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We present a theory of collective spin excitations in diluted-magnetic-semiconductor quantum wells in
which local magnetic moments are coupled via a quasi-two-dimensional gas of electrons or holes. In the case
of a ferromagnetic state with partly spin-polarized electrons, we find that the Goldstone collective mode has
anomalousk? dispersion and that for symmetric quantum wells odd parity modes do not disperse at all. We
discuss the gap in the collective excitation spectrum which appears when spin-orbit interactions are included.
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[. INTRODUCTION have been successfully described by treating this phenom-
enological model in a mean-field approximatigviFT),13-22
which is analogous to the Weiss mean-field approach for
dom in the properties of electronic systems is exploited ifattice spin models. In the mean-field theory the local Mn
the design of new functional devices. The recognition of thidOnS aré treated as independent but subject to an effective
additional degree of freedom suggests possibilities for elecl@gnetic field which originates from their exchange interac-
tions with spin-polarized free carriers. Similarly, the

trical manipulation beyond the tool set of conventional elec-;,: ; e )
tronics which is based entirely on coupling to the electronidtinérant-carrier system sees an effective field proportional to
he Mn density and polarization. This picture does not ac-

charge The effort to generate and manipulate spin-polarize count, however, for correlations between Mn spin configura
carriers in a controllable environment, preferably in semi- j ! P 9

conductors. has triaaered the discovery of carrier-induce%ons and the itinerant carrier state which reduce the energy
2 1gger Ty ; ost of local-moment spin fluctuations that have slow spatial
ferromagnetis* in diluted magnetic semiconductors

5 h ¢ fth . ' variations. As a consequence, MFT systematically overesti-
(DMS’s).> In these systems a few percent of the cations iNyates the Curie temperature, a problem which is severe for

I1I-V-or 1I-VI semiconductor compounds are randomly sub- gystems with reduced dimensionafjincluding the quan-
stituted by magnetic ions, usually Mn, which have localyim well systems that will be discussed here.
magnetic moments. The effective coupling between these lo- one prediction that follows from the phenomenological
cal moments is mediated by free carriers in the host semimodel is that the system’s collective excitations involve cor-
conductor compoun¢holes forp-doped materials and elec- related dynamics of local moment and itinerant spins. In the
trons forn-doped onesand can lead to ferromagnetic long- case of bulk DMS systems, we have predicted two branches
range order. Curie temperatur€sin excess of 100 K have of collective spin waves and discussed their propettias
been found in bulkGa,MnAs system$:’ well as their impact on limiting the Curie temperaté?d his
One approach to understand the magnetic and opticalnalysis of collective excitations requires a theoretical de-
properties of DMS's is based on a phenomenological modescription beyond MFT, which neglects correlations, and be-
of the relevant low-energy degrees of freeddtin this pic-  yond the familiar Ruderman-Kittel-Kasuya-YoshidRKKY )
ture, local S=5/2 spind® from Mn?* ions are exchange theory of pairwise carrier-mediated interactions, which fails
coupled to itinerant carriers of a metallic nature. In typicalfor the systems under consideration because it assumes a
samples, the density of free carriers is much smaller than thearrier-band spin splitting that is small compared to the
Mn ion concentration. Fon-doped materials, the exchange Fermi energy. This assumption is not typically satisfied in
is due to ferromagnetis-d coupling, while forp-doped ones doped DMS systen®, in part because the itinerant-carrier
it is due to antiferromagnetip-d coupling, as illustrated concentration is usually much smaller than the Mn impurity
schematically in Fig. 1. In both cases, the free carriers areensity?’ Moreover, the RKKY picture also assumes an in-
believed to mediate an effective ferromagnetic coupling bestantaneous static interaction between the magnetic Mn ions,
tween the Mn spins, which is typically stronger than theneglecting the retarded character of the itinerant-carrier re-
shorter-range antiferromagnetic direct exchange couplingponse that mediates the interactions.
present in undoped systems. An indicatior?® that the spin excitations of doped DMS
The reliability of this phenomenological approach hassystems have collective local-moment and carrier character,
been tested by comparing theoretical predictions with experieven in paramagnetic systems, has been provided by recent
mental findings. The tendency towards ferromagnetic ordeelectron paramagnetic resonance experinférits n-doped
and trends in the observad’s, domain structure properties, DMS quantum wells. The aim of the present paper is to
the anomalous Hall effect, and magnetooptical propertiesgxtend the previous theoretical work to describe the full dis-

In the emerging field of spin electronics or
magnetoelectronics?°® the role of thespin degree of free-
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FIG. 2. Sketch of a DMS quantum well. Itinerant carriers move

freely in thex-y plane, occupying subbandgs(z) due to quantum
FIG. 1. Schematic representation of the exchange coupling beconfinement along the axis (intersubband energy gapg). The
tween itinerant-carrier and localized magnetic-impurity spins inmagnetic-ion doping profile is represented by a continuous
n-doped ancp-doped DMS'’s. When the local moments are parallel Mn-density distributionNy,,(2).
to each other and the band system is spin polarized, the exchange

energy can be minimized for either ferromagnetic or antiferromag-, . ) )
netic interactions. doping are shown in Secs. Il C and Ill D, respectively. The

role of spin-orbit coupling, which gives rise to magnetic an-
persion of all collective spin excitations in quantum wells, isotropy and creates a gap in the excitation spectrum of a
their dependence on the magnetic-ion doping concentratioferromagnetic system, is discussed in Sec. lll E. A summary
and profile, and on the free-carrier density. This is a first ste@mnd discussion of our results is presented in Sec. IV.
toward the theoretical study of quantum and thermal fluctua-
tions in the magnetism of nanostructured DMS’s which are

starting to receive increased attention, partially because of Il. DERIVATION OF THE THEORY
the possibility of quantum confinement control of magnetic o
properties as in the recent experimental study of a DMS A. Hamiltonian

quantum well in Ref. 30. Quantum confinement is expected _ ) ) _
to drastically affect the magnetic properties of We consider a symmetric quantum well of uniform width

nanostructured 40 In Ref. 28 only the long-wavelength d that confines the motion of itinerant carriers in thdirec-
limit of the lowest spin-wave branch, the mode that electrorfion (S€€ Fig. 2; we later comment on the case of asymmetric
paramagnetic resonance probes, was considered. quantum wells The carriers move freely in they plane,

