in•] jn, ~4!

wherehi j 5hji 52] ia•] jn are the coefficients of the secon
fundamental form. The volume and area differentials can
written as dV5AGdu1du2dw5 f dSdw and dS
5Agdu1du2, where G5det(Gi j ), g5det(gi j ), and f
5AG/g. For smallw, we have

f 511w Tr~ b̂ !1w2det~ b̂ !1O~w3!, ~5!

whereb̂52(ĥĝ21).
Using curvilinear coordinates, it is convenient to ren

malize the wave functionC5x/Af . Then the SchE takes th
form

~Ĥw1Ĥu;w!x1Af ĤsoS x

Af
D 5Ex. ~6!

The nonrelativistic HamiltonianĤw1Ĥu;w is separated on
sharply (Ĥw) and smoothly (Ĥu;w) w-dependent parts, wher
Ĥw corresponds to transversal motion andĤu;w does not
contain derivatives ofx with respect tow:

Ĥw52
1

2m
]w

2 1V~w!, ~7!

Ĥu;wx52
1

2m
Af D̂S x

Af
D 2

1

8m f2
@~]wf !222 f ]w

2 f #x.

~8!

HereD̂ is the ‘‘surface’’ part of the Laplacian

D̂5
1

AG
] iAGGi j ] j . ~9!

The SO interaction transforms to

Ĥso5 ia
1

AG
~]wV!e i j s~] ir !] j , ~10!

where e i j is the Levi-Civita symbol: e115e2250,
e1252e2151.
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Owing to SO interaction weakness, we search an effec
Hamiltonian up to the ordera(d/R). The nonrelativistic
Hamiltonian of the lowest order inw becomes Ĥw

1Ĥu;w50, where

Ĥu;052
1

2m
D̂01Vg~u!, D̂05

1

Ag
(

i , j 51

2

] iAggi j ] j .

~11!

The geometric potentialVg;1/mR2 results from the last
term in Eq. ~8!. It depends on the surface coordinatesu
[$u1,u2% only and can be expressed via principal curvatu
of the surfacek1,2:19

Vg~u!52
1

8m
@~Trb̂ !224 detb̂#[2

1

8m
~k12k2!2.

~12!

The Hamiltonian ~11! is separable, andx5fn(w)c(u),
where (Ĥw2En)fn50; n is the number of the transversa
quantization subband (n>0). This is a zero approximation
to the solution of Eq.~6!. With desirable accuracy we have

Af D̂S x

Af
D 'D̂0x1wD̂1x, ~13!

D̂152$D̂0 ,Sp~ b̂ !%2
1

Ag
] iAg@2~ ĥ21! i j det~ b̂ !

1gi j Sp~ b̂ !#] j . ~14!

The notation$Â,B̂% means (ÂB̂1B̂Â)/2. The expansion of
SO Hamiltonian yields

Af ĤsoS x

Af
D 5]wV~ L̂1wM̂!x, ~15!

L̂5
ia

Ag
e i j ~s] ia!] j , ~16!

M̂5
iae ik

Ag
@b i j ~s] ja!]k2$Sp~ b̂ !,~s] ia!]k%#. ~17!

In the zero order inw, the well is effectively planar and
SO interaction vanishes. Hence the SchE should be expa
up to the first nonvanishing terms. Rewriting the total Sc
in the form (Ĥw1Ĥu;01Û2E)x50, we expand the wave
function on the basis offn(w):

x5(
n

cn~u!fn~w!,

~En1Ĥu;02E!cn1 (
n8Þn

Ûnn8cn850. ~18!
0-2
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For any operatorÂ the notation Ânn8 stands for Ânn8
5*dwfn(w)Âfn8(w). Note, thatÂnn8 is still the operator
with respect tou.

Thanks to the small parameterd/R, the off-diagonal ele-
ments ofÛnn8 are less thanÛnn , and the wave function o
some transversal staten has a small admixture of the othe
states.

The effective Hamiltonian can be found similarly to th
near-degenerate perturbation theory. We express the ‘‘sm
componentscn8(u) via the ‘‘large’’ componentscn(u) and
substitute them into the equation forcn(u). Terminating the
iteration, we get with a prescribed accuracy

~En1Ĥu;01Ûnn2E!cn2 (
n8Þn

Ûnn8

1

En82En

Ûn8ncn50.

~19!

The perturbation to the Hamiltonian consists ofw- and SO-
dependent parts.

Collecting Eqs.~13!, ~15!, and~19!, we find the effective
Hamiltonian for thenth subband:

Ĥ5Ĥu;01Ĥc1Ĥso , Ĥc52
1

2m
wnnD̂1 , ~20!

