

Subalgebras of the Algebra of all Complex-Valued Continuous Functions on the Circle

Author(s): John Wermer

Source: American Journal of Mathematics, Vol. 78, No. 2 (Apr., 1956), pp. 225-242

Published by: The Johns Hopkins University Press

Stable URL: http://www.jstor.org/stable/2372513

Accessed: 01/12/2009 00:51

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=jhup.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The Johns Hopkins University Press is collaborating with JSTOR to digitize, preserve and extend access to American Journal of Mathematics.

SUBALGEBRAS OF THE ALGEBRA OF ALL COMPLEX-VALUED CONTINUOUS FUNCTIONS ON THE CIRCLE.*

By John Wermer.1

1. Introduction. Let R be the algebra of all real valued continuous functions on the circle and let C be the algebra of all complex-valued continuous functions on the circle.

The subalgebras we are concerned with are assumed to contain the constant 1.

A fundamental theorem of Stone yields that any uniformly closed subalgebra \mathbf{R}' of \mathbf{R} which separates points (i.e which is such that if $\lambda_1 \neq \lambda_2$ then there exists an f in \mathbf{R}' with $f(\lambda_1) \neq f(\lambda_2)$) coincides with \mathbf{R} .

For the algebra C the situation is quite different. There exists a large class of proper subalgebras of C which separate points. The problem of classifying these subalgebras leads to the following question: What are the maximal subalgebras of C?

A closed proper subalgebra M of C separating points is called maximal if there exists no closed subalgebra M' with $M \subseteq M'$ and $M' \neq M$, $M' \neq C$.

In [1] and [2] the author has given examples of certain maximal subalgebras. Here we shall exhibit a large class of maximal subalgebras, associated with Riemann surfaces.

Let $\mathfrak F$ be a Riemann surface, $\mathfrak M$ a region on $\mathfrak F$ bounded by a simple closed analytic curve γ , such that $\mathfrak M+\gamma$ is compact. $\mathfrak M$ then has finite genus p. Since γ is topologically a circle, we may regard C as the space of continuous complex-valued functions on γ . We shall use $\|f\|$ to denote $\max_{\lambda \in \gamma} |f(\lambda)|$.

Definition 1. \mathfrak{A} is the subalgebra of C consisting of all f which may be continued into \mathfrak{M} to be analytic on \mathfrak{M} and continuous on $\mathfrak{M} + \gamma$.

By the maximum principle for \mathfrak{M} , \mathfrak{A} is a closed subalgebra of \boldsymbol{C} . Also

^{*} Received September 10, 1954.

 $^{^{1}}$ I am indebted to Professor M. Heins for a number of valuable suggestions which I have used in some of the proofs.

² For definitions and basic facts of the theory of Riemann surfaces we refer the reader to R. Nevanlinna, "Uniformisierung," Springer Verlag, 1953.

 $\mathfrak A$ separates points on γ , since, given p, q on γ , $p \neq q$, we can find some f in $\mathfrak A$ with f(p) = 0, $f(q) \neq 0$.

The main object of this paper is to prove:

THEOREM 2. At is a maximal subalgebra of C.

When \mathfrak{F} is the plane and γ is the unit circle $|\lambda|=1$, \mathfrak{A} becomes the algebra generated by the functions 1 and λ . This is the case discussed in [1].

In Section 2 we prove Theorem 1 in which we give the form of the general linear functional on C which annihilates \mathfrak{A} . In Section 3 we use Theorem 1 to prove Theorem 2. In Section 4 we find when two of our maximal subalgebras are isomorphic.

2. Fix ζ in \mathfrak{M} ; let G_{ζ} denote the Green's function for \mathfrak{M} singular at ζ . Then G_{ζ} is harmonic in \mathfrak{M} except at ζ ; G_{ζ} vanishes on γ ; for some fixed local parameter z at ζ , $G_{\zeta}(z) + \log|z - \zeta|$ is regular neighborhood of ζ .

Let H_{ζ} be the (multiple-valued) conjugate function of G_{ζ} . Since γ is an analytic curve, $G_{\zeta} + iH_{\zeta}$ is analytic everywhere on γ .

Set $W_{\zeta}(z) = -d\{G_{\zeta}(z) + iH_{\zeta}(z)\}/dz$. Then W_{ζ} is a "covariant" on \mathfrak{M} , as defined in [3], p. 102. W_{ζ} is analytic on \mathfrak{M} except for a simple pole at ζ , with residue 1. On γ we denote by ω_{ζ} the measure $\frac{1}{2\pi i}W_{\zeta}(\lambda)d\lambda$. Then ω_{ζ} is the harmonic measure for \mathfrak{M} evaluated at ζ . In particular, for any set E on γ , $\omega_{\zeta}(E)$ is real and non-negative.

Fix some ζ_0 in \mathfrak{M} . From now on we shall omit the subscript ζ_0 when writing G_{ζ_0} , H_{ζ_0} , W_{ζ_0} or ω_{ζ_0} . We note that W has no zero on γ .

Lemma 1. W has 2p zeros in \mathfrak{M} , where each zero is counted with its multiplicity.

Proof. We choose an analytic parametrization of $\gamma:\lambda=\lambda(t)$, $0\leq t\leq 1$. In any coordinate neighborhood U of a point of γ with local parameter z, we define $z(t)=z(\lambda(t))$. We can then consider $W(z(t))\cdot z'(t)$ in $U\cap\gamma$, where the prime indicates differentiation with respect to t. Direct computation shows that this expression is independent of the choice of local parameter. Then

$$\Delta = \int_0^1 d/dt \{ \log W(z(t)) z'(t) \} dt$$

is well-defined. By a formula given in [3], p. 133, we have

$$\Delta = 2\pi i (B - A - N),$$

where B is the number of zeros of W in \mathfrak{M} , A the number of poles, and N the Euler characteristic of \mathfrak{M} . On the other hand

$$\Delta = \int_0^1 d/dt \log d/dt - \{G(z(t)) + iH(z(t))\}dt$$

and this equals the variation of $\log d - \{G(z(t)) + iH(z(t))\}/dt$ over $0 \le t \le 1$. The properties of G and H on γ then yield directly that $\Delta = 0$. Thus B = A + N. But A = 1 and N = 2p - 1. Hence B = 2p, as asserted.

Let $\alpha_1, \dots, \alpha_{2p}$ be a homology basis of closed curves on \mathfrak{M} .

Definition 2. Let $u(\lambda)$ be a real continuous function on γ and let $U(\zeta)$ be the harmonic function on \mathfrak{M} with U = u on γ . Then $\Phi_{\nu}(u)$, $\nu = 1, 2, \cdots, 2p$, denotes the period of the conjugate function of U corresponding to α_{ν} .

Definition 3. For $\mu = 1, \dots, 2p$, $\psi_{\mu}(\zeta)$ is a harmonic function on \mathfrak{M} , continuous on $\mathfrak{M} + \gamma$ and twice differentiable on γ , with $\Phi_{\nu}(\psi_{\mu}) = \delta_{\mu}{}^{\nu}$.

LEMMA 2. There exist functions K_i , $i=1, \dots, 2p$, meromorphic on \mathfrak{M} and continuous and real valued on γ such that for $i=1, \dots, 2p$, $\Phi_i=K_i d_{\omega}$ as functionals, i.e. $\Phi_i(u)=\int_{\gamma}u(\lambda)K_i(\lambda)d_{\omega}(\lambda)$, all u, and such that $W(\zeta)K_i(\zeta)$ is analytic on \mathfrak{M} for each i.