The paper is organized as follows. In Sec. Il we develog?CCuPying one or several transverse modes_ or subban_ds. The
the theoretical tools necessary to address collective excitgiuantum-well geometry makes it convenient to split the
tions in doped DMS quantum wells in a general way. Afterthree-dimensionalBD) spatial coordinate intar, z), wherer
introducing the many-body quantum Hamiltonigec. 1l A) corresponds to the two-dlmen5|omal?) X-y projection. The
we derive an effective actionSec. Il B) that leads to an field operator for the itinerant carried(r ,z) can be written

independent spin-wave theory for low temperatures in mulag Jy(r 2)=3M lA//m(f)Xm(Z% wherem=1,... M labels the
tisubband quantum wellSec. Il Q. Section Il is dedicated ¢ ;ppand numbep(m(z)=\s’m sin(mmz/d) is the real wave

to the evaluation and discussion of collective spin excitas,nction for subbandm. which satisfy the orthonormality
tions, concentrating on the case in which a single electronic ’

subband is occupied and subband mixing is negligible. W&°Ndition [odz Xr(2) X (2)= Oy, @Nd Yin(r) is @ spinor
find that odd-parity collective modes of doped quantum-wellwith components,, (r). As indicated above, we will adopt
DMS systems are dispersionless in this limit, and that theparticle-in-a-box wave functions for explicit calculations, al-
lowest-energy Goldstone collective mode of ferromagnetidhough this approximation plays no critical role in our theory
systems has anomalokdispersion when the quantum-well and can easily be relaxed. The transverse wave function
carrier system is ndtalf-metallic(i.e., when the carriers are xm(z) degree-of-freedom will later be taken to be frozen in

not fully spin polarizegl Results for dilute and moderate Mn its ground state; this is normally a good approximation ex-
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cept in wide quantum wells. The in-plane degrees of freedom

are described bjluctuatingspinor fieldsy, (r). The mag-
netic impurities are randomly distributed within the quantum
well.

The fact that the Mn density in typical quantum well sys- =>> Xm(z)Xm,(z)z,Ab;m(r)Ef//,,,ym,(r) (3)
tems is very much larger than the carrier density suggests the mm’o,0’ 2
replacement of the random distribution of local Mn magnetic
moments by a continuous density,,(2), thereby neglecting . ) , o ) )
disorder in the Mn ion locatiord: This leaves us with a 'S the quantum-well carrier spin dens(;wth Pauli matrix
situation in which a growth direction degree of freedom ex-vector 7), and S(r ’,Z) is the spin den3|_ty of .the Mn sub-
ists for the local moment spins, but not for the quantum welSYStém- The coupling between the carrier spins and the local
electrons. It is the quasi-3D character of local moments thaliN SPINs is described by
are coupled together by quasi-2D electrons that is respon-
sible for unusual aspects of the collective excitation spec- §
trum that we will discuss later. The Debye-like continuum .
approximation we use for the Mn ion density distribution HeX:‘]eXf dzrfo dzS(r,2 -s(r,2), (4)
will, of course, fail for modes that involve either in-plane or
growth-direction spatial variation on a scale shorter than the
distance between Mn ions, as we discuss later. The depemhere J.,<0 corresponds to ferromagnetic adg >0 to
dence ofNy,(2) on the growth-direction coordinateallows  antiferromagnetic couplingi.e., to n- and p-doped host
for the possibility of a nonuniform doping profile in the semiconductors, respectivelyin symmetric quantum wells
quantum well. The two-component spinors we use for thespin-orbit interactions are described by the Dresselhaus
quantum-well electron fields restrict our attention to circum-Hamiltoniarf3
stances in which the electric subbands occur in pairs with
identical orbital wave functions, i.e., to hole quantum-well
subbands with small heavy-light mixing or to electron sub- d R
bands. Generalizing to arbitrarily spin-orbit coupled systems  Hp= 7f der dz¥(r,2)K3(- ryky + 7yk,)W(r,2)
considerably complicates the notation we use below and, in 0
the case of an external field, complicates the theory consid- M
erably because of the interplay between orbital and Zeeman ~
coupling. We will, for the most part, restrict our attention to =y | dr E 2,<k§>mym’¢;m(r)(_ 7Ky
n-doped quantum wells. mm'=1 o,

The total HamiltonianH consist of four termsH=H,, -
+H;+Hg+Hp. In the presence of a magnetic fieBE=V + 1K) oot Yot (1), (5)
X A, the kinetic term for carriers of chargereads

§(r,2) = %‘iﬂ(r 27V(r,2)

where (K)mm = [§ d2Xm( DKo xm (D) =(Kap Sy With (K
d K2 . =(mw/d)?> when particle-in-a-box orbitals are used. The
Hyin = f dzrj dz‘IfT(r,z)[—*V2+V(z) - M]\If(r,z) above spin-orbit Hamiltoniakly leads to az-oriented mag-
0 2m netic easy axis as we have shown in earlier w®end dis-
cuss later. For comments on spin-orbit coupling in the case

M . ~ 2, . of asymmetric quantum wells see Sec. Il E.
=fd2r2 2 )| 55 Ve~ | YD), (D)
m=1 o m
B. Effective action
Whereﬁ(r)zv(r)—(ie/ﬁc)p\, V(2) is the quantum-well con- In analogy to our earlier work* on bulk DMS ferromag-

fining potential, andu/.=u—e, is the effective subband- nets, we want to describe elementary spin excitations in the
[l m m

dependent chemical potential of the quasi-2D carrier gaé?MS quantum well in a Ia_nguage where the_ itinerant-carrier
with e, the subband quantization energy. Here, we assume@egrees of freedom are integrated out. This leads to a re-
a parabolic dispersion for the free carriers, with an effectivdarded free-carrier mediated interaction between the Mn-ion
massm’. This is well justified forn-doped systems, which S=5/2 spins. We.are mterestgd in small spin fluctuations
haves-band conduction electrons. For hole doped system&Pout the mean-field magnetic state. The ground states of
which havep-band valence carriers, this approximation is €xPerimental doped quantum well DMS systems have some-

