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SUBALGEBRAS OF THE ALGEBRA OF ALL COMPLEX-VALUED
CONTINUOUS FUNCTIONS ON THE CIRCLE.*

By JoEN WERMER.!

1. Introduction. Let R be the algebra of all real valued continuous
functions on the circle and let € be the algebra of all complex-valued con-
tinuous functions on the circle.

The subalgebras we are concerned with are assumed to contain the
constant 1.

A fundamental theorem of Stone yields that any uniformly closed sub-
algebra R’ of R which separates points (i.e which is such that if X;s£),
then there exists an f in R’ with f(A:) %2f(A2)) coincides with R.

For the algebra € the situation is quite different. There exists a large
class of proper subalgebras of € which separate points. The problem of
classifying these subalgebras leads to the following question: What are the
mazimal subalgebras of C?

A closed proper subalgebra M of C separating points is called mazimal
if there exists no closed subalgebra M’ with M C M’ and M's< M, M’ < C.

In [1] and [2] the author has given examples of certain maximal sub-
algebras. Here we shall exhibit a large class of maximal subalgebras,
associated with Riemann surfaces.

Let & be a Riemann surface,? ¢ a region on & bounded by a simple
closed analytic curve y, such that 9 -4y is compact. M then has finite
genus p. Since y is topologically a circle, we may regard € as the space
of continuous complex-valued functions on y. We shall use |f| to denote

max | f(A)].
Aey

Definition 1. U is the subalgebra of C consisting of all f which may be
continued into M to be analytic on M and continuous on P + 5.

By the maximum principle for M, U is a closed subalgebra of €. Also

¥ Received September 10, 1954.

*1T am indebted to Professor M. Heins for a number of valuable suggestions which
I have used in some of the proofs.

* For definitions and basic facts of the theory of Riemann surfaces we refer the
reader to R. Nevanlinna, “ Uniformisierung,” Springer Verlag, 1953.
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226 JOHN WERMER.

% separates points on v, since, given p,q on vy, p5% g, we can find some f in
o with f(p) —0, f(g) 0.
The main object of this paper is to prove:

THEOREM R. U is a mazimal subalgebra of C.

When & is the plane and y is the unit circle |A| =1, 9% becomes the
algebra generated by the functions 1 and A. This is the case discussed in [1].

In Section 2 we prove Theorem 1 in which we give the form of the
general linear functional on € which annihilates 9. In Section 3 we use
Theorem 1 to prove Theorem 2. In Section 4 we find when two of our
maximal subalgebras are isomorphie.

2. Fix ¢ in IM; let G, denote the Green’s function for I singular at £.
Then G, is harmonic in M except at ¢; @, vanishes on y; for some fixed local
parameter z at {, G¢(z) 4+log|z—¢| is regular neighborhood of ¢.

Let H, be the (multiple-valued) conjugate function of G;. Since y is
an analytic curve, G- iH, is analytic everywhere on y.

Set W, (2) =—d{G(2) +iH,(2)}/dz. Then W, is a “covariant” on
M, as defined in [8], p. 102. W, is analytic on M except for a simple pole
at ¢, with residue 1. On y we denote by w, the measure%iwz (A)dxr. Then
g is the harmonic measure for 9 evaluated at ¢. In particular, for any set
E on vy, v (E) is real and non-riegative.

Fix some ¢ in 9. From now on we shall omit the subscript ¢, when
writing Gy, Hy, Wy, or of. We note that W has no zero on y.

Lemma 1. W has 2p zeros in M, where each zero is counted with its
multiplicity.

Proof. We choose an analytic parametrization of y: A =A(t), 0=<t=<1.
In any coordinate neighborhood U of a point of y with local parameter z,
we define z(¢) —2z(A(¢)). We can then consider W (z(t))-#(t) in U N ¥
where the prime indicates differentiation with respect to ¢. Direct computation
shows that this expression is independent of the choice of local parameter.
Then '

A=fld/dt{log W(2(t))7 (¢)}dt

is well-defined. By a formula given in [3], p. 133, we have

A—2ri(B—A —N),
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where B is the number of zeros of W in 9%, A the number of poles, and N
the Kuler characteristic of 9. On the other hand

A=fld/dtlogd/dt—{a(z(t)) - H (2(8)) }dt

and this equals the variation of log d — {G(2(¢)) 4 iH (2(¢))}/dt over 0 =t=1.