Proof. Let W have the zeros z_1, \dots, z_k in \mathfrak{M} of orders ν_1, \dots, ν_k . By Lemma 1, $\sum_{i=1}^{i=k} \nu_i = 2p$. At z_i we use local polar coordinates (r_i, θ_i) for $i = 1, \dots, k$.

For each $i, i = 1, \dots, k$ a well-known construction yields us functions $u_j^i, j = 1, \dots, \nu_i$ and $v_j^i, j = 1, \dots, \nu_i$ such that:

- (i) u_j^i , v_j^i are harmonic on \mathfrak{M} except at z_i .
- (ii) u_j^i has at z_i a pole with principal part $(r_i)^{-j} \cos j\theta_i$ and v_j^i has at z_i a pole with principal part $(r_i)^{-j} \sin j\theta_i^j$.
 - (iii) u_j^i and v_j^i vanish identically on γ .

The 4p functions u_j^i , v_j^i together form a linearly independent set. For suppose $\sum_{i,j} c_j^i u_j^i + d_j^i v_j^i = 0$, c_j^i , d_j^i being constants. Because of the poles of the u_j^i , v_j^i this implies $c_j^i u_j^i + d_j^i v_j^i = 0$, whence $c_j^i \cos j\theta_i + d_j^i \sin j\theta_i = 0$. Since θ_i is arbitrary, we conclude $c_j^i = d_j^i = 0$, all i, j. Thus linear independence is established. We now seek constants a_j^i , b_j^i , $j = 1, \dots, v_i$, $i = 1, \dots, 2p$,

such that the function $\sum_{i,j} a_j^i u_j^i + b_j^i v_j^i$ have a single-valued conjugate function. This gives 2p conditions on 4p unknowns, and so we obtain at least 2p linearly independent 4p-tuples satisfying the conditions. We thus get the linearly independent functions

$$q^{\nu}(\zeta) = \sum_{i,j} a_{j\nu}^{i} u_{j}^{i}(\zeta) + b_{j\nu}^{i} v_{j}^{i}(\zeta), \qquad \qquad \nu = 1, \cdots, 2p.$$

where each q^{ν} has a single-valued conjugate function. Then $q^{\nu}(\zeta)$ is harmonic on \mathfrak{M} except for possible poles at the points z_i of orders $\leq \nu_i$ and $q^{\nu}(\lambda) = 0$ on γ for all ν .

Let $r^{\nu}(\zeta)$ be the conjugate function of q^{ν} with $r^{\nu}(\zeta_0) = 0$. Then $h_{\nu}(\zeta) = i(q^{\nu}(\zeta) + ir^{\nu}(\zeta))$ is, for $\nu = 1, \dots, 2p$, a meromorphic function on \mathfrak{M} such that $h_{\nu}(\lambda)$ is real and continuous on γ for each ν . Suppose $\sum_{\nu=1}^{2p} c_{\nu}h_{\nu} = 0$, where $c_{\nu} = a_{\nu} + ib_{\nu}$, $(a_{\nu}, b_{\nu} \text{ real})$. Since $h_{\nu}(\lambda)$ is real for λ and γ , this gives $\sum_{\nu=1}^{2p} a_{\nu}h_{\nu}(\lambda) = \sum_{\nu=1}^{2p} b_{\nu}h_{\nu}(\lambda) = 0$ for λ in γ . But $\sum_{\nu=1}^{2p} a_{\nu}h_{\nu}(\zeta)$ is meromorphic and so $\sum_{\nu=1}^{2p} a_{\nu}h_{\nu}(\zeta) = 0$, $\zeta \in \mathfrak{M}$. Similarly $\sum_{\nu=1}^{2p} b_{\nu}h_{\nu}(\zeta) = 0$ on \mathfrak{M} . Hence $\sum_{\nu=1}^{2p} a_{\nu}q^{\nu}(\zeta) = \sum_{\nu=1}^{2p} b_{\nu}q^{\nu}(\zeta) = 0$ on \mathfrak{M} . But the q^{ν} are linearly independent by construction, whence $a_{\nu} = b_{\nu} = 0$, all ν . Hence $c_{\nu} = 0$, all ν . Hence the h_{ν} are linearly independent.

Consider now the covariant $h_{\nu}(\zeta)W(\zeta)$. This has no poles except possibly at ζ_0 since the zeros of W cancel the poles of h_{ν} . Also $h_{\nu}(\zeta_0) = iq^{\nu}(\zeta_0)$ and so $\frac{1}{2\pi i}\int_{\gamma}h_{\nu}(\lambda)W(\lambda)d\lambda = iq^{\nu}(\zeta_0)$ by the residue theorem. Now $h_{\nu}(\lambda)$ is real on γ , and $\frac{1}{2\pi i}W(\lambda)d\lambda$ is a real-valued measure on γ . Hence the left hand side is real. Hence $q^{\nu}(\zeta_0) = 0$ and so $h_{\nu}(\zeta_0) = 0$. It follows that $h_{\nu}(\zeta)W(\zeta)$ is regular at ζ_0 and so everywhere on \mathfrak{M} .

Let now N be the space of all real continuous functions u on γ with $\Phi_{\nu}(u)=0$ for $\nu=1,\cdots,2p$. Given u in N choose v twice differentiable on γ with $\|u-v\|<\epsilon$. Then there is a constant K so that

$$|\Phi_{\nu}(v)| = |\Phi_{\nu}(v-u)| \leq K\epsilon, \qquad \nu = 1, \cdots, 2p.$$

Set $w(\lambda) = v(\lambda) - \sum_{\nu=1}^{2p} \Phi_{\nu}(\nu)\psi_{\nu}(\lambda)$. Then w is differentiable on γ , $\Phi_{j}(w) = 0$, $j = 1, \dots, 2p$ and

$$||u-w|| \le ||u-v|| + \sum_{\nu=1}^{2p} |\Phi_{\nu}(v)| ||\psi_{\nu}|| < \epsilon + K'\epsilon = K''\epsilon, K''$$

independent of ϵ .

Let $w(\xi)$ be the harmonic function with boundary value $w(\lambda)$. Since $\Phi_j(w) = 0$, $j = 1, \dots, 2p$, w has a single-valued conjugate w_1 and since w is twice differentiable on γ , w_1 is continuous in $\mathfrak{M} + \gamma$. By the preceding $h_i(\xi)W(\xi)$ is analytic on \mathfrak{M} for each i. The residue theorem yields:

$$0 = \int_{\gamma} (w(\lambda) + iw_1(\lambda))h_i(\lambda)W(\lambda)d\lambda,$$

all i. Since $h_i(\lambda)$ is real, we get

$$0 = \int_{\gamma} w(\lambda)h_i(\lambda)W(\lambda)d\lambda = \int_{\gamma} w(\lambda)h_i(\lambda)dw(\lambda)$$

for all i. Now

$$\begin{split} |\int_{\gamma} u(\lambda)h_{i}(\lambda)dw(\lambda)| &= |\int_{\gamma} (u(\lambda) - w(\lambda))h_{i}(\lambda)dw(\lambda)| \\ &\leq K'' \epsilon \int_{\gamma} |h_{i}(\lambda)| dw(\lambda). \end{split}$$

Since ϵ is arbitrary, we get

$$\int_{\gamma} u(\lambda)h_i(\lambda)dw(\lambda) = 0,$$

all *i*. Thus the functional $h_i dw$ annihilates *N*. Hence, by elementary vector-space reasoning, there exist constants b_{ν}^i , $i = 1, \dots, 2p$, $\nu = 1, \dots, 2p$, with

$$h_i(\lambda)dw(\lambda) = \sum_{\nu=1}^{2p} b_{\nu}\Phi_{\nu}, \qquad i = 1, \cdots, 2p.$$

Since the h_i are linearly independent, we can solve this system of equations to get

$$\Phi_{\nu} = \sum_{i=1}^{2p} c_{\nu}{}^{i}h_{i}(\lambda)dw(\lambda) = K_{\nu}(\lambda)dw(\lambda), \qquad \nu = 1, \dots, 2p.$$

The properties of the h_i established above yield that the K_i satisfy the assertions of the Lemma.