. . . . Lt 40 H
often useful for qualitative discussions. The Zeeman term i§Mes been found to be ferromagnetic;® and sometimes
exhibit complex spin-glass behavior. It is quite possible that

d the complex spin-glass states that sometimes occur are due to
H, = ugB f dzrf d4gs(r,2) +gu,S(r,2)], (2)  disorder effects that are not essential and can, in principle, be
0 avoided, due, for example, to inhomogeneities in the Mn ion
where ug >0 is the Bohr magneton, distribution, substitutional Mn ions, or other defects. In any
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event, the theory we discuss assumes a mean-field state in _, Joy d —_— .
which all Mn ions are aligned. When this simple state is not9G,  (0w) = ?f dzxm(2) X (D[V2Nyn (2 S(0 7 + 1)
the ground state of the system, or when we want to describe 0
the collective excitations of a system that is above its ferro- + 0w, (10)
magnetic transition temperature, our theory will apply only
in an external magnetic field that is strong enough to achieve ) ) )
substantial Mn ion spin polarization. We choose this field to! '€ €xchange coupling contributes to the conduction-
be oriented in thé direction:B=(0,0,B). Becausay,,>0, Pand spin spliting inGy; through the mean-field inter-
the Mn spins then tend to align along the opposite directionaction A py =Jex(Nyin)mmw S, where  (Nyin)mnr
In the case of ferromagnets with anisotropy, we choos@ the =J§ dz xi(2) xny (2Nwn(2)-4> We recognize here that cou-
direction to be along an easy axis. pling to a Mn-spin system with an inhomogeneous doping
It is convenient to represent ti8=5/2 spins by Holstein-  profile Ny,(2) leads to mixing of the quantum-well sub-
Primakoff (HP) (Ref. 4 bosons. For small fluctuations bands. These intersubband interactions are present at the
around the mean-field state the spin den$Sty,z) is ap- mean-field level, as seen in E), but also appear in the
proximated byS'= w\2Ny,(2)S, S =~ w2Ny,(2)S, andS  term which expresses the coupling between carriers and local
=ww—Ny,(2)S, where the complex variables, » are boson moment fluctuations, Eq10).
creation and annihilation operators that become bosonic co-
herent state Iapels in the path-integral formalism we employ.~ Quantum-well subband decoupling and independent spin-
The vacuum with no HP bosons corresponds to fo#ga-
tive) polarization of the Mn system, while the creation of a
HP boson describes an increase in the total Mn spin by one The above picture simplifies considerably when quantum-
unit. The partition functionZ of the compound system is Well subband mixing is negligibl, i.e., when the energy
calculated using a coherent-state path integral representati@@p Aq (see Fig. 2 is much larger than the spin-splitting
energies\, ,y. This regime can be reached either by narrow-
- B - ing the quantum wel{A4— <), or by diluting the Mn doping
Z=JD(¢¢)D(ww)eXP<—f dr L(lﬂlﬂ,ww)) (6)  (Apmw—0), independently of the number of occupied sub-
0 bandsM, which is controlled by the carrier density. In this

- N — Ty - . limit we arrive at a Green’s function that is diagonal in sub-
h D =D --D he L

wave theory

M
L, ww) = f dzr[E Pl 7)Y, 7) 52 1
e (GK/IJI.:)m = |:’97_ Evrz - lur,ni| + E(ge:u’BB —Ap T+ 'y<k12n>

d —
+f dzw(r,z,7)d,w(r,z, T)] +H(yy, ow), X (= ke + 1K), (11
0
. _ (7) o Jox d S
where the Grassmann numbers= (i, ....) and ¢ 86 Hww) = ?e dzx2(D[V2Ny(2) ST + 0T
=(y, ...,y describe fermion(itinerant carriey fluctua- 0
tions within each of thevl subbands. + 0. (12)

Since the Hamiltonian is bilinear in the fermionic fields,
we can integrate them out and arrive at a representation for ) i
the bosonic partition function of the fornZ=/D(ww) HeréAn=Amnis the subband-dependent exchange contribu-
X exp-Suww]), with an effective action tion to the itinerant carrier mean-ﬂeld splitting. This approxi-
mation leads to a convenient subband separation
8 d In[detG™1]==M__ In[detG.] in Eq. (8).
S oo] :J de erJ ddw(r,z,7d.0(r,z,7 Expanding Ir[ndetG;}] up to second order in
0 0 Gy, In[de G, 1= trlIn(Gyy)n] + ] (Gue) 3Gy |
o o = (1/2tr[(Gump) mOG (Gump)mdGy 1+ -+, and collecting all
+ QunteB - S(ww)] - In[detG{(ww)].  (8)  contributions up to quadratic order i and w we arrive at
The total kernelG-Y(ww) can be split into a mean-field part, " independent spin-wave theory where the spin excitations

which does not depend on the bosofitn spin excitation are t_reatgd as noninteracting HP bosons. This is a good ap-
fields @ and », and a fluctuating part by writing(ww) proximation for temperatures well below the maximum of
-Gl4 56_1(5'(0) with the ferromagnetic transition temperature and/or the tempera-
—OMF J

ture defined by Zeeman coupling to the external field, in
4 = 1 which case spin excitation amplitudes are small. Fourier
(GuP)mm = ﬂr_ﬁvr T Mm 5m,m’+§(geMBB5m,m’ transforming the resulting spin-wave actidkeepingz in
real space and defining bosonic Matsubara frequengjes
- Am,m’)Tz"' ')’<k§\>(_ Tk + 7'yky) Omm 9 we obtain
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1 d?k [ dk (¢ (¢ _ .
Seﬁ[ww]:EEn‘, f(Zw)zj (277)2]0 dZJ0 dZ X w(k,z,v,) DXk, k',2,Z ,v)w(k’,Z ,v,). (13

The kernel of the quadratic actiqf3) is the inverse of the spin-wave propagalik ,k’,z,z’',v,) and is given by

M
- ! ! H J ! !
DYk,k',2,2 v = [—lngnMBB—?eXE (n#n—nlfaxfn(z)}&z—z )k —k')
m=1

‘]gx / ’ ‘ 2 2 f(€rln‘a) B f(é;va/) a,a’* aa’ (1,1
+ ?S\“NMn(Z)NMn(Z )2 Xa(DX(Z) 2 — 1 " (KPR (k). (14)
m=1 a,a -

Vnt €ma T €

We arrive at Eq(14) by introducing a wave-function repre- =yXk2)20?/ (geugB—An). In either case Eql4) is diagonal

sentation of the mean-field Green’s function of Eif), in the in-plane momenturk and we denote its diagonal el-
BT (1) (1) ements byD™Y(k,z,Z',iv,). The case of a uniform magnetic
(Gup) (11, vp) = >, e (15)  field was considered in Ref. 28 and will not be discussed
a T €mg further in this paper.

where ¢y, (1) are the 2D mean-field itinerant carrier eigen-
states for spino and subbandm, with energy € =€,

