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Spin-orbit interaction of electrons on a curved surface
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Spin-orbit (SO interaction of electrons confined near a curved semiconductor surface is studied. The cur-
vature of the surface determines an interesting mechanism of SO interaction which complements the known
mechanisms occurring in planar systems. The specific cases of nanosphere and nanotube are considered and the
electron spin-split spectra in these systems are found.
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[. INTRODUCTION above-mentioned empty-lattice planar confining system. In
the first case linear SO level splitting appears, while in the
It is well known that the Hamiltonian for electrons con- second case it does not. The splitting is retained if an atom is
fined near an oriented planar two-dimensional system conreplaced by a potential well concentrating electrons near a
tains linear in lateral momentum terms which describe thespherical shell. As the shell radius grows, the shell flattens
spin-orbit(SO) interaction™? The surface orientation may be and the splitting falls down proportionally to the ratio of the
conditioned by the asymmetry of the confining potentiaé ~ quantum well widthd to the radius of curvatur®. Thus the
Rashba modé&l or by the inversion asymmetry of the initial curved system has an additional effective SO interaction due
crystal together with the spatial quantizatiéthe Dressel- to curvature.
haus modét*?).

In the first case the SO Hamiltonian has the form Il. SCHRO DINGER EQUATION ON THE CURVED
SURFACE
Hso=ar(olpxn]), (1) The effective Hamiltonian for electrons on curved surface

with no SO interaction has been obtained in Ref. 18 and 19.
We shall study the spinor problem using the same approach,
starting from the Schudinger equationSchB for an elec-
tron with quadratic nondegenerate spectrum:

where o are Pauli matricesp is the two-dimensional2D)
electron momentum, anal is the normal to the plane of the
system.

The Hamiltonian(1) leads to linear irp spin splitting of
the electron energy bands. This Hamiltonian has been widely 1 .
applied to different problems of low-dimensional physics. In - ﬁA+V(r)+HSo V=EV, 2
particular, it determines such phenomena as electric-field-
induced spin-flip transition$,phase decoherence time in N )
weak localization theory® beating of the Shubnikov—de Hso=—lalo,VV]V.

Haas oscillation$;® mixed spin-plasmon polaritortS,and  ere and below we sei=1: m is the effective electron

spin orientation by the lateral electric T'e%t . . mass,Hs, is the Hamiltonian of the basic SO interactian,
The occurrence of the terrfl) requires the inversional . .
is the SO coupling constant. For free electroms

asymmetry of the system. The Rashba mechanism vanishes 2 . ; .
: ' =1/4(mqyc)“, wheremy is the electron mass,is the velocity
in symmetric quantum wells, such as double heterostructuregf light. In AsBe crystals a=(2E,m) [ A(2E,+ A)/(E
with symmetric band offsets os-doped layers. What is +A)g(3E +2A3)]5 wr):ere Eai_s thegwidth of thg forbiddgen
more, the confinement of an electron even by the asymmetri d gA . th' SO I'ttg' fth | band
quantum well does not result in linear terms unless a cryst arli tan 1 '82 € Spt'. |n|g|1 of the va ?hnce a;n L 3D
structure is taken into account. This follows from the fact _—-° 6}## u%) par?mée ”Cg % specgy c %” a<(:je N
that the mean force vanishes in a bound state. ConsequentRP2C€- '€ parameteus andu™ may be considered as cur-

the effective SO interaction disappears in the envelope func—'l'ne."’lr coo'rdlnates on the surchﬁwe use 'the traditional
tion approximation and remains relatively weak if to allow notations \.N'th super- and subscripts referrlng to the contra-
for the crystal structure and covariant components of tengor&ny point in some

Curved 2D systems have been the subject of extensianite layer surrounding the surface can be expressed as fol-

recent interest(see, e.g., Refs. 14—16In particular, the
Rashba and Dresselhause models of SO interaction have
been exploited for a study of electrons located on a cylindri-
cal surfacé’ wheren=g,aX d,al|d,aXx d,a| is the normal to the surface,

In the present paper we find the effective Hamiltonian ofd;=4d/du', the layer widths is assumed to be less than the
spin-orbit interaction for electrons confined near the curvedcurvature radii. The triadu®,u?,w} forms a curvilinear co-
surface. We show that surface curvature marks the surfagardinate system in 3D space.
orientation and therefore causes an additional SO interaction. We shall consider an electron confined near the surface
This idea can be accented by comparison of an atom and the=0 by a potential welV(w) with minimum atw=0. The

r(ut,uw)=a(ut,u®)+wn, |w|<s, (3)
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bottom of the wellw=0 is an equipotential surface. The well ~ Owing to SO interaction weakness, we search an effective
width d<§ and the transversal size of the electron waveHamiltonian up to the ordew(d/R). The nonrelativistic
function are assumed to be much less than geometrlc sizes Hbm"tor“an of the lowest order inw becomes H

the curved surface, in particular, the curvature radii of the+H where
surface. Since the wave function is small enough wien uw=0r