The properties of G and H on y then yield directly that A—0. Thus

B—A+4N. But A—1 and N—2p—1. Hence B=—2p, as asserted.
Let @, - -, @y be a homology basis of closed curves on M.

Definition 2. Let u(A) be a real continuous function on y and let
U(¢) be the harmonic function on I with U==u on y. Then &,(u),
v=1,2,- - -,%p, denotes the period of the conjugate function of U corre-
sponding to a,. ‘

Definition 3. For p=1," - -,2p, ¢,,(¢) is a harmonic function on I,
continuous on M -+ vy and twice differentiable on y, with ®,(y,) =38,".

Lemma 2. There exist functions K;, 1=1,- - -,2p, meromorphic on M
and continuous and real valued on y such that for i=1,- - -,2p, &, — Kidw as

functionals, <. e. <I>i(u) = f u (M) Ki(A)do(N), all u, and such that W()K(¢)
18 analytic on M for each i.’y '

Proof. Let W have the zeros z;,- - -, 2, in M of orders vy,- * -, v By
Lemma 1, §ky,=2p. At 2z, we use local polaf coordinates (r,6;) for
i—1,- - ,ki ' '

For each 7, i=1,- - -,k a well-known construction yields us functions
U, =1, - -,y and v;%, j=1,- - - v such that:

(i) wu;% vyt are harmonic on M except at 2.

(ii) w;* has at z a pole with principal part (r;)~/cosj6; and v, has
at z; a pole with principal part (r;)~7sin j6,/.

(iii) u;* and v;* vanish identically on .

The 4p functions w;?, v;* together form a linearly independent set. For

suppose 3, ¢just + djivjt =0, ¢, d;t being constants. Because of the poles
i

of the w;*, v;? this implies ¢;u* + djvf =0, whence c¢; cos j8; - d;isin j; — 0.

Since 6; is arbitrary, we conclude ¢;i=d; =0, all 4,§. Thus linear indepen-

dence is established. We now seek constants a;%, b, j =1, -+, v, 4t =1,-- -, 2p,
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such that the function 3 a;*u;* + b;*v;* have a single-valued conjugate function.
0§

This gives 2p conditions on 4p unknowns, and so we obtain at least 2p
linearly independent 4p-tuples satisfying the conditions. We thus get the
linearly independent functions

¢ (&) =§afviuf‘(§) + byt (L), v=1,---,2p.

where each ¢” has a single-valued conjugate function. Then ¢”(£) is harmonic
on M except for possible poles at the points z; of orders =; and ¢”(A) =0
on y for all ».

Let r7(¢) be the conjugate function of ¢” with 7"({,) =0. Then
hy (&) =14(¢? (&) + 17 (&)) is, for v=1,- - -,2p, a meromorphic function on

2p

M such that h, (1) is real and continuous on y for each v. Suppose X, ¢,h, =0,
p=1

where ¢, =a, 4 1b,, (a,, b, real). Since %,(A) is real for A and v, this gives

2; 2 2;

Zpa,,h,, \) = Zp byhy(A) =0 for A in y. But 2,; ayhy(¢) is meromorphic and

v=1 o r=1 2 =1 2

80 X ayh, (&) =0, {eM. Similarly 3 b,h,(¢) =0 on M. Hence X a,q”({)
v=1 v=1 . v=1

2:
= 2,; b,q”(¢) =0 on . But the ¢” are linearly independent by construction,
y=1

whence a,=10,=0, all . Hence ¢,=0, all v. Hence the h, are linearly
independent.

Consider now the covariant h,({) W(¢). This has no poles except possibly
at ¢, since the zeros of W cancel the poles of h,. Also h,(&) =1¢" (&)

-and so fh,,()x)W()\)d/\=iq”(§o) by the residue theorem. Now h,(})
v

2mi

is real on vy, and ;LW (A)dA is a real-valued measure on y. Hence the left
hand side is real. Hence ¢”({) =0 and so h,(&) =0. It follows that
hy (§) W(E) is regular at ¢ and so everywhere on It