Lemma 3. Let μ be any complex-valued Borel measure on γ such that $\int_{\gamma} f(\lambda) d\mu(\lambda) = 0$ whenever $f \in \mathfrak{A}$. Then for closed sets E on γ , $\omega(E) = 0$ implies $\mu(E) = 0$.

The analogous assertion was proved for the unit circle by F. and M. Riesz in [4]. A slight modification of their argument yields the following proof.

Proof of Lemma 3. Since E is closed, the complement of E on γ is the union of countably many disjoint arcs γ_n . Since

$$\int_{\gamma} d\omega(\lambda) < \infty, \qquad \sum_{n=1}^{\infty} \int_{\gamma_n} d\omega(\lambda) < \infty.$$

Hence we can find a sequence of positive numbers d_n with d_n increasing to infinity with n, such that $\sum_{n=1}^{\infty} \left(\int_{\gamma_n} d\omega(\lambda) \right) \cdot d_n < \infty$. For $n=1,2,\cdots$ we define a positive real twice differentiable function g_n on γ_n such that $I_n = \int_{\gamma_n} g_n(\lambda) d\omega(\lambda) < \infty$ and $g_n(\lambda)$ increases on γ_n to ∞ as λ approaches the endpoints of γ_n . Choose positive constants c_n with $\sum_{n=1}^{\infty} c_n I_n < \infty$.

Set $P(\lambda) = c_n g_n(\lambda) + d_n$ for $\lambda \in \gamma_n$, $n = 1, 2, \cdots$. Since $\omega(E) = 0$, P is defined almost everywhere on γ with respect to ω and so with respect to ω_{ζ} for every ζ in \mathfrak{M} . Let now $P(\zeta) = \int_{C}^{\lambda} P(\lambda) d\omega_{\zeta}(\lambda)$, $\zeta \in \mathfrak{M}$. Note that

$$\int_{\gamma} P(\lambda) d\omega(\lambda) = \sum_{n=1}^{\infty} \left(c_n I_n + d_n \int_{\gamma_n} d\omega(\lambda) \right) < \infty.$$

From the way $P(\lambda)$ was constructed, we see that $P(\lambda)$ is continuous and finite at each point $\lambda \not\sim E$ and $P(\lambda)$ becomes continuously $+\infty$ at each point of E.

By elementary properties of the harmonic measures ω_{ξ} , we get then that $P(\zeta)$ is harmonic in \mathfrak{M} and has $P(\lambda)$ as continuous boundary function on γ , if we make the obvious definition of continuous approach to ∞ for $P(\zeta)$ as $\zeta \to \lambda$, λ in E. Let k_1, \dots, k_{2p} be the periods of the conjugate function of $P(\zeta)$. Choose a constant d so that $P_1 = d + P - \sum_{i=1}^{2p} k_i \psi_i > 0$ on γ , and hence on \mathfrak{M} and let Q_1 be the (single-valued) conjugate function of P_1 . Set now $k(\zeta) = (1 + P_1 + iQ_1)^{-1} \cdot (P_1 + iQ_1)(\zeta)$. Then $k(\zeta)$ is analytic in \mathfrak{M} . For $\lambda \varepsilon \gamma$ and $\lambda \not \varepsilon E$, $k(\lambda) = (1 + x + iy)^{-1} \cdot (x + iy)$ with $0 < x < \infty$ and hence $|k(\lambda)| < 1$. Let $\lambda \varepsilon E$. As $\zeta \to \lambda |P_1(\zeta) + iQ_1(\zeta)| \to \infty$, whence $k(\zeta) \to 1$. Thus $k(\lambda) = 1$ on E. In particular $k(\lambda)$ is continuous in $\mathfrak{M} + \gamma$, and so $k \varepsilon \mathfrak{A}$. Hence $k^n \varepsilon \mathfrak{A}$ for $n = 1, 2, \cdots$. Then

$$0 = \int_{\gamma} k^{n}(\lambda) d\mu(\lambda) = \int_{E} d\mu(\lambda) + \int_{\gamma - E} k^{n}(\lambda) d\mu(\lambda).$$

Letting $n \to \infty$ and recalling that $|k(\lambda)| < 1$ if $\lambda \in \gamma - E$, we conclude that $0 = \int_{\mathbb{R}} d\mu(\lambda) = \mu(\mathcal{F})$, as asserted.

Definition 4. We denote by $L^p(\gamma)$ the class of functions $F(\lambda)$ on γ measurable with respect to ω and with $\int_{\gamma} |F(\lambda)|^p d\omega(\lambda) < \infty$.

COROLLARY. If μ is a Borel-measure on γ such that $\int_{\gamma} f(\lambda) d\mu(\lambda) = 0$ for all $f \in \mathfrak{A}$, then there exists $F(\lambda) \in L^1(\gamma)$ such that $d\mu(\lambda) = F(\lambda) d\omega(\lambda)$ as measures on γ .

Proof. By Lemma 3, $\omega(E) = 0$ implies $\mu(E) = 0$ for any closed set E. It follows that this implication holds for each Borel set E.

We can write $\mu=\mu^+-\mu^-+i\nu^+-i\nu^-$ where μ^+ , μ^- , ν^+ , ν^- are real nonnegative measures. Let now E be any Borel set with $\omega(E)=0$. For every Borel subset E' of E, $\omega(E')=0$ and so $\mu(E')=0$. Hence $\mu^+(E)=\mu^-(E)=\nu^+(E)=\nu^-(E)=0$. Thus μ^+ , etc. are all absolutely continuous with respect to ω . It follows by the Radon-Nikodym theorem, that $d\mu^+(\lambda)=F_1(\lambda)d\omega(\lambda)$, where $F_1 \in L^1(\gamma)$. Similarly $d\mu^-(\lambda)=F_2(\lambda)d\omega(\lambda)$, $F_2 \in L^1(\gamma)$ and so on. Adding these equations we get the assertion.

Let now γ' be a simple closed analytic curve in $\mathfrak M$ such that γ and γ' together bound an annular subregion $\mathfrak M'$ of $\mathfrak M$. We choose γ' so that all zeros of W lie outside $\mathfrak M' + \gamma'$. We can then map $\mathfrak M'$ conformally onto the annulus r' < |z| < 1 in the plane, by a mapping $z = \chi(\zeta)$, $\zeta \in \mathfrak M'$. Since γ , γ' are analytic curves, χ is analytic on the boundary curves γ and γ' . It follows that for a fixed K, and each Borel set E on γ ,

$$\frac{1}{K}\omega(E) \leq m(\chi(E)) \leq K\omega(E),$$

where m denotes Lebesgue measure on |z|=1.

