
Optics Communications xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier .com/locate /optcom
Anisotropic photonic crystals: Generalized plane wave method
and dispersion symmetry properties

Irina A. Khromova a,b,*, Leonid A. Melnikov a

a Saratov State University, Astrakhanskaya 83, Saratov 410026, Russian Federation
b Public University of Navarre, Campus Arrosadia, Pamplona, Navarra E31006, Spain
a r t i c l e i n f o

Article history:
Received 29 April 2008
Received in revised form 21 July 2008
Accepted 25 July 2008
Available online xxxx

Keywords:
Photonic crystal
Anisotropic photonic crystal
Plane wave method
Band gap
0030-4018/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.optcom.2008.07.059

* Corresponding author. Address: Saratov State Un
Saratov 410026, Russian Federation.

E-mail address: irina.khromova@unavarra.es (I.A. K

Please cite this article in press as: I.A. Khr
a b s t r a c t

This article presents a generalized vector plane wave expansion method, applicable to isotropic and
anisotropic periodic dielectric media of arbitrary geometry and dimension. The influence of anisotropic
material orientation on the symmetry properties of photonic crystal dispersion surface is discussed. It
is shown that the overall Brillouin zone symmetry is formed by the intersection of the photonic crystal
lattice symmetry and the symmetry determined by the anisotropic material orientation. This work
explains how to define the irreducible Brillouin zone of a two-dimensional anisotropic photonic crystal
and demonstrates that doing it correctly allows one to avoid erroneous results, when calculating band
gap diagrams of anisotropic photonic crystals. With the help of the methods presented, the possibility
of controlling the band gaps of anisotropic photonic crystals by means of external electric field is shown.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Photonic crystals (PCs), thanks to their unique properties and
the wide range of application possibilities they offer, are nowadays
among the most popular and studied objects in optics and photon-
ics [1–5].

This work is devoted to anisotropic PCs, i.e. artificially created
periodic dielectric objects with components made of anisotropic
materials. PCs of this type are very interesting, as, due to their con-
trollable dispersion, they can be used for creating tunable optical de-
vices [6–12], in particular, devices tunable by external electric field.

This paper presents the full vector plane wave expansion meth-
od, suitable for eigenwave analysis of both isotropic and aniso-
tropic periodic dielectric media with arbitrary geometry and
dimension. It allows for tensor dielectric permittivity values and
arbitrary material distributions.

The main goal of using anisotropic materials within PCs lies in
the idea of external band gap control. For instance, using liquid
crystals (LCs) and applying external electric field one could open
or close or shift the positions of band gaps of a PC. This idea is ac-
tual for one-, two- and three-dimensional structures, as plenty of
applications can be thought of for each of these cases.

One of the most popular methods used for band gap analysis is
the plane wave expansion method. It is also well known that to re-
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duce the calculation time only a part of the Brillouin zone can be ta-
ken into account. This part is a so-called irreducible Brillouin zone,
which reconstructs the whole Brillouin zone when corresponding
dispersion surface symmetry group operators are applied to it.
For isotropic cases the symmetry of the Brillouin zone is deter-
mined only by the PC lattice symmetry, for instance, the symmetry
of a two-dimensional hexagonal PC Brillouin zone is also hexagonal.

However, things get more complicated in the presence of mate-
rial anisotropy. This research presents a fresh view on the aniso-
tropic PC dispersion symmetry problem, and it will be shown
below that the symmetry of an anisotropic PC dispersion surface
is determined by anisotropic material orientation with respect to
PC lattice vectors and/or periodicity planes.

The possibility of controlling the positions and the widths of the
band gaps of anisotropic PCs by means of external electric field is
also discussed in the present paper.

2. Generalized plane wave method

Several groups of methods traditionally used for PCs properties
calculation can be marked out: methods, dealing with integral
equations [13]; methods, representing fields in PCs as superposi-
tions of localized functions [14]; and those, expanding field solu-
tions into plane waves [15–19].

Localized function techniques are the most suitable methods for
localized modes search, for example, it is convenient to use them
when analysing defect containing structures. However, this meth-
od often appears to be rather time- and effort-consuming.
Commun. (2008), doi:10.1016/j.optcom.2008.07.059
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From this point of view the plane wave method is a profitable
solution for calculating the dispersion properties of periodic media
without defects. In particular, it is efficient and convenient for pre-
liminary calculations when modeling complex devices based on
PCs.

The presence of anisotropic materials in a PC complicates its
analysis, as the dispersion equation turns from a vector one into
a tensor-containing one due to the tensor magnitude of the dielec-
tric permittivity of anisotropic media. This case does not allow
using any scalar or diagonal tensor approximations, as they yield
quite a rough and even erroneous solution. Moreover, these
approximations do not serve for inhomogeneous distribution of
anisotropic material in PC structures.