~ &8, we impose zero condition¥ =0 atw— *o. If d/R 1 1 2

<1, the well is locally planar, so that in the first approxima- . =— —f)0+vg(u), Do=—= 2, 4 \/59”3; ]
tion the motion of an electron along the well is adiabatic. It ' 2m \/a =1

means conservation of the transversal quantum numbed (12)

the kinetic energy of longitudinal motion.

In the curvilinear coordinates' the space and surfa¢at
w=0) intervals are defined b;is2 Gj;du du'+dw? and
ds’= g”du du=ga- 9; adu'dul, respectively. The space
and surface metrics are linked together:

The geometric potentia\/g~1/mR2 results from the last
term in Eq.(8). It depends on the surface coordinates
={ul,u?} only and can be expressed via principal curvatures
of the surfacex; :*°

_ 1. . 1
Gij=gij —2why +w?9in-9;n, (4) Vg(u)= = g [(TrB)?— 4 detB]=— (k1= K2)*.

whereh;; =h;; = —d;a- 9;n are the coefficients of the second (12)

fundamental form. The volume and area differentials can be o )

writen as dV=.Gduldu?dw=fdSdw and dS The Haﬂmlltonlan (11) is separable, angy= ¢,(w)(u),

=gduldu?, where G= det(G;;), g=det(g;;), and f where H,,— E,) ¢#,=0; n is the number of the transversal

=./G/g. For smallw, we have quantization subbandn&0). This is a zero approximation
to the solution of Eq(6). With desirable accuracy we have

f=1+wTr(B)+w?de( 3)+O(w?3), (5)

“ ~n A X | A “
where=—(hg™1). \/?D(ﬁ ~Dox+wDyyx, (13
Using curvilinear coordinates, it is convenient to renor-
malize the wave functio®’ = y//f. Then the SchE takes the 1
form B1=~{Do,SHB)} -~ = al2(R ™ detB)
PN A X L
(Hw+Hu;w)X+\/?Hso( ﬁ) =Ex. (6) +g”S[XB)]z9]- . (14

The notation{A,B} means AB+BA)/2. The expansion of

The nonrelativistic Hamiltoniad,,+H,,.,, is separated on SO Hamiltonian yields

sharply q—|w) and smoothly K—Iu w) W-dependent parts, where

H,, corresponds to transversal motion qu does not - | x R ~
contain derivatives of with respect tow: Vi, N =dyV(L+WM)yx, (15
. 1,
HW:_%‘;W—FV(W)! (7) ia
L= —E”(O'aia)ﬁj , (16)
Vo
A A X 1
Huwx=—5=ViD| =| - awf)2—2f3%f]x. :
u;wX om (\/?) 8mf2[( w ) w ]X .

® M= f[ﬁl,waa)ak {SHB)(eaad]. (A7)

HereD is the "surface” part of the Laplacian In the zero order irw, the well is effectively planar and

1 SO interaction vanishes. Hence the SchE should be expanded
D= s, JGGiig. . (9) up to the first nonvanishing terms. Rewriting the total SchE
VG : in the form (A,,+H,.0c+U—E)x=0, we expand the wave

. . function on the basis w):
The SO interaction transforms to 0fn(W)

L1 ’ X=2 tnlU) (W),
HSOZIa\/—E(ﬁ\NV)E o(dir)d;, (10 n
where € is the Levi-Civita symbol: e!=¢€%2=0, (EntHuo—E)gnt > Upp by =0. (18

el2= _ 211, n’#n
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For any operatorA the notationA,, stands forA,,

= [dwe,(W)Ad, (w). Note, thatA,, is still the operator
with respect tau.
Thanks to the small parametdfR, the off-diagonal ele-

ments ofU,,, are less thatJ,,,, and the wave function of
some transversal statehas a small admixture of the other
states.

The effective Hamiltonian can be found similarly to the
near-degenerate perturbation theory. We express the
components),,,(u) via the “large” components),,(u) and
substitute them into the equation fgf,(u). Terminating the
iteration, we get with a prescribed accuracy

N N N 1 N
(En+Hu;0+Unn_E)¢n_ 2 Unn Unnin=0.
n’#n Enl_En
(19

The perturbation to the Hamiltonian consistswafand SO-
dependent parts.