+(0/2)(GepteB~Am) 1+ 46,/ (epspB—Am) ~ 114" The in- Even the bulklike epitaxially grown thin film samples
dex « accounts for quantum-numbers associated with orbitagtudied in typical experiments do not contain a very large
motion, with kinetic and spin-orbit energies, and €/,  number of occupied 2D carrier subbands. Our formalism
=[(],m, a| PE(— ek 7k T, M, @)[?/ (QeuaB—Ar), respec-  could, in principle, be used to calculate the collective modes
tively. To first order in spin-orbit couplinéefﬁa<(geMBB of thin films, taking account of the variation in Mn density
—-Ap)], the eigenenergy isey ,=€,+(0/2)(QemsB—Ap) across the film, although the approach becomes numerically
+ae° —ur. In Eq.(14) f(e) is the Fermi distributionn?, is cumbersome when more than a few subbands are occupied.
the 2D mean-field itinerant carrier spin density for ther It is likely, though, that greater insight into vertical inhomo-
subband obtained by summing over occupied states, and v@eneity effects in thin films can be obtained with more ap-

have introduced Fourier-transform factors defined by proximate approaché8We limit the discussion here to true
guantum-well samples in which a single subband is occupied

‘Dﬁ{a’(k)zf &r explik 'r)sblna(r)(ﬁ,ﬁ: (r). (1) (M=1) and subband mixing can be neglected. For definitg—
’ < ness we concentrate on the case of constant Mn density

Nuvn(2)=Npn. Similarly we assume that the state we are

)§_tudying is an ordered ferromagnetic phase withZldérec-

Itéon magnetic easy axis that is favored @wyeak spin-orbit
IQupling. The situation in which the magnetization direction
as been reoriented by an external magnetic field is readily

included in the formalism as explained above. Generaliza-

tions to the cases of multiple subbands, and inhomogeneous

Mn density are straightforward.

Collective spin-excitation dispersiofi(k) branches are

Ill. ELEMENTARY SPIN EXCITATIONS

The first line on the right-hand side of Ed.4) is local in
space. It represents the mean-field expression for the e
change field that the Mn spins experience. The second line
nonlocal in space and describes correlation effects that occ
because of théspace- andn-subband-dependentesponse
of the quantum-well carriers to Mn spin orientations. We
note thatD™! is not a function ofz—z' only, because of the
absence of translational symmetry in thelirection. Addi-

tionally, a 2D Debye cutofk’ =4mNy,/(N/d) ensures that e X . .
our continuum approximation has the correct number 0]Jocated by finding the frequencies at which the determinant,

-y e : . )
magnetic-impurity degrees of freedom[Here, Ny defD%(k,z,7,iv,=Q)], of the quadratic action kernel in

:fgdzM,.n(z)/d (Ref.48 and N is the number of growth- Eqg. (13) vanishes. The continuum of spin-flip particle-hole

direction modes included in the theory as we explain below(Stoneb excitations is located by identifying thedependent

We associatéN with the mean number of Mn ions encoun- frequency range over.whlc_h_[rtb l(k’z.’ Z+"V”)] 'S Nonzero
tered on crossing the quantum well; e.g., for isotropic doping"’“cter the analytic continuatiofv, — (-+i0",
N~ N43d.]

We comment now on the factor@,‘f;""(k) which are
trivial for the plane-wave functions of field-free systems. We start by evaluating the continuum of Stoner excita-
They are included to allow us to simply account for thetions introduced above. They correspond to flipping a single
consequences of orbital coupling of itinerant carriers tospin in the itinerant carrier subsystem and typically have
magnetic fields. The indexx includes both the Landau relatively large energies of the order of the itinerant carrier
levels index and the gauge-dependent index for stateean-field spin splitting\ =J,,Ny,S. The continuum is ob-
within a Landau level. At zero field the mean-field eigen-tained by determining the conditions for [Br(k,z,z’,Q
states¢, (1) are plane waves with momentum=q, ki- +i0%)]# 0. With this aim it is convenient to define the di-
netic energy e;=%°g%/(2m’), and spin-orbit energye,,,  mensionless carrier spin polarizatiqgue (n'—=n')/(n! +n')

A. Stoner continuum
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and the Fermi energy of the majority-spin carrier bagd nwz J1/d forn=0
wn(2) anCO<T>y n= (19

=u'+|A|/2, wherey' is the effective chemical potential of b forn= 1
the 2D carrier gas. For half-metallic carrietip|=1, e v2/d forn=1.

<|A|, see Appendix Athese excitations carry sp=+1, We now calculate the matrix elemeris* (k, Q) using

depending on the sign af (i.e., on whether the coupling Eqs.(14~19) for M=1 and constarltl, in the absence of

between carriers and Mn ions is ferromagnetic or antn‘erroan external magnetic field. The quantum-well subband is de-
magnetig. On the other hand, for partly polarized carriers g by the wave function(z)=2/d sin(wz/d). We find

(Jpl<1, es>1A|, see Appendix A excitations carrying both

S,=1 andS,=-1 contribute, independent of the sign&fin L (K, Q) == Q8 + XJA[My + (K, QM ]y, (20)
the absence of spin-orbit couplifg=0), one finds a con-

tinuum of excitations with dispersion lying between the with the NX'N-matrices

nn’

curves -A-sgriA]e +2Vee, for es<|A|, and also between 1 0 -1h2 0 0
-A+sgiA]e 2\ (e~ |A|) g for e,>|A|. For small spin- ‘
orbit coupling, the energy width of the Stoner continuum 0 _ 172 0 -2 0
does not vanish & =0, instead approaching the width I 1N2 0 1 0 -1/2
e ' o -12 0o 1 0 ’
AQ=4—F"—. (17) o o0 -12 0 1
h7A|

In the case of multisubband quantum wels > 1) multiple ; s ; : S Y
continua arise, each of them associated with the correspond- (21

ing subband by means df,, (k2) and /.. —
1 0 -1~H2 O
B. Spin-wave modes 0 0 0 0

-1N2 0 12 0 ... : (22
depends on the doping concentration and the width of the 0 0 0 0
quantum well. It is natural to choose the mean nunbexf
Mn ions along the direction as a dimensional cutoff for the : : : o) NN
representation of the inverse propagdot(k,z,2',Q). This |, Eq. (20) we have defined the ratio of the free-carrier spin
motivates the choice of an appropriate basisNodrthonor-  gensity to the Mn spin density=|n'-n!|/(2Ny,Sd, which

rr;al excitation profiles {wn(2)}, with 0=n<N-1 and njically satisfies;<1, and the dimensionless integral
Jodzw, (2w, (2) = 8y, for expanding Eq(14), i.e.,
A d’q f(e) = fegn)

. (23)
In"=nl[J (2m)> QO+ €, - €,

The number of collective modes that appear in our theory M,

I(k,Q) =

d d

D-L(k,Q) = f dz f dZ w,(2)D" YK, 2,2, Q) wy(Z).
0 0 The last can be evaluated analytically o+ O in the absence