In this work, a plane wave method was generalized for aniso-
tropic media containing PCs. This method is valid for any infinite
periodic media of arbitrary dimensions, geometry, and material
properties (including inhomogeneous anisotropic ones).

Consider an infinite periodic media, which in a most general
case is made of a mixture of isotropic and anisotropic materials,
for instance, a periodic glass walls structure, filled with LC. As it
has been already mentioned, mathematically material anisotropy
is expressed as a dielectric permittivity tensor, which, provided
the coordinate basis coincides with anisotropy axes, looks as
follows:

e
_

0 ¼
e1 0 0
0 e2 0
0 0 e3

0
B@

1
CA; ð1Þ

where e1, e2, and e3 characterize the material dielectric properties
along each of the three directions.

Choosing any other Cartesian coordinate system results in the
dielectric permittivity tensor rotation, which can be expressed as
the initial tensor value e

_

0 multiplied by a corresponding rotation
matrix Tð�rÞ, where �r is the position vector:

êað�rÞ ¼ Tð�rÞ̂e0ð�rÞT�1ð�rÞ: ð2Þ

It is convenient to introduce a profile function f ð�rÞ expressing the
correspondence of a current coordinate position to a certain
material:

f ð�rÞ ¼

f0 ¼ 0;basic media;
:::;

fi ¼ i; material i;

:::;

fN ¼ N;material N;

8>>>>>><
>>>>>>:

ð3Þ

where N is the overall number of materials present in the structure.
In a two-component glass/air case, the profile function is expressed
as:

f ð�rÞ ¼
f0 ¼ 0; air
f1 ¼ 1; glass elements

�
ð4Þ

Function f ð�rÞ completely describes the geometry of the periodic
structure, defining the locations of isotropic and anisotropic parts,
and of materials with different characteristics. Thus, using the pro-
file function (3), one can write the expression for the inverse
dielectric permittivity tensor distribution ĝð�rÞ ¼ ê�1ð�rÞ as follows:

ĝð�rÞ ¼ ĝ0ð�rÞ
QN

j¼1ðf ð�rÞ � jÞQN
j¼1ðf0 � jÞ

þ
XN¼1

i¼1

ĝið�rÞ
Qi�1

j¼0ðf ð�rÞ � jÞ
QN

j¼iþ1ðf ð�rÞ � jÞQi�1
j¼0ðfi � jÞ

QN
j¼iþ1ðfi � jÞ

þ ĝNð�rÞ
QN�1

j¼0 ðf ð�rÞ � jÞQN¼1
j¼0 ðfN � jÞ

ð5Þ
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In every coordinate point all but one item of this sum turn to
zero. The nonzero item corresponds to the value of the inverse
dielectric permittivity of the material, which is located in the point
concerned. In a two-component PC case expression (5) looks as
follows:

ĝð�rÞ ¼ ĝglassf ð�rÞ þ ĝað�rÞð1� f ð�rÞÞ; ð6Þ

where ĝað�rÞ ¼ ê¼1
a ð�rÞ is the inverse dielectric permittivity tensor of

the anisotropic material (2), ĝglass ¼

1
eglass

0 0

0 1
eglass

0

0 0 1
eglass

0
BB@

1
CCA is the in-

verse dielectric permittivity tensor of the isotropic material (glass)
characterized by the scalar value of the dielectric permittivity
eglass. Knowing that the inverse dielectric permittivity tensor can
be easily obtained for every coordinate point from Eqs. (5) and
(6), and denoting the free-space wavelength as k, one can describe
the behaviour of the magnetic field by a Helmholtz equation

r� ðĝð�rÞr � �Hð�rÞÞ ¼ 2p
k

� �2
�Hð�rÞ ð7Þ

In the plane wave method the solution of Eq. (7) is represented
in the form of a plane wave superposition:

�Hð�rÞ ¼ expði�k�rÞ
X

�G

�H�G expði�G�rÞ; ð8Þ

where �G is the PC reciprocal lattice vector, �k is the Bloch vector, and
�H�G is the magnetic field plane wave expansion amplitude.

The third Maxwell’s equation div�Hð�rÞ ¼ 0 states that vector �H�G

is orthogonal to vector �e3 ¼
�kþ�G
j�kþ�Gj. Therefore, a specially chosen coor-

dinate system can allow one to reduce the number of nonzero
components of vector �H�G [15–18] and, consequently, the number
of equations to be solved. Introducing two orthogonal vectors �e1

and �e2, each of them being orthogonal to vector �e3 and depending
on the reciprocal lattice vector �G so that �H�G ¼ �Hð1Þ�G

�e1 þ �Hð2Þ�G
�e2, one

can rewrite Eq. (7) in the basis of ð�e1; �e2; �e3Þ as a matrix equation:

X
�G0

~kþ~G
��� ��� � ~kþ~G0��� ���M Hð1Þ~G0

Hð2Þ~G0

0
@

1
A ¼ � 2p

k

� �2 Hð1Þ~G
Hð2Þ~G

0
@

1
A; ð9Þ

where M is a matrix containing the Fourier components of the in-
verse dielectric permittivity tensor ĝ�G. In a most general case it
looks as follows:

M ¼
�e�G0

1 � �e�G
2 � ĝ�G¼�G0 � �e

�G0
2

� �h i
��e�G

1 � �e�G
2 � ĝ�G¼�G0 � �e

�G0
1

� �h i

�e�G0
2 � �e�G

2 � ĝ�G¼�G0 � �e
�G0
2

� �h i
��e�G0

2 � �e�G
2 � ĝ�G¼�G0 � �e

�G0
1

� �h i
0
B@

1
CA ð10Þ

When the anisotropic material infilling is homogeneous, i.e.
when the anisotropic material molecules’ orientation does not
depend on coordinates ĝað�rÞ ¼ ĝa, all the Fourier transformation
process goes to the profile function f ð�rÞ (3,4). For instance, in the
two-component case (4) the general expression for the Fourier
components of the inverse dielectric permittivity tensor is as
follows:

ĝ�G ¼ f�Gðĝglass � ĝaÞ þ dð�GÞĝa ð11Þ

where f�G is a Fourier component of the profile function f ð�rÞ. Substi-
tuting the latter relation into Eq. (10), one can calculate the matrix
M with a significant saving of time.

Solving the eigenvalue problem (9) yields a set of eigennumbers
(inverse wavelengths) for every certain Bloch vector �k, the magni-
tude of which is set within the first Brillouin zone of the considered
PC. A photonic band gap appears, when for all of the Bloch vectors
within the Brillouin zone there are no real eigenvalues, which
means that any propagation direction is forbidden for a range of
Commun. (2008), doi:10.1016/j.optcom.2008.07.059
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frequencies (in a two-dimensional case it means that any propaga-
tion direction is forbidden for a certain propagation constant for a
range of frequencies).

Using the method described above, one can rapidly calculate
the dispersion diagram of a PC with arbitrary geometry, dimension
and dielectric properties. Further on, a more precise and time-con-
suming method can be applied to obtain the desired dispersion
characteristics in a more accurate way [5,18].

The results given below were obtained by means of the de-
scribed generalized plane wave method, realized as a FORTRAN
language algorithm.

3. Symmetry of anisotropic PC Brillouin zone

In order to determine the positions and widths of band gaps, it
is necessary to know the values of the boundary frequencies or
wavelengths, between which there are no real eigenproblem (9)
solutions. In the isotropic case, these frequency values lie on the
boundary of the irreducible Brillouin zone, determined by the PC
lattice symmetry. This Section shows how the symmetry of the dis-
persion surface is influenced by the anisotropy of PC component
materials. The stated problem will be considered for the case of
two-dimensional PCs, as they are widely used, e.g. in PC fibers
[4,5,8,9], and are very important for modern optics and photonics.

The dispersion surface of a two-dimensional PC is a three-
dimensional surface, as it is the dependence of the wavelength
(or frequency or freespace wavevector magnitude) on the two-
dimensional Bloch vector. It is defined for every fixed value of
the third non-Bloch component of the wavevector. The two-
dimensional PC dispersion surface is a complicated surface with
gaps along the frequency (wavelength) axis. As it is known, the dis-
persion surface extreme points are located in the symmetry points
and along the symmetry axes of the Brillouin zone of a certain PC.

Fig. 1 shows different dispersion surface layers (solutions of
eigenproblem (9), yielding the dependence of K ¼ 2p=k, where k
is the wavelength, on the Bloch vector components ðkx; kyÞ) calcu-
lated by the method described above for the isotropic kagome-type
PC [21] with the period of p = 2 lm, glass wall thickness of
)0,0(
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Fig. 1. Contour plots of different roots of the dispersion equation (9) for the isotropic k
symmetry. The black solid line denotes the Brillouin zone and its irreducible part (the C
maxima Kmax ¼ 2p=kmin (denoted by white) correspond to the following valu
Kmax ¼ 14:02 rad=lm; (c) Kmin ¼ 13:91 rad=lm, Kmax ¼ 14:03 rad=lm; (d) K
Kmax ¼ 14:027 rad=lm; (f) Kmin ¼ 14:02 rad=lm, Kmax ¼ 14:18 rad=lm.
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D = 300 nm and glass refractive index n = 1.52. The air gaps be-
tween the glass walls are filled with an isotropic material with
refractive index n0 = 1.4. For convenience further on in this paper,
we will consider only this geometry. In Fig. 1, the scale varies from
one contour plot to another for the purpose of comprehension con-
venience, while the number of equal value levels is the same
throughout all the paper and equals to 15. The maxima and min-
ima on these grey-scale contour graphs are denoted by dark grey
colour and white colour correspondingly. The triangle
CMK ð0;0Þ; 0;2p=p