Ĥso5
1

m (
n8Þn

wn8n~]wV!nn8

En82En

$L̂,D̂1%1~w]wV!nnM̂ .

~21!

The first and second terms in Eq.~20! represent the nonrel
ativistic Hamiltonian. The applicability range of this Hami
tonian limited by the only inequalityd!R extends the range
of Refs. 18 and 19. The latter requires an extra inequa
E2E0!E12E0 corresponding to the strict 2D case.

The additional termĤc is of centrifugal origin. This can
be accounted for a change of the electron potential ene
caused by the inertial shift of an electron to the outer side
the curved quantum well. Unlike the geometric potential,Ĥc
depends on the longitudinal motion of electrons, and v
ishes if the energy coincides with a subband bottom. T
Hamiltonian Ĥc also vanishes in symmetric wells, for ex
ample, parabolic or hard-wall wells. Notice that in the lim
R→` Ĥc;1/R exceeds the geometric potentialVg;1/R2.

The effective spin-orbit Hamiltonian can be simplified u
ing the identities

(
n8Þn

wn8n~]wV!nn8~En2En8!
21521/2

and (w]wV)nn52Tn , where Tn521/(2m)(]w
2 )nn is the

transversal kinetic energy in the well. The result is

~Ĥso!n52TnM̂1
1

2m
$L̂,D̂1%. ~22!

The first term in Eq.~22! depends on the transversal state
electron, whereas the second does not. The ratio of the
08533
ll’’

y

gy
f

-
e

f
ec-

ond contribution to the first one is proportional to (E
2En)/Tn . If the energy is close to the subband bottom, t
second term is negligible.

Physically, the SO term proportional toTn originates from
the difference of the electron tangential velocityv on the
inner and the outer well boundaries due to conservation
angular momentum. In a frame of reference accompany
the moving electron the boundary field¹V transforms to a
magnetic fieldB85@v3¹V#/ec which has different values
on two boundaries. As the electron moves across the wel
spin averages the magnetic field. This leads to a finite va
proportional to the velocity.

The second contribution to SO interaction arises from
centripetal forcemv2/R, turning the electron along the
curved well. This force, transformed to the moving fram
produces another component of the magnetic field;2@v
3R#mv2/ecR2.

The value ofTn can be found in specific models of tran
versal states. In particular, for a parabolic quantum w
V(w)5mv2w2/2, and Tn5v(2n11)/4. For a well with
hard wallsTn5p2(n11)2/2md2. For the Stern-Howard tria
function20 f52(b/2)3/2we2bw/2, appropriate to the lowes
self-consistent state on interface,T05b2/8m5E0/5.

If the longitudinal energy is high enough, so that t
wavelength is less thanR, one can neglect the action of de
rivatives on the geometric parameters of the surface. In
natural coordinatesu, which locally coincide with Cartesian
coordinates in the tangent plane, Eq.~10! can be written as

Ĥso522aFTn~sxp̂yky2syp̂xkx!

2
1

2m
~kxp̂x

21kyp̂y
2!~sxp̂y2syp̂x!G . ~23!

The axesx andy are chosen along the principal directions
curvature. Despite the smallness of the derivatives ofk, we
retain the symmetirzation in Eq.~23! to conserve Hermiticity
of the Hamiltonian. If the electron state has a small s
along the surface, compared withR, the curvatures can be
considered as constant quantities. Moreover, if the mom
tum is a classical variable, the Hamiltonian~23! is easily
diagonalized. The eigenvalues of~23! are

62
a

2m
A~2mTnkx2Q!2px

21~2mTnky2Q!2py
2,

Q5kxpx
21kypy

2 . ~24!

At relatively small carrier concentrations, electrons o
cupy the bottom of the first transversal subband only, a
the transversal terms in Eqs.~22! and~23! dominate, whereas
if the concentration increases, the longitudinal terms ta
effect.

III. SPHERICAL AND CYLINDRICAL QUANTUM WELLS

As examples we consider spherical and cylindrical qu
tum wells~SQW’s and CQW’s!. In these cases spherically o
0-3
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M. V. ENTIN AND L. I. MAGARILL PHYSICAL REVIEW B 64 085330
axially symmetric potentials confine electrons near some
dius R.

Using the lateral momentum on the sphere surfacep̂ or
angular momentuml̂ the SO Hamiltonian for SQW’s in
spherical coordinates can be written in two forms:

Ĥso52
2a

R
S Tn2

p̂2

2m
D ~ŝ@nR3p̂# !

52
2a

R2 S Tn2
l̂ 2

2mR2D ~ŝl̂ !. ~25!