(18) of spin-orbit coupling, as described briefly in Appendixes A

and B.
We later solve déD“”’(k )]ny=0 for £ and obtain a set The term containingVl; corresponds to the term propor-
of N+1 solutions{Q)(k)} with the mode prof|IeSm(|)(z) tional to J,, in Eg. (14) and describes the mean-field ex-
—Enc )w(2). The coefficients! = (c ),

) are ob-  change interaction between Mn spins with free-carrier spins.
tained from[D; ", (k, Q) Inxnc" =0. We comblne this pro- The appearance of off-diagonal matrix elements, indicating a
cedure with a Debye cutoff of the 2D wave vectors to get themixing of basis functions for the Mn spin excitations, is of
correct number of magnetic degrees of freedom. This apgeometnc origin, determined by the projection
proximate procedure, a silent partner of the continuum Mnfodzx (2)w,(2)wn (7). The nonlocal correlations are ac-
density approximation that we use to avoid dealing with dis-counted for by the term contalnmgz, which corresponds to
order, obviously breaks down to some degree for the shorteste term proportional td2, in Eq. (14). Mixing appears here
wavelength modes which must be sensitive to the discretealso, determined this time by [fgdzxz(z)wn(z)]
ness of the magnetic degrees of freedom. The procedurg[[9dzy?(2)w, (2)]. The structure of the matrices in Egs.
should be accurate for longer wavelength modes, howevef21) and(22) shows that basis functions with different parity
and we believe that it gives a good qualitative description of ¢, (2)} do not mix® This allows us to write the expanded
the overall spectrum. We employ it without further commentyerne| (20) as the(externa) product of two matrices corre-

in t\?ve rest of the':[hp?pt?wr iration direct tthe M spondlng to everf+) and odd(-) modes: [Dnn,(k Q) Juxn
e assume that the magnetization direction of the Mn_ N
g =[O T ® [D L (K, Q) Ty With NF+N"=N.

spins located at the borders of the quantum well is not fixed_
by an anisotropy field or magnetic coupling to an adjacenSPin modes obtained as solutions of (@8, (K, ) Jyxn=0
layer. Then we can use free-end boundary conditions for thean now be classified accordmg to their parity by
magnetic excitationsdw,(z)/dz=0 at z=0,d. This deter- solving  separately  deD . (k, Q)] \+=0  and
mines the choice of the basis functions de[D;rll,(k,Q)]&_XN_:O, respectively. This leads thl*+1
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even modes anl™ odd ones. Moreover, it is possible to see 2¢.\ A

from Eg. (20) that [D;ﬁ,(k,ﬂ)]@_XN_ is independent of =xJAll 1+ (1 _m)f_k +0(L/e)), (30

I(k,Q). This means that correlations between local moment

and band configurations do not influence spin modes of odd 1/(2€

parity. As a consequence these modes are dispersiGfilass,  QZx(K) = (1 +x9)|A| + x_(lfls - 1) & +0(&), (32
S

we see explicitly below. More interesting are the even modes
for which correlation effects due to the coupling to itinerantfor small and large momenta, respectively.

carriers show up. _ The branchQZ, corresponds to a gapless Goldstone
In the following we apply the above formulation to the mode reflecting the spontaneous breaking of rotational sym-

cases of dilute and moderate Mn doping in the limit of van-metry for the Mn spins subsystem, as expected generically in

ishing spin-orbit couplingy— 0). We then(Sec. Il B com-  ferromagnets and found in bulk magnetic semiconducors.

ment on how these results are altered by a finite At long wavelengthge, — 0) the dispersion in bulk isotropic
ferromagnets is proportional to the spin stiffngsslivided
C. Dilute Mn doping by the magnetization\ [i.e., Q=(p/ M)K?]. Similarly, in

the adiabatic limite;<|A|, our long wavelength result for

For illustration we start discussing the limiting case of 1S(26) <h in stiff d | h
dilute Mn doping or, equivalently, narrow quantum wells. quamum wells(26) shows a spin stiffness due only to the

This corresponds to very few Mn ions across the quantun’f1crease in kinetic energy of the fully spin-polarized band

well leading in our approach to a low-dimensional kernel\"lhz(?nl the* spin orientf_:ltion s _spatial depen_der;_i,
D2 (K, Q) ]nen [EQ. (20)] with N of order 1. In this situa- =h*n*/(4m’). The magnetization, with parallel contributions

tio;n’we can easily approach the problem analytically VVefrom Mn ions and itinerant carriers coupled ferromagneti-
) = + ! = + -
choose for simplicityN*=N"=1 (i.e., N=2). In this case the cally, readsM =SNynd +n'/2=SNypd(1+x)). However, un

dispersion relations of even and odd spin modesrre- like bulk systems the spin stiffness vanishessas |A|, Eq.

. e (26), and stays equal to zero feg>|A|, Eq. (29). This un-
spoqdlng tOwO(z).and 1(2), respectively; see Eq19)] are usual feature should lead to some nonstandard phenomenol-
obtained by solving

ogy in these ferromagnets, for example, in the physics that
controls domain wall widths and finite-temperature magneti-
defD;i/(k,Q)T =[1+1(k,Q)IxJA|-Q=0, (24 zation suppression. I_:or_ short Wavgleng(hﬁeoo), Egs.
(27) and (30), the excitation energ§l, tends to a mean-
1 ~ field value x| A|, corresponding to the magnetic-ion spin
defD, . (k,Q)] =xJA[/2-Q=0. (25 splitting.
The branch of stiff excitation® %, Egs.(28) and(31), is
Equation(25) leads to a single odd mode with flat dispersion primarily bandlike in character and is centered around the
O =xJA|/2. For the calculation of the even modes we limit much larger energy scale of the itinerant carrier mean-field
ourselves for now to the case of ferromagnetic couplingspin splitting|A].
(A<0) at T=0; the difference between ferromagnetic and
antiferromagnetic cases is commented on later in Sec. IV. We D. Moderate Mn doping
solve Eq.(24) for long and short wavelengtlise., long- and
short-range correlatiopsusing the expansion®2) and(B3)
up to first order ing, and 1/, respectively. This leads to
two solutions: one soft modé€); ,<x4JA|, and one hard
mode Qs ~|A|, where typically O <Q&. For half-
metallic carrierg|p|=1, e;<|A|, see Appendix Awe obtain
for the small- and large-momentum limit