ffiffiffi
3
p� �

; 2p=p;2p=p
ffiffiffi
3
p� �n o

is the irreducible
Brillouin zone boundary. It serves as an elementary part of the
Brillouin zone and can reconstruct the whole zone completely after
being processed by the D6 symmetry operations (which are the
hexagonal lattice symmetry group operations). The boundary of
the irreducible Brillouin zone contains all the extreme points of
the dispersion surface, and it is therefore possible to find the posi-
tions of band gaps only by solving the eigenproblem (9) for the
Bloch vector components belonging to the irreducible Brillouin
zone boundary (instead of considering the whole Brillouin zone).

The simplest way to make the considered PC anisotropic is to fill
the air gaps between the glass walls with an LC. In this paper, we
assume that it is a nematic LC with refractive indices equal to
n|| = 1.7, n\ = 1.4.

In the presence of anisotropy, the scalar dielectric permittivity
description is no longer valid. It can be easily explained, if one con-
siders a two-dimensional PC (Fig. 2) as a three-dimensional object
(Fig. 3).

Fig. 3 shows a schematic ‘‘element” of a two-dimensional PC: a
hollow glass tube, which can be filled with anisotropic material,
and the equivalent three-dimensional Brillouin zone and its irre-
ducible part. The three-dimensional Brillouin zone has arbitrary
height due to the PC’s zero-period along the z-axis (the axis per-
pendicular to the PC periodicity plane) [17]. For simplicity in this
paper only uni-axial anisotropy like that of the LC will be consid-
ered, although similar conclusions can be drawn for other types
of anisotropic materials. It has already been mentioned that the
coordinate system was chosen to have the z-axis perpendicular
to the (x,y) PC periodicity plane, the x-axis parallel to one of the
Κ

Γ

Μ Κ

Κ

Γ

Μ Κ

agome-lattice PC. The symmetry of the Brillouin zone coincides with the PC lattice
MK triangle). The wavenumber minima Kmin ¼ 2p=kmax (denoted by dark grey) and
es: (a) Kmin ¼ 13:86 rad=lm, Kmax ¼ 13:91 rad=lm; (b) Kmin ¼ 13:91 rad=lm,
min ¼ 14:01555 rad=lm, Kmax ¼ 14:0210 rad=lm; (e) Kmin ¼ 14:015 rad=lm,
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Fig. 2. (a) A schematic view of a two-dimensional PC hexagonal lattice, �a1; �a2 are
the translation vectors, (b) Reciprocal lattice vectors �b1;

�b2 and the Brillouin zone.
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Fig. 3. (a,c) Sketches of a two-dimensional anisotropic PC element: a glass wall
capillary. The ellipses denote the LC molecules oriented along the PC-axis (z-axis)
and oriented arbitrary correspondingly. (b,d) Equivalent tree-dimensional Brillouin
zone for the anisotropic director perpendicular orientation and arbitrary orientation
correspondingly. The solid line denotes the irreducible Brillouin zone, the dashed
line shows the same ‘‘isotropic” irreducible Brillouin zone, which is not correct for
arbitrary anisotropic molecules orientation, the dot-dashed line shows the LC
director orientation, which gives rise to a Brillouin zone special direction
appearance.
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PC translation vectors (in our case �a1, see Fig. 2), and the y-axis ly-
ing in the PC periodicity plane.

The symmetry of the Brillouin zone is determined by both the
PC lattice symmetry and the symmetry of the dielectric permittiv-
ity tensor with respect to the PC periodicity plane and lattice
vectors.

When the anisotropic material is oriented along the z-axis, i.e.
when any vector �d belonging to the anisotropic material director
orientation line has a zero projection on the PC periodicity plane,
�dðx;yÞ ¼ �0, the situation is identical to the isotropic case: the dielec-
tric permittivity ellipsoid yields the O(2) symmetry group, which,
intersected with any PC lattice symmetry group, simply gives the
unchanged PC lattice symmetry group. Thus, the Brillouin zone in
this case has the same symmetry as that of the PC lattice, that is,
the D6 symmetry for the considered hexagonal lattice case.
Please cite this article in press as: I.A. Khromova, L.A. Melnikov, Opt.
When anisotropic material molecules reorient themselves, the
symmetry of the dielectric permittivity tensor changes, which
leads to the overall Brillouin zone symmetry change (Fig. 3b).