Let $F(\zeta)$ be analytic on \mathfrak{M}' . Then $F^o(z) = F(\chi^{-1}(z))$ is analytic in the annulus r' < |z| < 1. We shall omit the symbol "o," since this omission introduces no ambiguity. Also for $g(\lambda)$ defined on γ , we write $g(e^{i\theta})$ for $g(\chi^{-1}(e^{i\theta}))$.

Definition 5. Let F be analytic in \mathfrak{M} . We say $F \in \mathfrak{F}'$, provided that (with the notations just given)

$$\int_0^{2\pi} |F(re^{i\theta})| d\theta = O(1) \text{ as } r \to 1.$$

Lemma 4. Let $F(\zeta) \in \mathcal{S}'$. Then there exists a function $F^*(\lambda)$ defined on γ a.e.— $d\omega$ such that

(a)
$$F^* \varepsilon L^1(\gamma)$$
.

(b)
$$F(\zeta) = \frac{1}{2\pi i} \int_{\gamma} F^*(\lambda) W_{\zeta}(\lambda) d\lambda$$
, all $\zeta \in \mathfrak{M}$.

- (c) $\lim_{\zeta \to \lambda} F(\zeta) = F^*(\lambda)$ a.e.— $d\omega$ on γ , if $\zeta \to \lambda$ within some sector.
- (d) Fix $r_1 > r'$. Then for some constant K independent of F and r we have for $r_1 < r < 1$:

$$\int_0^{2\pi} |F(re^{i\theta})| d\theta \leq K \int_0^{2\pi} |F^*(e^{i\theta})| d\theta.$$

Proof. By hypothesis $\int_0^{2\pi} |F(re^{i\theta})| d\theta = O(1)$ as $r \to 1$, and F(z) is analytic for r' < |z| < 1. We may write $F = F_1 + F_2$ where F_1 is analytic in |z| < 1 and F_2 is analytic in |z| > r'. We hence get

$$\int_0^{2\pi} |F_1(re^{i\theta})| d\theta = O(1) \text{ as } r \to 1.$$

Classical results now give that $F_1^*(e^{i\theta}) = \lim_{z \to e^{i\theta}} F_1(z)$ exists for a. a. θ if the approach to the boundary lies within some sector, and that $F_1^*(e^{i\theta})$ is summable on $0 \le \theta < 2\pi$. Hence $\lim_{z \to e^{i\theta}} F(z)$ exists a.e. We denote it by $F^*(e^{i\theta})$; for λ on γ we write $F^*(\lambda)$ instead of $F^*(\chi(\lambda))$. Since sets of ω -measure 0 on γ correspond to sets of Lebesgue measure 0 on |z| = 1, we so get assertion (c).

Let now r' < r < 1 and let γ_r be the curve in \mathfrak{M}' which χ maps into the circle |z| = r. The residue theorem gives for $\zeta \in \mathfrak{M}$, ζ outside the region bounded by γ_r and γ :

$$F(\zeta) = \frac{1}{2\pi i} \int_{\gamma_r} F(\lambda) W_{\zeta}(\lambda) d\lambda = \frac{1}{2\pi} \int_0^{2\pi} F(re^{i\theta}) W_{\zeta}(re^{i\theta}) re^{i\theta} d\theta.$$

By a classical theorem, $\lim_{r \to 1} \int_0^{2\pi} |F_1(re^{i\theta}) - F_1^*(e^{i\theta})| d\theta = 0$; also $W_{\zeta}(re^{i\theta})$ is continuous for $r' < r \leq 1$. It follows that

$$F(\zeta) = \lim_{r \to 1} \frac{1}{2\pi} \int_0^{2\pi} F(re^{i\theta}) W_{\zeta}(re^{i\theta}) re^{i\theta} d\theta = \frac{1}{2\pi} \int_0^{2\pi} F^*(e^{i\theta}) W_{\zeta}(e^{i\theta}) e^{i\theta} d\theta.$$

Hence $F(\zeta) = \frac{1}{2\pi i} \int_{\mathcal{R}} F^*(\lambda) W_{\zeta}(\lambda) d\lambda$, $\zeta \in \mathfrak{M}$. Thus (b) is proved.

Now

$$\int_{\gamma} |F^*(\lambda)| d\omega(\lambda) = \frac{1}{2\pi} \int_0^{2\pi} |F^*(e^{i\theta})| W(e^{i\theta}) e^{i\theta} d\theta < \infty,$$

since $\int_0^{2\pi} |F^*(e^{i\theta})| d\theta < \infty$ by construction of F^* , and W is continuous. Thus (a) holds. Finally, write $F(z) = F_1(z) + F_2(z)$, where $F_1(z)$ is analytic in |z| < 1 and $F_2(z) = -\frac{1}{2\pi i} \int_{|\tau| = r'}^{F} (\tau) (\tau - z)^{-1} d\tau$; so that F_2 is analytic in |z| > r'. Let $\zeta = \chi^{-1}(\tau)$. Then $F(\tau) = \int_{\gamma} F^*(\lambda) (W(\lambda))^{-1} W_{\zeta}(\lambda) d\omega(\lambda)$ by (b), whence $|F(\tau)| \leq M_{\zeta} \int_{\gamma} |F^*(\lambda)| d\omega(\lambda)$, where $M_{\zeta} = \max_{\lambda \in \gamma} |W^{-1}(\lambda) W_{\zeta}(\lambda)|$. Hence for $0 \leq \theta < 2\pi$, r' < r,

$$\begin{split} \mid F_2(re^{i\theta}) \mid & \leqq 1/(r-r') \max_{\mid \tau \mid = r'} \mid F(\tau) \mid \leqq (M/2\pi) 1/(r-r') \int_{\gamma} \mid F^*(\lambda) \mid d\omega(\lambda), \\ \text{where } M = \sup_{t \in \gamma'} M_{\xi}. \quad \text{At last, } r' < r_1 \leqq r, \end{split}$$

$$\int_0^{2\pi} |F_2(re^{i\theta})| d\theta \leq \int_{\gamma} |F^*(\lambda)| d\omega(\lambda) \cdot M_1 \leq M_2 \cdot \int_0^{2\pi} |F^*(e^{i\theta})| d\theta,$$

where M_1 and M_2 are constants. On the other hand, since F_1 is analytic in |z| < 1,

$$\int_{0}^{2\pi} |F_{1}(re^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F_{1}^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F_{2}^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F_{2}^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta + \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta \leq \int_{0}^{2\pi} |F^{$$

Hence

$$\int_{0}^{2\pi} |F(re^{i\theta})| d\theta = \int_{0}^{2\pi} |F_{1}(re^{i\theta})| + |F_{2}(re^{i\theta})| d\theta$$

$$\leq (1 + 2M_{2}) \int_{0}^{2\pi} |F^{*}(e^{i\theta})| d\theta.$$

This proves (d).

Definition 6. \mathfrak{B} is the conjugate space of C.

By the representation theorem of F. Riesz, \mathfrak{D} may be identified with the space of all complex-valued Borel-measures on γ .

Definition 7. \mathfrak{B} is the subspace of \mathfrak{B} consisting of all measures μ of the form $d\mu(\lambda) = G^*(\lambda) d\omega(\lambda)$ where G^* is the boundary function of some G in \mathfrak{S}' with $G(\zeta_0) = 0$.