We now switch to the case of higher dimensions
(N*,N">1), which corresponds to several Mn ions across
the quantum well. As in Sec. lll C, dedicated to dilute Mn
doping, we consider Mn spins coupled ferromagnetically to
the itinerant carrierdA<<0) at T=0. Comments regarding
the antiferromagnetic coupling case will be introduced later
in Sec. IV. As an example we choobE=N"=5 with a rela-
tive spin densityx;=0.05. The dispersions corresponding to
even and odd modes are obtained numerically by solving
defD. % (k, )]t s=0 and ddD, . (k,Q)]55=0, respec-

|A| tively. This leads to a set of six even modes, five relatively
=xS|A|<1 —E—> +0(1/&), (27)  soft (QE’D) and one hardQ%), and five odd mode§() ).
k

The indexl (1<1=<05) orders the modes from the bottain

. X €
Qsoft(k) = 1 ':Xs(l - ﬁ)ék + O(fﬁ) (26)

. =1) to the top(l =5) of the spectrum in each case. Our results
(1 +—S>ek +0(e), (28)  for O (solid lineg and (), (dashed linesare summarized
X[A| in Figs. 3a-3(c) for three characteristic ratios/|A|=0.9,
respectively. Correspondingly, for partly polarized carriers0.975, and 1.5, respectively. Pangsand(b) correspond to
(Jp|<1, e>]A|, using the results summarized in Appendix half-metallic carriers while panek) depicts results for the

1

Qgirr(K) = (L +xg)|A] + 1+x

A) we find case of partly polarized carriers. Related results(igy; are
. shown in Fig. 4. In all plots the shaded zones represent the
Q5o(k) =0 +0(€) (290  stoner continuum. For each case, the normalized excitation
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0.05

0.1

0.05

Q/A|

0.1

0.05

FIG. 3. Dispersion of low-energy spin excitations in a single-

subband DMS quantum well with ferromagnetic coupliig< 0)
and dimensional cutofN*=N"=5 (see text Panels(a) and (b)
correspond to half-metalli¢i.e., fully polarized carriers (e/|A|
=0.9 and 0.975, respectivglyPanel(c) depicts results for partly
polarized carrierge/|A|=1.5). The even mode€), are denoted
by solid lines and the dispersionless odd modkg by dashed 7
lines. The spatial profiles of the even and odd modes are illustrateCT0SS the quantum weflower density close to the border
in Figs. a)-5() and Fig. 7, respectively. The integer labels order Z=0,d and higher density close to the centerd/2). Spin

the modes by increasing frequency. The shaded zones indicate tReodes with large relative amplitude near the center of the

Stoner continuum.

energies}/|A| are plotted as a function of the normalizked
vector Vec/|A[=A(k/ky), where A=\ /|A[. For typical
DMS quantum well systems we estimate that 10. Hence,

+ +
, ® 5 W)
(a) . T \\‘ (b) T
ol I -1 I
0 05 0 05 1
+
W)

3 © T

2.5

PHYSICAL REVIEW B70, 045205(2004

1.2 T

1.1

Q/A|

0.9
0 0.05 0.1

e Al

FIG. 4. Dispersion of high-energy spin excitations in a single-
subband DMS quantum well with ferromagnetic couplig<0)
and dimensional cutoffi*=5 (see text for half-metallic(i.e., fully
polarized carriers with e;/|A|=0.9. Similar features appear for
partly polarized carrierges/|A| >1). The stiff branchQ%; (solid
lines) corresponds to the modeg [Fig. 5f)]. The Stoner con-
tinuum is represented by the shaded zone. Ferromagnetic interac-
tions with the local moments peel a collective mode off the particle-
hole continuum.

the results shown in Figs. 3 and 4 corresponll/iq <1, the
regime well below the Debye cutoff in which the continuum
approximation is most reliable.

We start by discussing the properties of the relatively soft
even modesﬂa) depicted in Fig. 3 by solid lines. Pang)

corresponding tces/|A|=0.9 is representative of results for
half-metallic cases withe,/|A|<1. There we find a set of
modes atk =0 that are distributed in the small energy win-
dow 0=Q<2xJA| and havek? dispersion at finite wave
vectors, corresponding to a finite spin stiffness. The upper
limit in this spectrum is twice the mean-field value predicted
in the case of bulk systenf$This is due to the fact that the
carrier spin density is modulated by(z)=v2/d sin(wz/d)

quantum well see a carrier spin density which is effectively
higher than in the uniform spin-density bulk case.
The first branchQ{l) corresponds to a gapless Goldstone

mode w(l)(z)=wo(z), Fig. 5a), similar to the one discussed
above for the dilute Mn doping case, in Sec. Ill C. For the

+
(V6
T

FIG. 5. Spatial profiles across a single-
subband DMS quantum well for even parity col-
lective modegsolid lines. The well has widthd
(0<z/d<1), ferromagnetic coupling(A<0),

0.

®

and the dimensional cutoffi*=5 (see text The
carrier densityxy?(2) (dashed ling is shown for
comparison. Note that the Goldstone mode, panel
(a), is constant in space corresponding to uniform

5 1

+
stiff
\ spin rotation. The other modes tend to have
higher energy when they have higher weight to-
ward the middle of the quantum well, where ex-
change interactions are stronger.

0.

5 1
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[>1 modes, the spatial structur@ﬁ)(z) is not constant carrier density is reduced and the Mn spin splitting is

within the quantum wel[see Figs. 8)-5€)] and the ener- consequentially weaker. The same conside.ration applies to
gies (k) therefore approach a finite value jag—0. The  the odd modesee below behavior as a function dfi".
dependence of the excitation energfe(k=0) on | is not In addition to the relatively soft modes we find one even,
obvious, since the gap is not simply related to the effectiv stiff branchQg (Fig. 4) lying above the Stoner continuum.