Consider the rotation of a uni-axial anisotropic material dielec-
tric permittivity tensor. This process involves a nonzero periodicity
plane projection appearance �dðx;yÞ 6¼ �0. When �dðx;yÞ coincides with
any PC lattice translation vector direction, the symmetry group
with respect to the chosen coordinate system turns into a dihedral
one D1 \ D6 ¼ D1. Consider, for instance, the director rotation
around the x-axis. It produces a nonzero �dðx;yÞjjð� �a1 þ 2�a2Þ;
m;n 2 N. In a most general case of out-of-plane propagation (with
nonzero kz) due to the overall ‘‘three-dimensionality” of the system
considered, the x-axis symmetry will no longer be conserved. The
dihedral y-axis symmetry means that two waves with equal y-
and z-wavevector components and opposite and absolutely equal
x-components have the same frequency, i.e. they face equal prop-
agation conditions (see Fig. 4a). However, two waves with equal x-
and z-wavevector components, but opposite and absolutely equal
y-wavevector components will face distinct dielectric permittivity
values (Fig. 4b).
3.1. Out-of-plane LC orientation with director projection along a PC
lattice vector

Fig. 5 shows one and the same dispersion surface layer (solution
of eigenproblem (9)) for the kagome lattice with air gaps homoge-
neously filled with LC (refractive indices n|| = 1.7, n\ = 1.4) at differ-
ent angles of LC director orientation with respect to the z-axis in the
(x,z)-plane (containing the z-axis and the �a1 lattice translation vector).

The symmetry order rises up to D2 ¼ D2 \ C6 when the LC direc-
tor is oriented within the PC periodicity plane, so that
�dðx;yÞjjðm�a1 þ n�a2Þ; m; n 2 N and dz ¼ 0, due to the appearance of a
second symmetry axis, perpendicular to the LC director orienta-
tion. This effect is shown in Fig. 5e, where the irreducible Brillouin
zone is CKM1M2 and in Fig. 6, where several dispersion surface lay-
ers are shown for the same angle of the in-plane LC director
orientation.
3.2. In-plane LC orientation

Another particular case is when the LC director is oriented arbi-
trarily within the PC periodicity plane, i.e. in the (x,y) plane. An
arbitrary in-plane LC director orientation, not parallel to any of
the PC lattice translation vectors, i.e. such as ð8ðn;mÞ 2
NÞ : ð�dðx;yÞjjðm�a1 þ n�a2ÞÞ and dz ¼ 0, destroys the Di-type symmetry
and converts it into a circular one, which in this particular case is
C2 \ D6 ¼ C2.

Fig. 7 shows contour plots of one particular layer of the disper-
sion surface calculated for different angles of LC director in-plane
orientation. The reasons of the symmetry type change are the same
as in the previous case. The particular thing about the arbitrary in-
plane orientation is that due to circular symmetry it is no longer
possible to define a unique irreducible Brillouin zone. For the same
reason there are no special contours and points containing all the
extreme points of the dispersion surface. Fig. 8 shows the contour
plots of a dispersion surface layer, different from the one shown in
Fig. 7, at the same LC director orientation angles. It can be noticed
that the locations of the extreme points in the plots of Fig. 8 do not
coincide with those shown in Fig. 7.

In this case, in order to find the boundaries of the band gaps,
one should carry out calculations over one half of the Brillouin
zone. Figs. 7a, d, f and 8a, d, f show the in-plane LC director orien-
tation, parallel to a PC lattice vector, these cases were already dis-
cussed in the previous Section and correspond to the second order
dihedral symmetry D2 \ D6 ¼ D2.
Commun. (2008), doi:10.1016/j.optcom.2008.07.059



Fig. 4. Ellipsoid of the dielectric permittivity tensor inclined at a 25� angle with respect to the z-axis in the (y,z) plane. (a) waves with equal k1z ¼ k2z; k1y ¼ k2y wavevector
components and equal absolute values of the third wavevector component k1x ¼ �k2x face the same propagation conditions; (b) for the waves with k1z ¼ k2z ; k1x ¼ k2x and
k1y ¼ �k2y the propagation conditions become distinct. The mirror symmetry is destroyed.
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3.3. Out-of-plane arbitrary LC orientation

There is one more case left to consider: an arbitrary LC director
orientation, when vector �d has a nonzero z-component and its pro-
jection on the PC periodicity plane is not parallel to any of the PC
lattice translation vectors, i.e. ð8ðn;mÞ 2 NÞ:ð�dðx;yÞjjðm�a1 þ n�a2ÞÞ
Please cite this article in press as: I.A. Khromova, L.A. Melnikov, Opt.
and dz 6¼ 0. In this case, it is impossible to define an irreducible Bri-
ullouin zone part due to absence of any symmetry except the triv-
ial one C1 \ D6 ¼ C1 (Fig. 9).