Collecting Eqgs(13), (15), and(19), we find the effective
Hamiltonian for thenth subband:

.. .. . 1 .
A=Hyo+tHe+Hso, Ho=—5 wuD:, (20
. 1 WiV anr  ~ A -
A== O — Ml D+ (WayV) M.
SO m Win En,—En { l} W nn
(21)

The first and second terms in E@O) represent the nonrel-
ativistic Hamiltonian. The applicability range of this Hamil-
tonian limited by the only inequalitd<R extends the range

of Refs. 18 and 19. The latter requires an extra inequality

E—Ey,<E;—E, corresponding to the strict 2D case.
The additional ternH,, is of centrifugal origin. This can

be accounted for a change of the electron potential energ
caused by the inertial shift of an electron to the outer side o

the curved quantum well. Unlike the geometric potentid,

“smallm
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ond contribution to the first one is proportional td (
—E,)/T,. If the energy is close to the subband bottom, the
second term is negligible.

Physically, the SO term proportional 1, originates from
the difference of the electron tangential velocityon the
inner and the outer well boundaries due to conservation of
angular momentum. In a frame of reference accompanying
the moving electron the boundary fieldV transforms to a
agnetic fieldB’'=[vXVV]/ec which has different values
on two boundaries. As the electron moves across the well, its
spin averages the magnetic field. This leads to a finite value
proportional to the velocity.

The second contribution to SO interaction arises from the
centripetal forcemv?/R, turning the electron along the
curved well. This force, transformed to the moving frame,
produces another component of the magnetic fielet[v
X Rlmv?/ecR.

The value ofT,, can be found in specific models of trans-
versal states. In particular, for a parabolic quantum well
V(W) =mo?w?/2, and T,=w(2n+1)/4. For a well with
hard wallsT,,= 7?(n+ 1)?/2md?. For the Stern-Howard trial
functiorf® ¢=2(b/2)*we P2, appropriate to the lowest
self-consistent state on interfack,=b?/8m=E/5.

If the longitudinal energy is high enough, so that the
wavelength is less thaR, one can neglect the action of de-
rivatives on the geometric parameters of the surface. In the
natural coordinates, which locally coincide with Cartesian
coordinates in the tangent plane, Efj0) can be written as

I:Iso: —2a Tn(UxﬁyKy_ O'ybex)

1 - - R -
— 5 (k3T Ky ) (0D — 0y | (23)
The axesx andy are chosen along the principal directions of
curvature. Despite the smallness of the derivatives,oive
tain the symmetirzation in ER3) to conserve Hermiticity
f the Hamiltonian. If the electron state has a small size
along the surface, compared wiR) the curvatures can be

depends on the longitudinal motion of electrons, and vangonsidered as constant quantities. Moreover, if the momen-
ishes if the energy coincides with a subband bottom. Theum is a classical variable, the Hamiltoni®3) is easily

Hamiltonian I:|C also vanishes in symmetric wells, for ex-
ample, parabolic or hard-wall wells. Notice that in the limit

R—o H.~1/R exceeds the geometric potenﬁbd~1/R2.

The effective spin-orbit Hamiltonian can be simplified us-

ing the identities

2 Wi n(dwV) e (En— En’)71= —1/2

n’'#n
and Wa,V)nn=2T,, where T,=—1/(2m)(d2)n, is the
transversal kinetic energy in the well. The result is

N N 1 ..
(Hso)nZZTnM_F%{Lle}- (22

The first term in Eq(22) depends on the transversal state of

diagonalized. The eigenvalues @&3) are

a
*2—

5oV (2M T — Q)%p3+ (2mTory — Q)%py,

Q=pr>2<+Kyp§- (24)

At relatively small carrier concentrations, electrons oc-
cupy the bottom of the first transversal subband only, and
the transversal terms in Eq22) and(23) dominate, whereas
if the concentration increases, the longitudinal terms take
effect.

IIl. SPHERICAL AND CYLINDRICAL QUANTUM WELLS

As examples we consider spherical and cylindrical quan-

electron, whereas the second does not. The ratio of the settm wells(SQW'’s and CQW’s. In these cases spherically or
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axially symmetric potentials confine electrons near some ra- 1 1 /1
dius R. enpj = —| K2+j2+=— 5| 5 +3j2-t,
. ~ 2z omR2 4 2\4
Using the lateral momentum on the sphere surface
angular momentuni the SO Hamiltonian for SQW's in — 32 _ 12
spherical coordinates can be written in two forms: +/j21+ atn—E(jiJr 7 +a%k? 2+ Z) .