S0 cda o+ 0w . >ClVEts properties are similar to those discussed for the stiff mode
transverse momentuky = fqdzw, dw,/ 9z associated with iy the dilute Mn doping case, Sec. Il C. The mode is re-

each mode. Instead, the local excitation densif§(z) and  stricted to relatively large wavelengths if compared with the
its correlation with the carrier density, proportionaly&(z),  case of soft modes. This is due to the proximity of the Stoner
is more relevant(See Fig. 5 for a comparisoniVe illustrate  continuum and their strong interaction. The corresponding
the | dependence oﬂa)(k:O) in Fig. 6 for N*=20 (full excitation profilewl,(2) is shown in Fig. &) (solid line). Its
circles. We observe a spin-mode accumulation close to théimilarity to the carrier density profile?(z) (dashed ling
boundaries of the spectrum that is not evident for srvall demonstrates that this mode is primarily associated with the
Furthermore, the inset in Fig. 6 shows that the dispersioffinerant-carrier subsystem dynamics.
doesnot appear to be quadratic for small Since Qfy,(k We continue discussing briefly the properties of the dis-
=0)=0, a quadratic fit has a single free parameter. Thersionless odd modds, depicted in Fig. 3dashed lines
dashed(dotted line corresponds to a quadratic fit betweenAs pointed out above, the flat dispersions have their origin in
thel=1-mode and thé=2-mode(I=5). The curves differ by the absence of correlau_on effects related to spin reorienta-
a (relatively large factor of order 3.5. tions. Odd mode fluctuations of the local moment give rise to
As e/|A| increasegFig. 3b)] and the Stoner continuum effective fields that are averaged to zero ¥z) and are

meets the diﬁerenﬂ(,) branches, the corresponding spin consequently not correlated with carrier spin fluctuations.
stiffness drops to zero. Fat/|A|=1 [partly spin-polarized This makes the odd modes transparent to the Stoner excita-

carriers, Fig. 8)] all branches are nearly dispersionless untilt'?]ﬂli’ét?ﬁé’ gseﬂor;'géeg%t dvggzghgn%?;:"fﬁ;?ﬁéerg?nt/'mum’
they enter the particle-hole continuum; the softness of thes hatis. of the carrieri in olarigati Moreover aIIEr%\odes
excitations is certain to have an impact on the magneti ! pin p p '

properties of these ferromagnets. The spectral density sho ned Io?gedng/v |thf|innitthqlow)v\(/ahnergymW|nrc]ii?V\(/j G dﬂ<i)és|A| n th
that the relatively soft modes survive in the midst of the@Nd present a € 9ap whose magnitude depends o €

Stoner continuum, but the stiff mode does not as discussedgricular excitation profiles;(2) (Fig. 7). This behavior is
below. similar to that found for the relatively soft even modes ex-
Regarding Mn doping and kernel dimensionally; in-  Cept that there.is no Goldstone mode in the odd spectrum; the
creases with higher magnetic-ion density and quantum weffigher the weight at the border of the quantum well, the
width. In this situation, new, relatively soft, modes arise fromlower the gafisee, e.9.w)(2), Fig. 7€), which corresponds
the top of the spectrum squeezing the rest to the bottom ito )y in Fig. 3]. As in the even case, the dependenc€lpf
order to satisfy 6<Q;,<2xJA|. This happens because in- onl is nontrivial. See Fig. 6empty circles for an illustration
creasing the dimension of the kernel admits the presence af this dependence in the calie=20.
higher-order Fourier components in our expansion and al- We further note that, as can be seen from @§), in the
lows lower energy modes to acquire a larger relative amplidimit of a large number of vertical mode@N*,N™>1) it
tude at the borders of the quantum well, where the freeholds thatﬂa)zﬂaﬂ)(k:O), provided thatx;<1. The even

ol and odd mode pairs are then nearly degenerate even and odd

001 o combinations of excitations at opposite edges of the quantum
: 51
. ¢ well.
_ . Our analysis holds for symmetric quantum wells only. We
% 0.05 | 0 b s’ ] comment shortly on how an asymmetry of the quantum-well
12 3 4 5 3

potential will affect our results. On the one hand, a gapless
: Goldstone mode as found for symmetric quantum wells

o ¢ : when neglecting spin-orbit couplingee also Sec. Il Estill

0 et ‘ ‘ exists. On the other hand, the spin-wave modes will have no

definite parity anymore, and the above classification into

even (dispersive and odd(nondispersive modes no longer
FIG. 6. Dispersion of low-energy spin excitations in a single- holds. The particular excitation profilggigs. 5 and Y and

subband DMS quantum well for in-plane momentkmO, ferro-  energies(Fig. 6) will depend on the local-carrier density

magnetic couplingA <0), and dimensional cutoff*=N"=20,asa  y*(2).

function of the mode indek (see text The full circles depict the

excitation energie$);,(k=0) of even modesy;,, while the empty

mode index [

circles correspond 6, (k=0) for odd modesw;,. The inset cor- E. Effect of spin-orbit coupling

responds to two extreme quadratic fittingdashed and dotted

curves, see textto the dispersion of even modékll circle) for The presence of spin-orbit coupling described by the
smalll. The curves differ by a prefactor of order 3.5. Dresselhaus HamiltoniaHp, Eq. (5), introduces easy-axis
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QRN
T

(@)

FIG. 7. Spatial profiles for
spin excitation modes with odd
parity (solid lineg across a single-
subband DMS quantum well of
width d (0=<z/d=<1) with ferro-
magnetic couplindA <0) and di-
mensional cutofN™=5 (see text
The transverse carriers’ density
X3(2) (dashed ling is shown for
comparison.

magnetic anisotropy which is, of course, necessary for longtions. We applied this tool to the study of spin excitations in
range magnetic order in a quantum well. When the anisothe ordered magnetic state at zero temperature. As in the bulk
tropy, which explicitly breaks rotational invariance for the case, we have recognized two different energy scales on
magnetization orientation, is accounted for, a finite energyvhich the spin excitation spectrum depends: one hard scale
gap Q, appears in the lowest-lying collective mode branchlA| principally related to the itinerant-carrier subsystem, and
and several of the lower-lying branches in Figs. 3 and 6 aréne soft scalexJA| for the magnetic-ion spin excitations,
shifted to higher energies. We calculdtg, for the lowest ~WherexJA[<[A[. In addition, a continuum of Stoner excita-

even mode of constant excitation profité;,, Fig. 5a). With tions(cobrre;polnding to fIippifng a sri]nglﬁ spin iRItEe itiﬂerant—
o carrier bangl also emerges from the theory. Although most
this aim we follow the procedure of Sec. Il B and calculate g|ayant to DMS ferromagnet properties in circumstances for

" . , : _ ,
O, for small spin-orbit coupling ané=0. We find that which the magnetic moments have a high degree of spin
alignment, this theory of the elementary excitation spectrum
2212 of the system sheds considerable light on the nature of the
0. = YXk)’ken (32) magnetic state and on the physics that controls the critical
% SNy,d maxX|Al, e} temperature of the system.