All conclusions presented above can be drawn for any type of PC
lattice (triangular, quadratic and hexagonal) with the only differ-
ence that when intersecting the PC lattice symmetry group with
Commun. (2008), doi:10.1016/j.optcom.2008.07.059
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marks its irreducible part. The dihedral symmetry turns into a circular one.
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Fig. 8. Dispersion surface layer different from the one shown in Fig. 7. LC director is oriented within the PC periodicity plane at the following angles to the �a1 translation
vector: (a) a = 0� (parallel to �a1), (b) a = 10�, (c) a = 20�, (d) a = 30� (parallel to �a1 þ �a2), (e) a = 45�, (f) a = 60� (parallel to �a2). The dashed line shows the Brillouin zone
boundary, and the solid line marks its irreducible part. The positions of the dispersion surface layer extreme points differ from those shown in Fig. 7.
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the symmetry group determined by the LC orientation, one would
have to substitute a corresponding lattice symmetry group for the
D6 symmetry group, which describes the discussed hexagonal PC
lattice symmetry case.

3.4. Summary on irreducible Brillouin zones

Summing up all the cases considered and denoting an arbitrary
two-dimensional lattice symmetry group as GPC, four main cases of
uni-axial anisotropic material orientation can be outlined:

1. When an arbitrary vector �d belonging to the LC director orien-
tation line is parallel to one of the PC lattice translation vectors,
i.e. �dðx;yÞjjðm�a1 þ n�a2Þ; m;n 2 N, and lies within the PC periodic-
Please cite this article in press as: I.A. Khromova, L.A. Melnikov, Opt.
ity plane, i.e. dz = 0, the Brullouin zone symmetry is determined
as D2 \ GPC .

2. When �d lies within the PC periodicity plane and is not parallel
to any of the PC lattice translation vectors, i.e. ð8ðn;mÞ 2
NÞ : ð�dðx;yÞjjðm�a1 þ n�a2ÞÞ and dz = 0, the Brullouin zone symme-
try is determined as C2 \ GPC .

3. When �d does not belong to the PC periodicity plane, but its
projection on the PC periodicity plane is parallel to one of the
PC lattice translation vectors, i.e. �dðx;yÞjjðm�a1 þ n�a2Þ; m;n 2 N
and dz 6¼ 0, the Brullouin zone symmetry is determined as
D1 \ GPC .

4. When �d does not belong to the PC periodicity plane and its pro-
jection on the PC periodicity plane is not parallel to any of the
PC lattice translation vectors, i.e. ð8ðn;mÞ 2 NÞ : ð�dðx;yÞjjðm�a1þ
Commun. (2008), doi:10.1016/j.optcom.2008.07.059



Γ Γ Γ

Fig. 9. Different dispersion surface layers in the case of arbitrary LC director orientation, when no irreducible Brillouin zone can be defined. The LC director orientation is not
parallel to any of the PC lattice translation vectors: (a) a1 = 60� with respect to the z-axis and a2 = 20� with respect to vector �a1, (b) a1 = 30� with respect to the z-axis and
a2 = 35� with respect to vector �a1, (c) a1 = 45� with respect to the z-axis and a2 = 20� with respect to vector �a1. The Brillouin zone is marked by the solid line. In this most
general case only the trivial symmetry C1 \ D6 ¼ C1 is left.
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n�a2ÞÞ and dz 6¼ 0, the Brullouin zone symmetry is determined as
C1 \ GPC ¼ C1.

In case of dihedral symmetry Di the boundary of the corre-
sponding irreducible Brillouin zone contains all the dispersion sur-
face extreme points, therefore, for band gap analysis one can
consider only the Bloch vector components, corresponding to the
irreducible Brilloin zone boundary.

In case of circular symmetry Ci due to non-uniqueness of the
irreducible Brillouine zone all points of the ith part of the Brillouin
zone should be taken into account for band gap analysis, as the
positions of dispersion surface extreme points can hardly be
predicted.

4. Importance of correct irreducile Brillouin zone choice

Many works devoted to the anisotropic PC problem ignore the
principal difference between isotropic and anisotropic PCs and fol-
low the ‘‘isotropic symmetry ideas” or consider only the in-plane
propagation [6,7,20] when analysing for both of the cases. This Sec-
tion shows why it is important to perform the band gap analysis
using the full tensor approach and the correctly chosen irreducible
Brillouin zone.

Whenever the anisotropic material main axes do not coincide
with the working coordinate system basis, the diagonal tensor ap-
proach gives erroneous result, simply because in this case the
dielectric permittivity tensor is no longer diagonal.

Using the ‘‘isotropic” irreducible Brillouin zone (determined
only by the PC lattice symmetry) for anisotropic PCs is incorrect
Fig. 10. Comparing the band gap diagrams, calculated over the correct irreducible Brillou
band gap diagram, calculated over the whole Brillouin zone (grey, a,b). White areas corres
angle of a = 85� to the z-axis. neff is the effective refractive index, p=k is the structure
conventional one does.
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and provokes errors in dispersion calculations. Fig. 10 compares
the band gap diagrams of the considered anisotropic PC, calculated
over the correct irreducible Brillouin zone, defined according to the
approach presented above (Fig. 10a), and those, calculated over the
conventional ‘‘isotropic” irreducible Brillouin zone (Fig. 10b). To
demonstrate the accuracy of the approach, both of the diagrams
are compared with the band gap diagram, calculated over all the
points of the Brillouin zone (denoted by grey colour in Fig. 10a,b).