Let now N be the space of all real continuous functions w on y with
®,(u) =0 for v=1,- - -,2p. Given u in N choose v twice differentiable
on y with ||u—wv || <e. Then there is a constant K so that

| ®,(v) | =|®(v—u)| = K v=1," - -,2p.
, . ,
Set w(A) =v(A) —ZP@,,('I))t//,,()\). Then w is differentiable on vy, &;(w) =0,
=1
j=1,- - -,%p and ’
2p
lv—wl=lu—0vl+2 |2,() 1 19y | <et K'e=K"¢, K”

independent of e.
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Let w(¢) be the harmonic function with boundary value w(A). Since
®;(w) =0, j=1,- - -,2p, w has a single-valued conjugate w, and since w

is twice differentiable on y, w, is continuous in 9 +y. By the preceding
hi(&)W (&) is analytic on I for each i. The residue theorem yields:

0= f @O+ O)REF R,
all 4. Since hi(A) is real, we get
0— L wW)h(V) (NI — L w)h(N)dw(r)
for all . Now
| whawe)] =1 f @) —w0)m0dW)
< K" L | B | dw(n).

Since e 1s arbitrary, we get
J uhdn() =0,
v

all . Thus the functional h;dw annihilates N. Hence, by elementary vector-

space reasoning, there exist constants b,%, i=1,- - -,%p, v=1,- - -,2p, with
- |
hi(A)dw(A) = 0,9, 1=1,- - ,2p.
. y=1

" Since the h; are linearly independent, we can solve this system of equations
to get

2p
D, =2 C,i'h.;(‘)t)du)()\) = K,,(/\)d?l)()\), v=1,"-,2p.
i=1

The properties of the h; established above yield that the K; satisfy the asser-
tions of the Lemma.

LemMa 3. Let p be any comples-valued Borel measure on y such
thatf f(A)du(A) =0 whenever feN. Then for cloced sets E on v,
Y
0)(E)=0 @mplws }L(E) =0.

The analogous assertion was proved for the unit circle by F. and M. Riesz
in [4]. A slight modification of their argument yields the following proof.



230 ) . JOHN WERMER.

Proof of Lemma 3. Since E is closed, the complement of E on y is the
union of countably many disjoint ares y,. Since

, 'f,dw(,\)<oo, S do() <.
Y n=1 o ¥Yn
Hence we can find a sequence of positive numbers d, with d. increasing

to infinity with n, such that 2.( do(A)) -dp <. For n=1,2,- - - we
7=l J yn
define a positive real twice differentiable function g, on va such that

I,= f gn(\)do(A) <co and ga()) increases on y, to o as A approaches the

endpoints of y,. Choose positive constants ¢, with 3 c.[, <.
n=1
Set P(A\) = ¢ngn(A) -+ dy for At y,, n=1,2,- - -. Since w(#) =0, I’ is
defined almost everywhere on y with respect to » and so with respect to o

for every ¢ in M. Let now P(¢) =J‘. P(A)dwg(X), £eM. Note that
A y

L P(\)do(r) — i;l(a,,l,, | Bs) < .

From the way P(\) was constructed, we see that P(X) is continuous and
finite at each point A#E and P(\) becomes continuously oo at each point
of E.

By elementary properties of the harmonic measures w;, we get then
that P(¢) is harmonic in 9% and has P(A) as continuous boundary function
on vy, if we make the obvious definition of continuous approach to co for
P(¢) as {¢— A, A in E. Let ky,- - -, ks be the periods of the conjugate

function of P(¢). Choose a constant d so that P,=d -+ P-—% kaps >0
i=1

on y, and hence on M and let @, be the (single-valued) conjugate function
of P;. Set now k(¢) = (1+P,+41Q.) (P4 1Q:) (). Then k() is
analytic in M. For Aey and AEE, k(A\) =1+ z+4iy)?* (z+1y) with
0 <z <o and hence | k(A\)| <1. LetxeE. As{—x|Pi(l)+1Q:(f)| =0,
whence k(¢)—> 1. Thus #(\) =1 on E. In particular k(\) is continuous in
M 4y, and so keW. Hence k"eA for n=1,2,- - +. Then

0= [ a0 = )+ f E0dum.
v J B ~v-E
Letting n—>o0 anc recalling that |k(A)| <1 if Aey—E, we conclude that
0= f dp(\) = p(7), as asserted..
E
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Definition 4. We denote by L?(y) the class of functions F(A) on vy
measurable with respect to o and with f | F(A)|Pdo(A) < oo.
. . y .

COROLLARY. If u is ¢ Borel-measure on y such that f fA)du(A) =0
v

for all e, then there exists F(\)e L*(y) such that du(A)=F(A)do(r) as
measures on .