LEMMA 5.3 \$\mathbb{M}\$ is regularly closed as subspace of \$\mathbb{M}\$.

³ The idea of using a lemma of this kind resulted from a conversation with Professor S. Kakutani.

Proof. By a theorem of Banach, [5], p. 124, it suffices to show that with each weakly convergent sequence of elements of $\mathfrak B$ the limit again is in $\mathfrak B$.

Let now $\mu_n \in \mathfrak{M}$, μ_n converge weakly to μ . By Definition 7, there exists $G_n \in \mathfrak{S}'$, $G_n(\zeta_0) = 0$ with $d\mu_n(\lambda) = G_n^*(\lambda) d\omega(\lambda)$. Then for each $f \in \mathfrak{A}$, $f \cdot G_n \in \mathfrak{S}'$, and so by Lemma 4,

$$0 = f(\zeta_0) G_n(\zeta_0) = \int_{\gamma} f(\lambda) G_n^*(\lambda) d\omega(\lambda) = \int_{\gamma} f(\lambda) d\mu_n(\lambda).$$

For $f \in \mathfrak{A}$, then, $0 = \int_{\gamma} f(\lambda) d\mu(\lambda)$. By the Corollary to Lemma 3, this implies that there exists $G_0 \in L^1(\gamma)$ with $G_0(\lambda) d\omega(\lambda) = d\mu(\lambda)$.

We shall show that G_n converges to a function G analytic on \mathfrak{M} with $G \in \mathfrak{G}'$ and that $G^*(\lambda) = G_0(\lambda)$ a.e.— d_{ω} on γ . From this it follows that $d_{\mu}(\lambda) = G^*(\lambda) d_{\omega}(\lambda)$ and so $\mu \in \mathfrak{B}$. Now

$$G_n(\zeta) = \frac{1}{2\pi i} \int_{\gamma} G_n^*(\lambda) W_{\zeta}(\lambda) d\lambda = \int_{\gamma} (W(\lambda))^{-1} W_{\zeta}(\lambda) d\mu_n(\lambda).$$

Hence $G(\zeta) = \lim_{n \to \infty} G_n(\zeta)$ exists for $\zeta \in \mathfrak{M}$. Also

$$|G_n(\zeta)| \leq M_{\zeta} \int_{\gamma} |G_n^*(\lambda)| d\omega(\lambda),$$

where $M_{\zeta} = \max_{\lambda \in \gamma} |(W(\lambda))^{-1}W_{\zeta}(\lambda)|$. Now since the sequence μ_n converges weakly, the total variation of μ_n has a bound K valid for all n. Hence

(1)
$$\int_{\alpha} |G_n^*(\lambda)| d\omega(\lambda) < K.$$

Also M_{ζ} is bounded on each compact subset of \mathfrak{M} . Hence by Vitali's theorem, G is analytic on \mathfrak{M} and $\lim_{n\to\infty}G_n=G$ uniformly on each compact subset of \mathfrak{M} . Now

$$\int_{\gamma} |G_n^*(\lambda)| d\omega(\lambda) = \frac{1}{2\pi} \int_0^{2\pi} |G_n^*(e^{i\theta})| W(e^{i\theta}) e^{i\theta} d\theta.$$

But $W(e^{i\theta})e^{i\theta}$ has a positive lower bound on $(0, 2\pi)$. Hence $\int_0^{2\pi} |G_n^*(e^{i\theta})| d\theta < K'$, all n, by (1). Hence $\int_0^{2\pi} |G_n(re^{i\theta})| d\theta < K''$, all n, by (d) of Lemma 4, $r' < r_1 < r < 1$. It follows that $\int_0^{2\pi} |G(re^{i\theta})| d\theta < K''$, whence $G \in \mathfrak{F}'$. We claim that $G^*(\lambda) = G_0(\lambda)$ a.e.— $d\omega$.

Let now r' < r < 1. Set

$$\begin{split} &U_{n}^{-1}(z) = \frac{1}{2\pi i} \int_{|\tau| = r'} (\tau - z)^{-1} G_{n}(\tau) d\tau, \quad |z| > r' \\ &U_{n}^{-2}(z) = \frac{1}{2\pi i} \int_{|\tau| = r} (\tau - z)^{-1} G_{n}(\tau) d\tau, \quad |z| < r. \end{split}$$

Then U_{n^1} is analytic for |z| > r', U_{n^2} for |z| < 1, and

$$G_n(z) = U_{n^2}(z) - U_{n^1}(z), \quad r' < |z| < 1.$$

Clearly $U_n^{1*}(e^{i\theta}) = \lim_{z \to e^{i\theta}} U_n^{1}(z)$ exists for all θ . Also $G_n^*(e^{i\theta})$ exists a.e. Hence $U_n^{2*}(e^{i\theta})$ exists a.e. and $G_n^* = U_n^{2*} - U_n^{1*}$, a.e.

Now $G_n(\tau) \to G(\tau)$ uniformly on $|\tau| = r'$. Hence $U_n^1(z) \to U^1(z)$ uniformly for $r' < a \le |z| \le b < \infty$, and $U^{1*}(e^{i\theta})$ exists everywhere. Hence $U_n^2(z) \to U^2(z)$ uniformly in $r' < a \le |z| \le b < 1$, and $G(z) = U^2(z) - U^1(z)$. It follows that

(2)
$$\int_0^{2\pi} |U^2(re^{i\theta})| d\theta = O(1) \text{ as } r \to 1.$$

Also

(3)
$$G^*(e^{i\theta}) = U^{2*}(e^{i\theta}) - U^{1*}(e^{i\theta})$$
 a. e.

Fix $r, \phi; r < 1$, $0 \le \phi < 2\pi$. Set $g(\theta) = (1 - r^2) (1 + r^2 - 2r \cos(\theta - \phi))^{-1}$. Now

$$\frac{1}{2\pi} \int_{0}^{2\pi} U_{n}^{2*}(e^{i\theta}) g(\theta) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} (G_{n}^{*}(e^{i\theta}) + U_{n}^{1*}(e^{i\theta})) g(\theta) d\theta$$

and $U_n^{1*}(e^{i\theta}) \to U^{1*}(e^{i\theta})$ uniformly in $0 \le \theta < 2\pi$ and $G_n^*(\lambda) d\omega(\lambda)$ converges weakly to $G_0(\lambda) d\omega(\lambda)$. Hence

$$\lim_{n\to\infty} \frac{1}{2\pi} \int_0^{2\pi} U_n^{2*}(e^{i\theta}) g(\theta) d\theta = \frac{1}{2\pi} \int_0^{2\pi} (G_0(e^{i\theta}) + U^{1*}(e^{i\theta})) g(\theta) d\theta.$$

On the other hand,

$$U_{n^{2}}(re^{i\phi}) = \frac{1}{2\pi} \int_{0}^{2\pi} U_{n^{2}}(e^{i\theta}) g(\theta) d\theta \to U^{2}(re^{i\phi}).$$

By (2) we get, since U^2 is analytic in |z| < 1,

$$U^{2}(re^{i\phi}) = \frac{1}{2\pi} \int_{0}^{2\pi} U^{2*}(e^{i\theta}) g(\theta) d\theta.$$

Hence

$$\int_0^{2\pi} U^{2*}(e^{i\theta}) g(\theta) d\theta = \int_0^{2\pi} (G_0(e^{i\theta}) + U^1(e^{i\theta})) g(\theta) d\theta,$$

or

$$0 = \int_0^{2\pi} \{U^{2*} - G_0 - U^{1*}\} (e^{i\theta}) (1 - r^2) (1 + r^2 - 2r\cos(\theta - \phi))^{-1} d\theta.$$

This now holds for arbitrary r, ϕ . Since $U^{2*} - G_0 - U^{1*}$ is summable on $(0, 2\pi)$, we conclude

$$G_0(e^{i\theta}) = U^{2*}(e^{i\theta}) - U^{1*}(e^{i\theta}) = G^*(e^{i\theta}), \text{ a. e.}$$

The conclusion now follows, as shown above.