The band gap diagrams coincide in Fig. 10a and differ in Fig.
10b. For instance, the gaps between the black areas in Fig. 10b
do not always correspond to real band gaps, which are the gaps be-
tween the grey areas in Fig. 10b. This fact proves that the conven-
tional ‘‘isotropic” approach to anisotropic photonic crystals gives
erroneous results, while choosing the irreducible Brillouin zone
correctly, as it is recommended in the paper, helps to obtain accu-
rate band gap diagrams, equivalent to those calculated over the
whole Brillouin zone.

5. Anisotropic PC band gap control

This Section demonstrates the possibility of changing the posi-
tions and widths of anisotropic PC band gaps by means of aniso-
tropic material reorientation [22–24]. For calculations, the same
kagome-lattice PC, described in Section 3, was used.

Fig. 11 shows how a band gap diagram of an anisotropic PC can
change with the anisotropic material reorientation. The reorienta-
tion shown in the figure corresponds to the type considered in Sec-
tion 3.1. It is an out-of-plane LC director rotation, with the
projection of the latter on the PC periodicity plane being parallel
in zone (black, a) and over the conventional ‘‘isotropic” (black, b) one with the true
pond to band gaps. The LC director is oriented out-of-plane (in the (x,z)-plane) at an

period/wavelength relation. The presented approach yields no errors, while the

Commun. (2008), doi:10.1016/j.optcom.2008.07.059



Fig. 11. Band gap diagrams of LC infilled kagome-lattice PC with LC director oriented at different angles to the longitudinal PC-axis (case described in Section 3.1): (a) a = 0�,
(b) a = 5�, (c) a = 10�, (d) a = 15�. neff is the effective refractive index, p=k is the structure period/wavelength relation. White areas correspond to photonic band gaps. LC
reorientation leads to a considerable change in the positions and widths of the band gaps.

Fig. 12. Band gap diagrams of the LC infilled kagome-lattice PC with LC director oriented in-plane at different angles to one of the PC lattice vectors (case described in Section
3.2): (a) a = 0�, (b) a = 10�, (c) a = 30�, (d) a = 60�. neff is the effective refractive index, p=k is the structure period/wavelength relation. White areas correspond to photonic
band gaps. LC reorientation leads to a considerable change in the positions and widths of the band gaps.
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to one of the PC lattice vectors. Fig. 12 presents the band gap dia-
grams of the same anisotropic PC at LC director in-plane rotation.
This case corresponds to the one considered in Section 3.2. It can
be seen from these figures that reorienting the anisotropic material
director (by means of external electric field) can modify the band
gap diagram of an anisotropic PC, i.e. it can open/close or shift
the band gaps or change their widths.

6. Conclusion

In this work, a generalized vector plane wave method applica-
ble to isotropic and anisotropic PC of arbitrary geometry and
dimension was presented. It allows one to perform band gap anal-
yses of any sort of infinite periodic structures and, with the help of
other methods (supercell method, finite elements method, etc.), to
calculate the properties of complex PC based objects, such as PC
waveguides or defect containing PC structures [16].

The dramatic influence of material anisotropy on the Brillouin
zone symmetry was demonstrated. It was shown that the overall
dispersion surface symmetry if formed by both the PC lattice sym-
metry and the symmetry, determined by the anisotropic material
orientation with respect to the PC lattice translation vectors and/
or periodicity planes.

To perform the band gap analysis of an anisotropic PC correctly
one can either take all the points of the Brillouin zone into account
or consider only the points of the irreducible Brillouin zone. The
first approach, although it certainly yields a correct band gap dia-
gram, is a rather time-demanding one. The success of second
way, which helps to save time and computational costs, depends
on the accuracy of the irreducible Brillouin zone choice. This paper
showed how to define the irreducible Brillouin zone correctly for a
two-dimensional PC infilled with a uni-axial anisotropic material.

Four main cases of homogeneous anisotropic material director
orientation were outlined: the in-plane director orientation with
its projection on the PC periodicity plane being parallel to one of
the PC lattice vectors; the out-of-plane director orientation with
its projection on the PC periodicity plane being parallel to one of
the PC lattice vectors; the arbitrary in-plane orientation; and the
arbitrary out-of-plane orientation. In each of these cases a certain
Brillouin zone symmetry appears: second-order dihedral D2;
first-order dihedral D1; second-order circular C2; and trivial C1 cor-
respondingly (for the hexagonal PC lattice).