Here p̂5 p̂unu1 p̂wnw , p̂u52( i /R)]u , p̂w52( i /R sinu)]w .
The vectorsnu ,nw ,nR5R/R compose the orthogonal bas
of the spherical coordinates. The first form of the SO Ham
tonian looks like the Rashba Hamiltonian, Eq.~1!, for a pla-
nar system. In fact, in a small neighborhood of some point
the sphere the vectornR is almost constant, the sphere can
considered as a plane, andp̂ as a translational momentum
along the plane. The difference of Eq.~25! and the Rashba
Hamiltonian, Eq.~1!, lies in the momentum dependence
the SO coupling constant. The second form is a conventio
SO interaction in a spherical symmetric system. The ene
levels with given orbitall and total j 5 l 61/2 angular mo-
menta are

«nl j5
l ~ l 11!

2mR2
1

a

2mR4
@2mR2Tn2 l ~ l 11!#

3@ j ~ j 11!2 l ~ l 11!23/4#.

Let the longitudinal momentum be a classical variab
Equation ~25! shows that the effective SO interaction
Fermi electrons changes its sign when the subband fil
increases. If the only lowest subband is occupied up to
Fermi level EF , the change of sign occurs atEF2E0
5p2/2md2 for the hard-wall well, atEF2E05v/4 for the
parabolic well, and atEF2E05E0/5 for the self-consisten
interface states.

In this limit the surface motion of an electron is a rotati
along the great circle with angular velocityv5@nR,p#/mR.
Then commutation of the operator of spinS with Ĥso gives
the equation of motion for the spinṠ54ma(Tn2p2/2m)
3@v,S#, which shows that the ratio of the spin rotation fr
quencies to the angular velocityv1 /v54ma(Tn2p2/2m)
is independent of the sphere radius.

The case of CQW can be considered in a similar w
Using cylindrical coordinates (r,w,z) with axis z directed
along the cylinder axis and notationp̂w52( i /R)]w we find

Ĥso5
2a

R
F S p̂w

2

2m
2TnD p̂wŝz1H @nrŝ#z ,

p̂w
2

2mJ p̂zG . ~26!

The energy levels of electrons in CQW with given proje
tions of the total momentumj z561/2,63/2 . . . , andlongi-
tudinal momentumpz are
08533
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«npzj z
5

1

2mR2 H k21 j z
21

1

4
2

ā

2 S 1

4
13 j z

22tnD
6Aj z

2F11ātn2āS j z
21

3

4D G2

1ā2k2S j z
21

1

4D 2J .

~27!

Here ā52a/R2, tn52mR2Tn andk5pzR.
Generally speaking, the curvature-induced SO Ham

tonian should be supplemented by the other~mentioned in
the Introduction! terms that are not associated with the cu
vature. Let us consider the crossover between curvat
induced and Rashba SO interaction. We restrict ourselve
the case of states in CQW near the bottom of the low
transversal subband. The generalization of Eq.~27! for the
subbandn50 reads

«0pzj z
5

1

2mR2 S k21 j z
21

122āR12āt0

4

6Aj z
2~12āR1āt0!21āR

2k2D . ~28!

Here āR52maRR. Depending on a parameteraT0 /RaR
one mechanism or another will prevail. For largeR Eq. ~28!
goes to Eq.~33! from Ref. 17, for smallR gives Eq.~27!.
This estimate is evidently valid not for CQW only but fo
any surface as well.

An estimation of the Rashba constant using the m
force, which acts on an electron,~see, e.g., Ref. 9! gives
aR;aT0

3/2 andaT0 /RaR;d/R. Strictly speaking, this way
is incorrect due to vanishing the mean force mention
above, but may be considered as an upper limit foraR . In
fact, the correct calculation ofaR goes beyond the envelope
function approximation resulting in an additional small p
rameter of the order ofT0 /Eg . So we expect the ratio
aT0 /RaR to be no less thanEgd/T0R.

Note that the degree of asymmetry and therefore the r
of different mechanisms can be controlled by a gate e
trode. For smaller radii or lower electron concentration t
curvature contribution becomes more essential.

The obtained Hamiltonian together with spin-independ
terms solves the problem of 3D SchE reduction to the eff
tive surface problem. It is not difficult to complete the pro
lem either by boundary conditions, if lateral confinement
considered, or by inclusion of an additional potent
smoothly depending on the surface coordinates. The m
netic field can also be included in a gauge-invariant man

In conclusion, we have derived the effective spin-or
Hamiltonian for electrons in the curved quantum well. Lik
known planar mechanisms, this Hamiltonian starts from
linear terms in a longitudinal momentum. The curvatu
induced spin-orbit coupling is determined by simple expr
sions, containing surface curvatures and energies of trans
sal quantization. The strengths of the curvature-induced
the Rashba SO interactions may be comparable.
0-4
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