. 2a [32 - - (27)
Hso:_ﬁ Tn_ﬁ (o{ngXp]) -
Here a=2a/R?, t,=2mRT, andk=p,R.
za( 2 )(AT) Generally speaking, the curvature-induced SO Hamil-
al).

Th— (25  tonian should be supplemented by the ottreentioned in
2mR? the Introduction terms that are not associated with the cur-
~ A A - ) - ) ) vature. Let us consider the crossover between curvature-
Herep=pynytpyn,, Ps=—(i/R)dg, pP,=—(I/RsiNO)J,.  induced and Rashba SO interaction. We restrict ourselves to
The vectorsn,,n,,ng=R/R compose the orthogonal basis the case of states in CQW near the bottom of the lowest

of the spherical coordinates. The first form of the SO Hamil-y ansversal subband. The generalization of &) for the
tonian looks like the Rashba Hamiltonian, Edj), for a pla-  gyppandn=0 reads

nar system. In fact, in a small neighborhood of some point on
the sphere the vectaoi is almost constant, the sphere can be

R

considered as a plane, apdas a translational momentum P 1 K2+j2+ 1-2ag+2aty

along the plane. The difference of E@5) and the Rashba %z 5 R z 4

Hamiltonian, Eq.(1), lies in the momentum dependence on

the SO coupling constant. The second form is a conventional V21— ant ato)?+ a2ie

SO interaction in a spherical symmetric system. The energy V] (1 aptaty) ™+ agk®|. (28)

levels with given orbital and totalj=121/2 angular mo-

menta are — .
Here ag=2magR. Depending on a parameterT,/Rag

one mechanism or another will prevail. For lafigéq. (28)
_M+ e omMRET.— (I goes to Eq(33) from Ref. 17, for smallR gives Eq.(27).
&nlj= [ mRT, ( +1)] . . . . .
MR 2mR This estimate is evidently valid not for CQW only but for
o any surface as well.
X[(+1)=1(1+1)—3/4]. An estimation of the Rashba constant using the mean
force, which acts on an electrofsee, e.g., Ref.)9gives
Let the longitudinal momentum be a classical variable.ag~aT3? and aTo/Rag~d/R. Strictly speaking, this way
Equation (25) shows that the effective SO interaction of is incorrect due to vanishing the mean force mentioned
Fermi electrons changes its sign when the subband fillingibove, but may be considered as an upper limitdgr In
increases. If the only lowest subband is occupied up to theact, the correct calculation afr goes beyond the envelope-
Fermi level Er, the change of sign occurs &r—E,  function approximation resulting in an additional small pa-
= m?/2md? for the hard-wall well, aEr—Eo=w/4 for the  rameter of the order off/E4. So we expect the ratio
parabolic well, and aEr—Ey=E/5 for the self-consistent 4T,/Rag to be no less tha,d/ToR.
interface states. Note that the degree of asymmetry and therefore the ratio
In this limit the surface motion of an electron is a rotation of different mechanisms can be controlled by a gate elec-
along the great circle with angular velocity=[ng,p]/mR. trode. For smaller radii or lower electron concentration the
Then commutation of the operator of sgwith Hg, gives  curvature contribution becomes more essential.
the equation of motion for the spi=4ma(T,— p?2m) The obtained Hamiltonian together with spin-independent
X[ @,S], which shows that the ratio of the spin rotation fre- terms solves the problem of 3D SchE reduction to the effec-

quencies to the angular velocity, /o= 4ma(T,— p2/2m) tive surface problem. It is not difficult to complete the prob-
is independent of the sphere radius. " lem either by boundary conditions, if lateral confinement is

The case of CQW can be considered in a similar Way_considered, or by inclusion of an additional potential
Using cylindrical coordinatesp(e,z) with axis z directed smoothly depending on the surface coordinates. The mag-

along the cylinder axis and notatign,= — (i/R)3, we find netic field can also be included in a gauge-invariant manner.
9 y ™ ¢ In conclusion, we have derived the effective spin-orbit

Hamiltonian for electrons in the curved quantum well. Like
known planar mechanisms, this Hamiltonian starts from the
linear terms in a longitudinal momentum. The curvature-
induced spin-orbit coupling is determined by simple expres-
The energy levels of electrons in CQW with given projec-sions, containing surface curvatures and energies of transver-
tions of the total momenturj,= +£1/2,+=3/2 ..., andongi-  sal quantization. The strengths of the curvature-induced and
tudinal momentunp, are the Rashba SO interactions may be comparable.

. 2a

so— R . (26)

2 2
p ~n ~ Pola
<_‘P Tn) PO+ [npa]llﬁ] P

2m
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