In case of the circular symmetry of the Brillouin zone (including
the trivial one), it is not possible to define the irreducible Brillouin
zone unambiguously and all the points of the corresponding ith
part of the whole Brillouin zone should be taken into account for
Please cite this article in press as: I.A. Khromova, L.A. Melnikov, Opt.
band gap analysis, as any of them may contain a dispersion surface
extreme point. It means that in a most general case, which is char-
acterized by the trivial Brillouin zone symmetry, all possible Bloch
vector components should be considered in order to perform the
calculations correctly.

Following the presented approach one can avoid errors pro-
duced by dispersion extreme point skipping and to reduce the cal-
culation time, as there are cases, when certain Brillouin zone
symmetry exists and, thus, there is no necessity to perform calcu-
lations over all possible Bloch vector components.

It is important to be able to analyse such complicated aniso-
tropic structures, because, as it was demonstrated in this paper,
they offer the possibility to control the photonic band gaps exter-
nally, without changing the geometry of the PC structure or the
dielectric properties of the PC component materials.

References

[1] J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Nature (London) 386 (1997) 143.
[2] K.M. Ho, C.T. Chan, C.M. Soukoulis, Physical Review Letters 65 (1990) 3152.
[3] P.J. Russell, T.A. Birks, F.D. Lloyd-Lucas, Photonic Bloch waves and photonic

band gaps, in: Confined Electrons and Photons: New Physics and Applications,
1995, p. 585.

[4] J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell, Science 282 (5393) (1998) 1476.
[5] J. Arriaga, J.C. Knight, P.St.J. Russell, Physica E17 (2003) 440.
[6] Zh.-Yu. Li, L.-L. Lin, B.-Yu. Gu, Gu.-Zh. Yang, Physica B279 (2000) 159.
[7] Young-Chung Hsue, Ben-Yuan Gu, The Extended Plane Wave Expansion

Method in Three Dimensional Anisotropic Photonic Crystal, 2004. arxiv:/
arXiv:physics/0405026v1.

[8] T.T. Larsen, Optics Express 11 (20) (2003) 2589.
[9] T.T. Alkeskjold, Optics Express 12 (24) (2004) 5857.

[10] F. Du, Y.-Q. Lu, S.-T. Wu, Applied Physics Letters 85 (12) (2004) 2181.
[11] R. Kotynski et al., Modeling of polarization behaviour of LC filled PC fibers, in:

Proceedings Symposium IEEE/LEOS Benelux Chapter, 2004, p. 315.
[12] L. Scolari, Optics Express 13 (19) (2005) 7483.
[13] F. Seydou et al., Optics Express 14 (23) (2006) 11362.
[14] K. Busch et al., Journal of Physics: Condensed Matter 15 (2003) 1233.
[15] S.G. Johnson, J.D. Joannopoulos, Optics Express 8 (3) (2001) 173.
[16] Sh. Guo, S. Albin, Optics Express 11 (2) (2003) 167.
[17] M. Løkke et al., Optics Express 12 (25) (2004) 6299.
[18] L. Melnikov, I. Khromova, A. Sherbakov, N. Nikishin, Proceedings of SPIE 5950

(2005) 243.
[19] Y.-Ch. Hsue, T.-J. Yang, A novel view of plane wave expansion method in PCs,

2003. arxiv:/uk.arXiv.org>physics>arXiv:physics/0307150v1.
[20] R. Kotynski, Optical and Quantum Electronics 37 (2005) 253.
[21] F. Couny, F. Benabid, P.S. Light, Optics Letters 31 (24) (2006) 3574.
[22] J. Sun, C.C. Chan, Optics Letters 32 (14) (2007) 1989.
[23] I.A. Khromova, L.A. Melnikov, LC infiltrated photonic bandgap fibers:

Dispersion and mode characteristics calculation, Technical Digest of
Conference ‘‘LOYS-2006”, ThS7–03, 2006, p. 99.

[24] I.A. Khromova, L.A. Melnikov, Dispersion properties of PCs and photonic band
gap fibers with anisotropic elements, Proceedings of 13th Student Seminar on
Microwave Applications of Novel Physical Phenomena, 2006, p. 38.
Commun. (2008), doi:10.1016/j.optcom.2008.07.059


	Anisotropic photonic crystals: generalized Generalized plane wave method and dispersion symmetry properties
	Introduction
	Generalized plane wave method
	Symmetry of anisotropic pc brillouin PC Brillouin zone
	Out-of-plane LC orientation with director projection along a PC lattice vector
	In-plane LC orientation
	Out-of-plane arbitrary LC orientation
	Summary on irreducible Brillouin zones

	Importance of correct irreducile brillouin Brillouin zone choice
	Anisotropic pc PC band gap control
	Conclusion
	References