Theorem 1. Let $\mu_0 \in \mathfrak{V}$ and $\int_{\gamma} f(\lambda) d\mu_0(\lambda) = 0$ for all f in \mathfrak{A} . Then there exists $J \in \mathfrak{F}'$, $J(\zeta_0) = 0$, and constants c_i such that, setting

$$L(\lambda) = J^*(\lambda) + \sum_{i=1}^{2p} c_i K_i(\lambda),$$

where K_i are the functions of Lemma 2, we have $d\mu_0(\lambda) = L(\lambda) d\omega(\lambda)$.

Proof. Let \mathfrak{B}' be the vector-space obtained by adjoining to \mathfrak{B} the measures $K_i(\lambda)d\omega(\lambda)$, $i=1,\dots,2p$. Since \mathfrak{B} is regularly closed, the same is true of \mathfrak{B}' . Our assertion amounts to the statement that $\mu_0 \in \mathfrak{B}'$.

Suppose $\mu_0 \not \approx \mathfrak{B}'$. Since \mathfrak{B}' is regularly closed, it follows by Banach's definition, that for some f_0 in C

(4)
$$\int_{\gamma} f_0(\lambda) d\mu_0(\lambda) \neq 0$$

(5)
$$\int_{\gamma} f_0(\lambda) d\mu(\lambda) = 0 \text{ if } \mu \in \mathfrak{B}'.$$

Let now $\mathfrak A$ be the closure in $L^2(\gamma)$ of $\mathfrak A$. Then we can decompose f_0 as follows: $f_0 = H + G$, $H \in \overline{\mathfrak A}$, G orthogonal to $\overline{\mathfrak A}$. Let $f \in \mathfrak A$. Then

(6)
$$\int_{\gamma} \bar{f}(\lambda) G(\lambda) d\omega(\lambda) = 0.$$

Hence

(6')
$$\int_{\gamma} G(\lambda) d\omega(\lambda) = 0.$$

Let now $H_n \in \mathfrak{A}$, $H_n \to H$ in the norm of $L^2(\gamma)$. Then by the residue theorem

$$\frac{1}{2\pi i} \int_{\gamma} H_n(\lambda) \left(f(\lambda) - f(\zeta_0) \right) d\omega(\lambda) = 0,$$

whence

(7)
$$\int_{\gamma} H(\lambda) \left(f(\lambda) - f(\zeta_0) \right) d\omega(\lambda) = 0.$$

Also $(f(\lambda) - f(\zeta_0)) d\omega(\lambda) \in \mathfrak{W}'$, whence by (5)

$$\int_{\gamma} f_0(\lambda) \left(f(\lambda) - f(\zeta_0) \right) d\omega(\lambda) = 0.$$

Hence from $f_0 = H + G$ and (7),

$$\int_{\gamma} G(\lambda) \left(f(\lambda) - f(\zeta_0) \right) d\omega(\lambda) = 0.$$

By (6'), then,

(8)
$$\int_{\gamma} G(\lambda) f(\lambda) d\omega(\lambda) = 0.$$

It follows from (6) and (8) that $\int_{\gamma} u(\lambda) G(\lambda) d\omega(\lambda) = 0$ for all real continuous functions u on γ with $u = \operatorname{Re} f$, for some $f \in \mathfrak{A}$. As in the proof of Lemma 2, we get from this that for some b_{ν} , $G(\lambda) d\omega(\lambda) = \sum_{\nu=1}^{2p} b_{\nu} \Phi_{\nu}$ as functionals, and hence that

(9)
$$G(\lambda) d\omega(\lambda) = \sum_{i=1}^{2p} c_i K_i(\lambda) d\omega(\lambda)$$

where K_i are the functions constructed in Lemma 2. Now

$$\int_{\gamma} H(\lambda) K_{\nu}(\lambda) d\omega(\lambda) = 0, \qquad \nu = 1, \cdots, 2p;$$

also $K_{\nu}(\lambda) d\omega(\lambda) \in \mathfrak{W}'$. Hence by (5),

$$\int_{\gamma} f_0(\lambda) K_{\nu}(\lambda) d\omega(\lambda) = 0, \qquad \nu = 1, \dots, 2p.$$

Hence

(10)
$$\int_{\gamma} G(\lambda) K_{\nu}(\lambda) d\omega(\lambda) = 0, \qquad \nu = 1, \dots, 2p.$$

By (9) and (10),

$$\int_{\gamma} |G(\lambda)|^2 d\omega(\lambda) = \int_{\gamma} G(\lambda) \sum_{i=1}^{2p} \bar{c}_i K_i(\lambda) d\omega(\lambda)$$
$$= \sum_{i=1}^{2p} \bar{c}_i \int_{\gamma} G(\lambda) K_i(\lambda) d\omega(\lambda) = 0.$$

Hence $G(\lambda) = 0$ a. e. and so $f_0 = H$ a. e.

Now consider $H_n \in \mathfrak{A}$, $H_n \to H$ in the norm of $L^2(\gamma)$. Then for $\zeta \in \mathfrak{M}$,

$$H_n(\zeta) = \frac{1}{2\pi i} \int_{\gamma} H_n(\lambda) W_{\zeta}(\lambda) d\lambda.$$

It then follows that

$$\frac{1}{2\pi i} \int_{\gamma} f_0(\lambda) W_{\zeta}(\lambda) d\lambda = \lim_{n \to \infty} H_n(\zeta)$$

is analytic in \mathfrak{M} . Also $\frac{1}{2\pi i} \int_{\gamma} f_0(\lambda) W_{\zeta}(\lambda) d\lambda$ has f_0 as continuous boundary value on γ . Hence $f_0 \in \mathfrak{A}$. Then $\int_{\gamma} f_0(\lambda) d\mu_0(\lambda) = 0$. This contradicts (4). Hence the assertion must be true.

3. Proof of Theorem 2. Let \mathfrak{A}' be a closed subalgebra of C with $\mathfrak{A}' \neq C$ and $\mathfrak{A} \subseteq \mathfrak{A}'$. Since \mathfrak{A}' is a proper closed subspace of C, a well-known theorem on Banach spaces guarantees the existence of a non-zero functional on C which annihilates \mathfrak{A}' . Thus there exists $\mu \in \mathfrak{B}$, $\mu \neq 0$ with $\int_{\gamma} g(\lambda) d\mu(\lambda) = 0$ if $g \in \mathfrak{A}'$. This holds in particular if $g \in \mathfrak{A}$. Hence by Theorem 1, $d\mu(\lambda) = L_0(\lambda) d\omega(\lambda)$ where L_0 is meromorphic on \mathfrak{M} and analytic on \mathfrak{M} except at the poles of the K_i . Hence L_0 is analytic except at the points z_1, \dots, z_k where W vanishes. Also, $\lim_{\zeta \to \lambda} L_0(\zeta)$ exists for a. a. λ on γ , if $\zeta \to \lambda$ within some sector, and this limit $\zeta \to 0$ a. e. on γ .