Proof. By Lemma 3, (E) =0 implies u(E) =0 for any closed set E.
It follows that this implication holds for each Borel set E.

We can write p— p*—p~ -+ ©* —v~ where p*, u-, v*, v~ are real non-
negative measures. Let now F be any Borel set with o(E) =0. For every
Borel subset B’ of E, o(E’) =0 and so u(E’) =0. Hence p*(B) = u (E)
—v*(E) =v(E) =0. Thus u, etc. are all absolutely continuous with respect
to o. It follows by the Radon-Nikodym theorem, that du*(A) = F1(A)dw(A),
where F,eL'(y). Similiarly du (A) =F;(A)dw(r), F.eL'(y) and so on.
Adding these equations we get the assertion. :

Let now y’ be a simple closed analytic curve in M such that y and 5’
together bound an annular subregion 9 of M. We choose y" so that all
zeros of W lie outside PV 4. We can then map I’ conformally onto the
annulus 7 < |z | <1 in the plane, by a mapping z=x(¢), (eI’ Since v,
¥’ are analytic curves, x is analytic on the boundary curves y and y’. It
follows that for a fixed K, and each Borel set F on 1y,

2o(B) Em(x(B)) = Ko(B),

where m denotes Lebesgue measure on |z |=1.

Let F (&) be analytic on M. Then F°(z) = F(x*(z)) is analytic in the
annulus ¥ < |2z | <1. We shall omit the symbol “°,” since this omission
introduces no ambiguity. Also for g(A) defined on vy, we write g(e*) for

g(x*(e*)).

Definition 5. Let F be analytic in M. We say Fe &, providéd that
(with the notations just given)

f2”|F(re“’)]d0=0(1) as r—> 1.

LemmaA 4. Let F({) e&’. Then there exists a function F*(X) defined
on vy a.e—do such that

(a) F*elr(y).
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(b) F(¢) =i f F*(\) W, (A)dA, all e,
v
(¢) lmF(¢) =F*(A) a.e.—do on vy, if {— A within some sector.
$=>N

(d) Fiz r, >17. Then for some constant K independent of F and r
we have for ri <r<1:

2T 27
f | F(re) | dg < K f | F* (¢4%) | db.
0 /0

2
Proof. By hypothesisf W|F(re“’)[d0=0(1) as r—1, and F(z) is
0

analytic for v < |z| < 1. We may write # =F, 4+ F, where F, is analytic
in |2]| <1 and F, is analytic in |2z | >1. We hence get

2T
J | Fi(re?)| dd=0(1) as r—1.
o

Classical results now give that F,*(e¥) =1lim F,(z) exists for a.a. 6 if
2> et

the approach to the boundary lies within some sector, and that F,*(e%) is
summable on 0 =0 < 2r. Hence lim F'(z) exists a.e. We denote it by

z>et® .
F#*(ei); for A on y we write F*(A) instead of F*(x(A)). Since sets of w-
measure 0 on y correspond to sets of Lebesgue measure 0 on |z |=1, we so

get assertion (c).

Let now ¥ <r <1 and let y, be the curve in 9 which x maps into
the circle |z | =r. The residue theorem gives for {€ M, ¢ outside the region
- bounded by v, and y:

‘rer
PO — 2 f FO)W(\)dr— 1 f F(re) W (rei)yreidp.
Yr ” Y

2
By a classical theorem, lim f | Fy(rei?) — F *(e#)| dd = 0 ; also W (rei?)
r->1 0

is continuous for 7 < r=1. It follows that

2 2
F(¢) =1lim ;_f %’(rew)Wz(reW)rew a6 = L f 7%”"(e“")Wc(e“’)e“’ de.
ro>1 “TJo T 0

2

Hence F(¢) =3k f F*Q)W,(A\)dr, ¢eM. Thus (b) is proved.
J
Now

2
FrO)| do) = L (| F*(e¥)] W(e")ei® 49 < oo,
o 2mr 0
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2r
since f | F*(e%)| d§ < oo by construction of F*, and W is continuous. Thus
/0
(a) holds. Finally, write F(2z) = F,(2) + F.(2), where F,(z) is analytic