Fix now $\phi \in \mathfrak{A}'$. We shall show $\phi \in \mathfrak{A}$. For if $f \in \mathfrak{A}$, $f(\lambda)\phi^m(\lambda) \in \mathfrak{A}'$ for $m=1,2,\cdots$ whence $\int_{\gamma} f(\lambda)\phi^m(\lambda) d\mu(\lambda) = 0$. Applying Theorem 1 to the measures $\phi^m(\lambda) d\mu(\lambda)$, we get $\phi^m(\lambda) d\mu(\lambda) = L_m(\lambda) d\omega(\lambda)$ where L_m has the same analyticity and boundary behavior as L_0 . Hence $\phi^m(\lambda) L_0(\lambda) = L_m(\lambda)$ a.e. on γ . It follows that $(L_1(\lambda))^m = L_m(\lambda) (L_0(\lambda))^{m-1}$ a.e. on γ . On both sides we have non-tangential boundary values of functions analytic in the region \mathfrak{M}_0 obtained by deleting from \mathfrak{M} the points z_1, \dots, z_k . By a result of Lusin and Privaloff, [6], an analytic function possessing non-tangential boundary values on a set of positive measure is determined by these values. Hence $(L_1(\xi))^m = L_m(\xi) (L_0(\xi))^{m-1}$ for ξ in \mathfrak{M}_0 . Since this is true for all $m \geq 1$, L_0 cannot have a zero at any point ξ' in \mathfrak{M}_0 of order α unless L_1 has at ξ' a zero of order $\alpha = \alpha$. Hence $L_0^{-1}L_1$ is analytic in \mathfrak{M}_0 . Also, since $\phi(\lambda)L_0(\lambda) = L_1(\lambda)$ a.e. on γ , ϕ is the non-tangential limit of $L_0^{-1}L_1$ a.e. on γ .

Set $T\phi(\zeta) = L_0^{-1}(\zeta)L_1(\zeta)$. The map $\phi \to T\phi$ then assigns to each ϕ in \mathfrak{A}' an analytic function $T\phi$ on \mathfrak{M}_0 having boundary values $\phi(\lambda)$. By the theorem in [6] mentioned above, ϕ determines $T\phi$. Let now ϕ_1 , ϕ_2 belong to \mathfrak{A}' . Then

$$\lim_{\xi \to \lambda} T\phi_1(\xi) \cdot T\phi_2(\xi) = \phi_1(\lambda)\phi_2(\lambda)$$

and so $T(\phi_1 \cdot \phi_2) = T\phi_1 \cdot T\phi_2$. Similarly $T(\phi_1 + \phi_2) = T\phi_1 + T\phi_2$. Fix now z_0 in \mathfrak{M}_0 . Then the map $\phi \to T\phi(z_0)$ is a multiplicative functional defined on \mathfrak{A}' . But a multiplicative functional on a Banach algebra is always bounded and has bound 1. Hence $|T\phi(z_0)| \leq ||\phi||$. Since z_0 is an arbitrary point in \mathfrak{M}_0 , $T\phi$ is then bounded on \mathfrak{M}_0 ; hence $T\phi$ is analytic and bounded on \mathfrak{M} . Lemma 4 gives now that for ζ in \mathfrak{M} ,

$$T\phi(\zeta) = \int_{\gamma} (T\phi)^*(\lambda) d\omega_{\zeta}(\lambda) = \int_{\gamma} \phi(\lambda) d\omega_{\zeta}(\lambda).$$

On the other hand the last integral represents a continuous function on $\mathfrak{M} + \gamma$ agreeing with $\phi(\lambda)$ on γ . Hence ϕ is in \mathfrak{A} , as asserted.

Hence $\mathfrak{A}' = \mathfrak{A}$, and so Theorem 2 is established.

4. (Added November 27, 1954.) Let now \mathfrak{F}_1 , \mathfrak{F}_2 be Riemann surfaces, \mathfrak{M}_1 , \mathfrak{M}_2 regions on them bounded by simple closed analytic curves γ_1 , γ_2 with $\mathfrak{M}_i \cup \gamma_i$ compact, i = 1, 2. Let \mathfrak{A}_i be the algebra of functions continuous on γ_i and extendable to be analytic on \mathfrak{M}_i , i = 1, 2. We assert:

Theorem 3. \mathfrak{A}_1 is isomorphic to \mathfrak{A}_2 as algebra if and only if \mathfrak{M}_1 is conformally equivalent to \mathfrak{M}_2 .

We need the following:

Lemma. If χ is a multiplicative functional on \mathfrak{A}_i , then there exists a point $p \in \mathfrak{M}_i \cup \gamma_i$ with $\chi(f) = f(p)$, all $f \in \mathfrak{A}_i$.

*Proof.*⁴ (We omit the subscript i from \mathfrak{A}_i , etc.) By the general representation theorem for bounded linear functions on spaces of continuous functions, there is a measure μ_0 on γ with

$$\chi(f) = \int_{\gamma} f(\lambda) d\mu_0(\lambda), \qquad f \in \mathfrak{A}.$$

Suppose now that the assertion of the Lemma is false. Then for each $p \in \mathfrak{M} \cup \gamma$ there exists $f_p \in \mathfrak{A}$ with $\chi(f_p) = 0$ and $f_p(p) \neq 0$.

Let $d_{\omega}(\lambda)$ and $W(\zeta)$ have the same meaning as in the preceding sections. Let \mathfrak{M}_0 be the region obtained by deleting from \mathfrak{M} the zeros of W.

Now for all $f \in \mathfrak{A}$ and p in $\mathfrak{M} \cup \gamma$

$$0 = \chi(f \cdot f_p) = \int_{\gamma} f(\lambda) f_p(\lambda) d\mu_0(\lambda).$$

Hence the measure $f_p(\lambda) d\mu_0(\lambda)$ annihilates \mathfrak{A} . By Theorem 1, then we can

⁴ Cf. L. Carleson [7], Theorem 4, for a similar method of proof.

find a function L_p analytic on \mathfrak{M}_0 and with $L_p(\zeta)W(\zeta)$ regular on \mathfrak{M} , such that L_p has nontangential boundary-values $L_p(\lambda)$ for all λ in γ except for a set of ω -measure 0, and with $f_p(\lambda)d\mu_0(\lambda) = L_p(\lambda)d\omega(\lambda)$ as measures. Choose now p_1 , p_2 distinct in $\mathfrak{M} \cup \gamma$. Then

$$f_{p_2}(\lambda)f_{p_1}(\lambda)d\mu_0(\lambda) = f_{p_2}(\lambda)L_{p_1}(\lambda)d\omega(\lambda)$$

and

$$f_{p_1}(\lambda)f_{p_2}(\lambda)d\mu_0(\lambda) = f_{p_1}(\lambda)L_{p_2}(\lambda)d\omega(\lambda)$$

whence $f_{p_2} \cdot L_{p_1} = f_{p_1} \cdot L_{p_2}$ a.e.— $d\omega$ on γ , whence by the result in [6] which we have quoted earlier, $f_{p_2}(\zeta)L_{p_1}(\zeta) = f_{p_1}(\zeta)L_{p_2}(\zeta)$ for all ζ in \mathfrak{M} .

Fix now p_0 in \mathfrak{M} and set $F(\zeta) = f_{p_0}^{-1}(\zeta) L_{p_0}(\zeta)$. Since, for $q \in \mathfrak{M}_0$, L_q and f_q^{-1} are regular at q, we obtain that F is regular at q. Thus F is analytic on all \mathfrak{M}_0 and similarly we see that the covariant $F(\zeta)W(\zeta)$ is analytic on all of \mathfrak{M} .

Next, for each $q \in \gamma$, we choose an arc γ_q on γ with $|f_q(\lambda)| \ge \delta_q$ for λ in γ_q , δ_q being a positive number. By the Heine-Borel theorem, some finite set of these arcs covers γ . We can hence get $\delta > 0$ and a decomposition $\gamma = \bigcup_{i=1}^n \gamma_i$ where the γ_i are disjoint half-open arcs and for each i there is some q_i with $|f_{q_i}(\lambda)| \ge \delta$ on γ_i .

Now,
$$F(\zeta) = f_{q_i}^{-1}(\zeta) L_{q_i}(\zeta)$$
 for $\zeta \in \mathfrak{M}$, whence

$$F(\lambda) = \lim_{\xi \to \lambda} F(\xi) = f_{q_i}^{-1}(\lambda) L_{q_i}(\lambda)$$
 a.e. on γ_i .

We now use annular coordinates $r, \theta: r_0 \leq r \leq 1$, $0 \leq \theta \leq 2\pi$ in an annular subregion of \mathfrak{M} bounded on one side by γ , with r=1 being the equation of γ .

Let $g \in \mathfrak{A}$. Then for each i

$$\int_{\gamma_{i}} g(\lambda) d\mu_{0}(\lambda) = \int_{\gamma_{i}} g(\lambda) f_{q_{i}^{-1}}(\lambda) L_{q_{i}}(\lambda) d\omega(\lambda) = \int_{\gamma_{i}} F(\lambda) g(\lambda) d\omega(\lambda).$$

Hence

$$\int_{\gamma} g(\lambda) d\mu_0(\lambda) = \int_{\gamma} g(\lambda) F(\lambda) (2\pi i)^{-1} W(\lambda) d\lambda.$$

Now if γ_{ρ} is the curve with equation: $r = \rho$, $\rho < 1$,

$$\int_{\gamma_{\rho}} F(\zeta) g(\zeta) W(\zeta) d\zeta = 0$$

by the residue theorem. Also

$$\lim_{\rho \to 1} \int_{\gamma_{\rho}} F(\zeta) g(\zeta) W(\zeta) d\zeta = \int_{\gamma} g(\lambda) F(\lambda) W(\lambda) d\lambda$$

due to the boundary behavior of the functions L_p and f_p . Hence

$$\chi(g) = \int_{\gamma} g(\lambda) d\mu_0(\lambda) = \frac{1}{2\pi i} \int_{\gamma} g(\lambda) F(\lambda) W(\lambda) d\lambda = 0.$$

This must hold for all $g \in \mathfrak{A}$, which is impossible. Hence the assertion of the Lemma must be true.

COROLLARY. The space \mathfrak{S} of multiplicative functionals on \mathfrak{A} is homeomorphic to the set $\mathfrak{M} \cup \gamma$.

Proof. By the Lemma, if $\chi \varepsilon \mathfrak{S}$, then there exists $p \varepsilon \mathfrak{M} \cup \gamma$ with $\chi(f) = f(p)$ for all $f \varepsilon \mathfrak{A}$. There cannot exist two distinct points p_1 , p_2 with this property, for if $p_1 \neq p_2$ then for some f in \mathfrak{A} , $f(p_1) \neq f(p_2)$. Hence the map $\chi \to p$ takes \mathfrak{S} into $\mathfrak{M} \cup \gamma$. It is obviously one-one and it is onto $\mathfrak{M} \cup \gamma$ since each p in $\mathfrak{M} \cup \gamma$ defines some multiplicative functional on \mathfrak{A} . Finally, the map is easily seen to be bicontinuous.

Proof of Theorem 3. Let τ be an algebraic isomorphism of \mathfrak{A}_1 onto \mathfrak{A}_2 . Fix p in $\mathfrak{M}_2 \cup \gamma_2$. Map each f in \mathfrak{A}_1 into $\tau(f)(p)$. This map is a multiplicative functional on \mathfrak{A}_1 , whence by the lemma there exists $\phi(p)$ in $\mathfrak{M}_1 \cup \gamma_1$ with $\tau(f)(p) = f(\phi(p))$ if $f \in \mathfrak{A}_1$. The function ϕ then maps $\mathfrak{M}_2 \cup \gamma_2$ onto $\mathfrak{M}_1 \cup \gamma_1$ in a one-one and bicontinuous fashion. It follows that ϕ maps \mathfrak{M}_2 homeomorphically onto \mathfrak{M}_1 .

Fix p_0 in \mathfrak{M}_2 and f_0 in \mathfrak{A}_1 with f_0 locally simple at $\phi(p_0)$. Then for p in some neighborhood of p_0 , $f_0(\phi(p)) = \tau(f_0)(p)$. Since f_0 and $\tau(f_0)$ are analytic functions and moreover f_0 is one-one in a neighborhood of $\phi(p_0)$, ϕ is analytic at p_0 as mapping from \mathfrak{M}_2 to \mathfrak{M}_1 . This holds for each p_0 in \mathfrak{M}_2 and further ϕ is globally one-one. Hence ϕ provides a conformal map of \mathfrak{M}_2 onto \mathfrak{M}_1 .

Conversely, suppose we are given a conformal map ϕ of \mathfrak{M}_2 on \mathfrak{M}_1 . Classical results then give that ϕ is extendable to a homeomorphism of $\mathfrak{M}_2 \cup \gamma_2$ onto $\mathfrak{M}_1 \cup \gamma_1$. For each f in \mathfrak{A}_1 we can then define τf on $\mathfrak{M}_2 \cup \gamma_2$ as follows: $\tau f(p) = f(\phi(p))$, $p \in \mathfrak{M}_2 \cup \gamma_2$. Then $\tau f \in \mathfrak{A}_2$ and τ is an isomorphism from \mathfrak{A}_1 to \mathfrak{A}_2 . This proves Theorem 3.

Brown University.

REFERENCES.

- [1] J. Wermer, "On algebras of continuous functions," Proceedings of the American Mathematical Society, vol. 4 (1953), pp. 866-869.
- [2] ——, "Algebras with two generators," American Journal of Mathematics, vol. 76 (1954), pp. 853-859.
- [3] R. Nevanlinna, Uniformisierung, Springer Verlag, 1953.
- [4] F. and M. Riesz, "Über Randwerte einer analytischen Funktion," Quatrième Congrès des math. scandinaves, 1916, pp. 27-44.
- [5] S. Banach, Opérations Linéaires, Warszawa, 1932.
- [6] N. N. Lusin and I. I. Privaloff, "Sur l'unicité et multiplicité des fonctions analytiques," Annales de l'École Normale Supérieure, ser. 3, vol. 42 (1925), pp. 143-191.
- [7] L. Carleson, "On bounded analytic functions and closure problems," Arkiv för Matematik, 2, 12 (1952), pp. 283-291.