1

in |2] <1 and F,(z) = —%r L F@) (r—2)7dr; so that F s analytic
in |2]>7. Let {—yx"(r). Then F(r) = L F*)(W )Y W (W) do(A) by
(b), whence | F(r)| < M, L | P dox), where M —max | W)WY
Hence for 0 =6 < 2x; ¥’ <,

| Fa(re) | S 1/ (r—r') max | F ()| = (/2m)1/ (') [ [ F*(0)| do (),

where M =sup M,. At last, ¥ <r, =7,
Sev’

2: - 2r
f ’|rF2(re“’)| dﬂéf | F*¥(A) | do(A) - M, = Mz‘f | F*(ei) | de,

0 v 0
where M, and M, are constants. On the other hand, since F, is analytic
in |z|<1,

2T 2T 2T 2T

f]Fl(re“’)[ deéf | Fo* ()] d0§f | F* (ei?) | d0+f | Fo* (e%) | do

0 0 0 0

= (@ +0) [ TFe(e)| a8

Hence
2r 2w

f | P (reit) | do=f |, (rei®) + T, (re)| do

7o 0
2T .

= (1-|-2Mz)f [ 7% (¢¥) | do.

0

This proves (d).

Definition 6. B is the conjugate space of C.

By the representation theorem of F. Riesz, 8 may be identified with the
space of all complex-valued Borel-measures on 1.

Definition 7. % is the subspace of B consisting of all measures u of
the form du(A) = G*(A)dw(A) where G* is the boundary function of some
G in & with G(¢) =0.

LemMa 5.3 B is regularly closed as subspace of B.

2 The idea of using a lemma of this kind resulted from a conversation with Pro-
fessor S. Kakutani.
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Proof. By a theorem of Banach, [5], p. 1?4, it suffices to show that
with each weakly convergent sequence of elements of I8 the limit again is

in 28.

Let now u, e, p, converge weakly té #. By Definition 7, there exists
Gne8’, Gu(&) =0 'With dpn (L) = Go*(A)do(A). Then for each fe¥,
f-G,e8, and so by Lemma 4, '

0=1()Ga(te) = [ FNG* W) do(3) = f F(N)dn(h).

For fe, then, 0= f f(A)dp(r). By the Corollary to Lemma 3, this
v

implies that there exists Goe L*(y) with Go(A)dw(A) =du(A).

We shall show that G, converges to a function G analytic on I with
Ge& and that G*(A) = Go(A) a.e~—dw on y. From this it follows that
du(M) = G*(A\)do(A) and so pueW. Now

Gu() =571 [ Gr W B — [ ()W) din(A).
Hence G(¢) =Lim G, (¢) exists for {e M. Also
n = | Gn* w P
|G(C)|5Mtj;| (A)] do(A)

where M, =max |(W(r))*W,(r)|. Now since the sequence um, converges
Aey

weakly, the total variation of w, has a bound K valid for all n. Hence
(1) f | G.* (V)| do(X) < K.
v

Also M, is bounded on each compact subset of 9. Hence by Vitali’s
theorem, G is analytic on M and Lim G, = G uniformly on each compact
subset of M. Now e

' 2
f | Gu*(A) | do(X) = L f T@* ()| W (ei)e¥ do.
v ™o
S o .
But W (e*)ei? has a positive lower bound on (0, 2). Hencej 1r| Ga*(ei?)| do
' o
2
<K', alln, by (1). Hence | 7| Ga(re®)| d6 < K7} all m, by (@) of Lemma
o

. . 2 . .
4, ¥ <r, <r<1l. It follows that f 7r] G(ret?)| do < K”, whence Ge§'.
0
We claim that G*(\) = Gy(A) a.e~—do.
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Let now ¥ <r<1. Set
U () =z [ (r—2) a()dr, || >
|7|=r"

U2 (2) =?1i‘£rl-r (r—2)Gu(r)dr, |2| <.
Then U,' is analytic for |z| > 7, U,2 for |2] <1, and
Ga(2) = U2 (2) — Ut (2), r<|z|<1.
Clearly U,**(e) =zl_ire§0Un1(z) exists for all 4. Also G,*(e*’) exists a.e.

Hence U,%*(e*) exists a.e. and Gp* = U,** —U,'¥, a.e.

Now G,(7) = G(r) uniformly on |7|=1". Hence U,'(z)—> U'(z)
uniformly for 7 < a=|z | =b <o, and U**(e¥) exists everywhere. Hence
U,2(2) = U2(z) uniformly in ¥ < a = |2z | = b < 1,and G(z) = U*(2) — U*(2).
Tt follows that ‘

@) f”] U*(re%) | d—0(1) as r— 1.
Also
(3) % (ei0) = [?* (o¥) — U1* (¢) a. c.

Fixr,¢;7<1,0=¢ <2r. Setg(d)=(1—r)(1+ r‘2—2rcos(0—¢))'1.
Now

2 2
LT g @) a0 = & [ (G () + Ut () g (0)d0
us 0 us o ’
and U,'*(ei?) — U'*(¢¥) uniformly in 0 =6 <2 and Gn*(A)de(A) con-
verges weakly to Gy (A)dw(X). Hence

tim & [T (g (0)d0— £ (G + U ()9 (0)db.
On the other hand,
U, (retw) — 1 ﬂ ”U,,f*(e”)g(a)d0—> U2 (re').
By (?) we get, since U* is analytic in |2 | <1,
U (rett) — L ﬁ U (619) g (8) db.

Hence

J. T @9 038 = T (Go(e) + T )9 (6)a8,
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or
0— [T — G U (e) (1— 1) (1 1 —2reos(6—)) 46,

This now holds for arbitrary r, ¢. Since U?* — G'y— U'™* is summable on
(0, %), we conclude

Go(eW) = [J2% (ew) _Ul*(ew) —_ G*(eiﬂ), a.e.

The conclusion now follows, as shown above.

THEOREM 1. Let poe®B andf f(A)duo(A) =0 for all f in A. Then
v
there exists J €&, J (&) =0, and constants c¢; such that, setiing

2p
L) =T* () + X aki(h),
where K; are the functions of Lemma 2, we have dpo(A) = L(A)dw(A).

Proof. Let B be the vector-space obtained by adjoining to 2 the
measures K;(A)dw(A), t==1,- - -,2p. Since W is regularly closed, the
same is true of W’. Our assertion amounts to the statement that u,e W'

Suppose o #W. Since W is regularly closed, it follows by Banach’s
definition, that for some f, in €

(4) f/ Fo(A) duo (1) 40

(5) f Fo(A) du(A) =0 if pe %W,

Let now U be the closure in L2(y) of A. Then we can decompose f, as
follows: fo=H -+ G, He U, G orthogonal to A. Let feA. Then

(6) S i0am a0 =o.
Hence
(6 L @ (V) do(r) —O0.

Let now H,e N, H,— H in the norm of L?>(y). Then by the residue theorem

= f Ha (1) (F(A) —F (&) ) dw (1) =0,

whence

(7) f H(A) (F(A) —f(&) ) d(r) =0.
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Also (f(A) —1(&))dw(N) e, whence by (5)

S RO (FO) —F(20))dw(3) =0.
Hence from fo=H + @ and (7),
S o) 0 =) du) =0,
By (6’), then,
@ (L) =0.
(8) J, 60 M) =o
It follows from (6) and (8) thatf w(A)G(A)do(A) =0 for all real
v

continuous functions % on y with w=Ref, for some fe . As in the proof

2p
of Lemma 2, we get from this that for some b,, G(A)dw(A) =X b,®, as
functionals, and hence that -

2p
(9) G(A)do(d) = Z_IGJQ(/\)dw(A)
where K, are the functions constructed in Lemma 2. Now
fH(A)K,,(A)dw()\)=0, y—1, -, 2p;
¥
also K,(A)do(A) eT’. Hence by (5),
f oKy (\) do(A) — O, y—1, - -,2p.
: v
Hence
(10) f G(MNE, (V) do(X) =0, y—1,- - -, 2.
v

By (9) and (10),
JremPam) = f 60 Sakindo)
Y Y 4=1
=§15¢f7 G(A)Ki(A)do(r) = 0.

Hence G(A) =0a.e. and so fo—H a.e.
Now consider H,e%, H,— H in the norm of L2(y). Then for {eI,

H,(¢) =E;7LH,,(A)W¢(A)d,\.
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It then follows that

i J_ W) dr=lim Ha(@)
is analytic in 9. Also ﬁ; f fo(M) W, (A)dA has f, as continuous boundary
v

value on y. Hence foe . Then f Ffo(A)duo(A) = 0. This contradicts (4).
v

Hence the assertion must be true.

3. Proof of Theorem 2. Let " be a closed subalgebra of € with
W=.C and Y C Y. Since A’ is a proper closed subspace of C, a well-
known theorem on Banach spaces guarantees the existence of a non-zero
functional on € which annihilates 9’. Thus there exists pef®, w40

with f g(A)du(A) =0 if geA’. This holds in particular if ge . Hence
v

by Theorem 1, du(A) = Lo(A)dw(A) where L, is meromorphic on 2 and

analytic on I except at the poles of the K;. Hence L, is analytic except at

the points z,,- - -, 2, where W vanishes. Also, lim L,(¢) exists for a.a. A
N

on vy, if {— A within some sector, and this limit 40 a.e. on y.
Fix now ¢e¥’. We shall show ¢e. For if fe¥, f(A)p™(A) e W

for m—1,2,- - - whence f F(\)¢m(A)du(r) —0. Applying Theorem 1
Y

to the measures ¢™(X)du (M), we get ¢™(A)du(r) = Ly (A)dw(X) where Ly,
has the same analyticity and boundary behavior as L,. Hence ¢™(A)Lo(A)
=Lnu()A) a.e. on y. It follows that (L, (A))™=Lu(A) (Lo(A))™?* a.e. on y.
On both sides we have non-tangential boundary values of functions analytic
in the region M, obtained by deleting from M the points 25, - -, 2. By a
result of Lusin and Privaloff, [6], an analytic function possessing non-tan-
gential boundary values on a set of positive measure is determined by these
values. Hence (L;(£))™=Ln(¢) (Lo(¢))™* for ¢ in P,. Since this is
true for all m = 1, L, cannot have a zero at any point ¢’ in M, of order «
unless L, has at ¢ a zero of order =«. Hence L, 3L, is analytic in IM,.
Also, since ¢ (A)Lo(A) =L,(A) a.e. on 'y, ¢ is the non-tangential limit of
Ly*L; a.e. on v.

Set T¢p (L) =Lo*(¢)L,(¢). The map ¢ —> T¢ then assigns to each ¢

in A" an analytic function T'¢ on M, having boundary values ¢ (A). By the

theorem in [6] mentioned above, ¢ determines T'¢. Let now ¢, ¢. belong
to A’. Then

Lim T6,(¢) - T2 () = 1 () $2(A)
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and so T(¢y ¢s) = T¢s T'¢p.  Similarly T'(¢p, + ¢2) = Tps + T.. Fix
now 2, in . Then the map ¢— T'¢(2,) is a multiplicative functional
defined on 9’. But a multiplicative functional on a Banach algebra is always
bounded and has bound 1. Hence | T¢(2,)| = | ¢ ||. Since 2, is an arbitrary
point in 9y, T'¢ is then bounded on M, ; hence T'¢ is analytic and bounded
on M. Lemma 4 gives now that for ¢ in I,

Te(8) = | (Te)*(N)do(A) = | ¢(A)duc(M).
v v

On the other hand the last integral represents a continuous function on
M + y agreeing with ¢(A) on y. Hence ¢ is in U, as asserted.
Hence 9%’ — 9, and so Theorem 2 is established.

4. (Added November 27, 1954.) Let now &, &. be Riemann surfaces,
Py, M, regions on them bounded by simple closed analytic curves yi, v
with 9%; U y; compact, ¢ =1,2. Let oU; be the algebra of functions continuous
on y; and extendable to be analytic on M, ¢=1,2. We assert:

TaEOREM 3. U, is isomorphic to A, as algebra if and only iof M, 1s
conformally equivalent to M,.

We need the following:

LemuMA. If x is a multiplicative functional on N, then there exists a
point pe P, U v with x(f) =7 (p), all feN,.

Proof.t (We omit the subscript ¢ from 9[;, etc.) By the general repre-
sentation theorem for bounded linear functions on spaces of continuous
functions, there is a measure p, on y with

x(f) =Lf(k)d#o(h), Fedl.

Suppose now that the assertion of the Lemma is false. Then for each
peIMU y there exists f,e A with x(f,) =0 and f,(p) %0.

Let do(A) and W (¢) have the same meaning as in the preceding sections.
Let M, be the region obtained by deleting from 9% the zeros of W.

Now for all fe and p in MU vy

0=x(ffo) = f FN o) do(h).
Hence the measure f,(A)dpo(A) annihilates A. By Theorem 1, then we can

¢ Cf. L. Carleson [7], Theorem 4, for a similar method of proof.
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find a function L, analytic on 9, and with L,({) W(¢) regular on I, such
that L, has nontangential boundary-values L,(Ar) for all A in y except for a
set of w-measure 0, and with f,(A)duo(A) = Lp(A)dw(A) as measures. Choose
now p;, p, distinet in M U y. Then

Toa(A) o, (A) dpo (N) = Fpa(A) Lip, (A) do (1)
and

For (M) Foa (M) dpto (A) = fp, () Lipy (A) do (1)

whence fp, Lp, = fp,* Ly, a.e—do on vy, whence by the result in [6] which
we have quoted earlier, f,, (&) Ly, (&) == 5, (&) Ly, (¢) for all ¢ in M.

Fix now p, in MM and set F({) =fp, (&) Lp,(¢). Since, for geM,,
Ly and fg* are regular at ¢, we obtain that F is regular at ¢. Thus F is
analytic on all I, and similarly we see that the covariant F(¢)W(¢) is
analytic on all of 9.

Next, for each gey, we choose an arc y, on y with |f,(A)| =8, for A
in vyg, 8 being a positive number. By the Heine-Borel theorem, some finite
set of these arcs covers y. We can hence get § >0 and a decomposition

n

y=_) vis where the y; are disjoint half-open arcs and for each 4 there is
i1

some ¢; with | f¢,(A)| =38 on v
NOW} F(C) =f¢h'1(€)LQ& (C) for {‘8%) Whence

F(r) =1§ing1”(§) =g (A) Lg, (M) a.e. on ;.
-
We now use annular coordinates r,0: r,=r=<1, 0=0=<2» in an
annular subregion of 9 bounded on one side by y, with r=1 being the

equation of y.
Let ge?. Then for each 1

S 10 am) = ) g N LW do) = [ FOYgO)da(a).
Y4 Yi Y

Hence
S oM a0 = [ gMF Q) (2ri) W (N an
Y Y

Now if vy, is the curve with equation: r=p, p <1,

F(&)g(E)W(£)de—=0
Tp -
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by the residue theorem. Also

lim f F(8)g(Q)W(£)de— f gF (W)W (1) dA
1 Jyp 1%

due to the boundary behavior of the functions L, and f,. Hence

x(¢) =fv g(A)dpo () =;%fv g FA)W(A)dr=0.

This must hold for all ge%, which is impossible. Hence the assertion of
the Lemma must be true.

CoroLLARY. The space & of multiplicative functionals on A is homeo-
morphic to the set MU y.

Proof. By the Lemma, if ye®, then there exists peIt Uy with
x(f) =7F(p) for all feA. There cannot exist two distinct points p;, p,
with this property, for if p, 5% p, then for some f in 9, f(p.) 47 (p2). Hence
the map x— p takes & into MU y. It is obviously one-one and it is onto
P U y since each p in M Uy defines some multiplicative functional on 9.
Finally, the map is easily seen to be bicontinuous.

Proof of Theorem 3. Let r be an algebraic isomorphism of 9, onto ..
Fix p in M, U y,. Map each f in U, into =(f) (p). This map is a multiplica-
tive functional on 9,, whence by the lemma there exists ¢(p) in M, Uy,
with #(f) (p) =7 (¢(p)) if feN,. The function ¢ then maps M. U y, onto
D, Uy, in a one-one and bicontinuous fashion. It follows that ¢ maps I,
homeomorphically onto Pt,.

Fix p, in M, and f, in A, with f, locally simple at ¢(p,). Then for p
in some neighborhood of po, fo(p(p)) =7(fo) (p). Since f, and =(f,) are
analytic functions and moreover f, is one-one in a neighborhood of ¢(p,),
¢ is analytic at p, as mapping from M. to M,. This holds for each p, in
M. and further ¢ is globally one-one. Hence ¢ provides a conformal map
of I, onto M.

Conversely, suppose we are given a conformal map ¢ of M, on M,.
Classical results then give that ¢ is extendable to a homeomorphism of
M2 Uy, onto M, U y,. For each f in A, we can then define »f on M, Uy,
as follows: 7f(p) =f(¢(p)), pe MU y,. Then +fe, and r is an isomor-
phism from 9, to .. This proves Theorem 3.

BrowN UNIVERSITY.
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