The excitation spectrum of this magnetic system is quite
whereeg=(#2/2m")kZ is the Fermi energy of the 2D electron unusual because of its ambiguous dimensionality. A slab of
gas paramagnetic state angn'+n!. This coincides with Magnetic ions is coupled by a 2D electron system that is
our previous restdt obtained by using perturbation theory. frozen into a single growth direction electronic subband and

The above result and discussion holds for symmetri@nnot distort itsz dependence to accommodate magnetic
quantum wells. In asymmetric quantum wells, spin-orbitfluctuations. We find that the excitation spectrum of this sys-
coupling is not only described by the Dresselhaus terms, bg¢m has multiple 2D branches. The number of reasonably
has also a Rash®aspin-orbit contribution. For electrons in Well-defined branches of excitations that have primarily local
the conduction band, the Rashba Hamiltonian is linear in thgYoment character is close to the width of the quantum well
in-plane momentunk. This will affect the magnetic aniso- Measured in units of the mean-separation between Mn ions,
tropy and the energy gap in the spectrum of collective spirS €xpected by analogy with a reference system in which the
excitations. The interplay of these two types of spin-orbitlocal moments are placed on a lattice with the same volume
coupling will complicate the dispersion of the spin wavesP€ Mn and a finite number of layers. On the other hand, we
(Fig. 3. In particular, they will become anisotropic, analo- find that there is only one 2D branch of collective excitations
gous to the anisotropic transport properties discussed in Reifiat have primarily electronic character. When spin-orbit in-
53. For heavy holes in the valence band the leading RashiJgractions are neglected, the gapless Goldstone mode branch

term is cubic in momentur¥f. This complicates the evalua- Nas quartic rather than quadratic dispersion, implying that the
tion of the spin-wave dispersions even more. spin-stifiness vanishes, except when the carrier system is

half-metallic. Unless, that isss<|A| and the mean-field car-
rier spins are consequently fully spin polarized. This prop-
erty arises somewhat accidentally from the particular fea-
tures of effective interactions mediated by carriers in 2D
parabolic bands and has partly been noted for the RKKY
We have developed a theory of collective spin excitationdimit (e;>|A[) in previous work® If we had included
in DMS quantum wells by extending the approach that wecarrier-carrier interactions in our theory, the spin stiffness
used previously for bulk system$The theory goes beyond would not vanish but, depending on the carrier density, might
mean-field and RKKY approaches and accounts for both fihave a negative sign implying that the ferromagnetically or-
nite itinerant carrier spin-splitting and dynamical correla-dered state is unstable. When spin-orbit interactions are in-

IV. COMMENTS AND CONCLUSION
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cluded, however, the collective excitation spectrum has a@mportant differences are that the collective mode with domi-
small gap and negative dispersion in the lowest-lying collecnant carrier character which appears above the Stoner
tive mode, while unusual, does not necessarily imply instaparticle-hole continuum in the case of ferromagnetic interac-
bility. Finally, we remark that the excitation spectrum in- tions, lies below the Stoner continuum in the case of antifer-
cludes a large number of even and odd weakly dispersive amagnetic interactions. In addition, (L+x,) factors which
nondispersive branches in which fluctuations in the local MOuppear in expressions for the collective mode energies, fac-
ments are concentrated in particular parts of the quanturpys that express the band electron contribution to the total
well and do not couple strongly to fluctuations in the band'spin density of the system, are replaced byltx.) factors
electron spin orientation. In these mades, the excitation ©h the antiferromagnetic case. These factors are not present in

ergy is determined primarily by the local strength of the o . . . !
mean-field interaction between the Mn moments and th& RKKY description of the carrier mediated interactions.

band electrons, which becomes small because of carrier
quantum-size effects toward the edges of the quantum well.

The results summarized above for the collective excita-
tion spectrum suggest that thermodynamic properties, the ACKNOWLEDGMENTS
temperature dependence of the magnetization, for example,

are likely to be quite unusual in DMS ferromagnets, particu- e ) . .
larly when the carriers are in the conduction band wher . Zulicke for helpful discussions. This work was supported

spin-orbit interactions are rather weak. The influence of therPy the Deutsche Forschungsgemeinschaft via the Emmy-
mal fluctuations on the magnetization will be enhanced nof¥0€ther program and the Center for Functional Nanostruc-
only by the reduced dimensidA but also by the small and tUres, by the Research Training Netwdkintronics by the
possibly even negative spin stiffness mentioned abovdyational Science Foundation under Grant No. DMR
(Fluctuations in the Goldstone mode branch have a relativd210383, and by the Welch Foundation.

importance that goes like N/ whereN is the effective num-

ber of Mn layers in the film that we have discussed previ-

ously) In the case of valence band DMS quantum well fer- APPENDIX A: MEAN-FIELD ITINERANT CARRIER SPIN
romagnets, strong magnetic anisotrgpyshould lead to POLARIZATION

ferromagnetism that is essentially Ising in character. The
magnetization should then be fairly constant over a wide,
interval of temperature before dropping fairly rapidly to Zero,, aak Dresselhaus spin-orbit coupling B0 is given by
near the critical temperature. In the co_nducuon-b.and case fq{g:fdzk/(zﬂ)zf(eﬂ where /=€~ (a/2)A+0€°~ 1/, &
which the mod.el we havg st_ud|ed applies most d|reptly, how_:ﬁsz/(Zm*), eﬁ":—yz<k2>2k2/A, ' is the effective chemical
ever, the gap in the excitation spectrum will be quite small, . . . o
much smaller than the mean-field ferromagnetic critical tempOt,entlal of the 2D carrier gas, arf_(;le) is the Fermi distri-
perature, as we have discussed eaffifhe true critical bution. For zero temperature we find

temperature is likely to be determined in large measure by

We thank C. Balseiro, T. Jungwirth, Byounghak Lee, and

The 2D mean-field itinerant carrier spin density for sgin
d subband spin-splittind =J.,Nyu,S in the presence of

long length scale fluctuations and to be substantially smaller w + (012)A

than the mean-field temperature. Since the stiffness of this n’ = T s 0w’ +(al2)h), (A1)
system is very small, it will be significantly altered by spin- 4m(h?2m’ = oyXkg)?A)

orbit interactions; this part of the physics is something that

we have not addressed here. where we have usefle)1-o=60(—€). The difference between

Furthermore, the model we have studied ignores disordeyp and down contributions determines the net carrier spin
which is likely to play an important role in adjudicating the density defined ap=(n'-n')/(n'+n'). Denoting the Fermi
way in which these subtle competitions are resolved. Weenergy of the majority-spin carrier band ly=u’+|A|/2,
believe that careful study of the magnetization and othewe see from Eq(Al) that the carrier system is fully spin
properties of electron quantum well DMS ferromagnets atpolarized orhalf-metallic(i.e., |p|=1) whene;<|A|. On the
low temperatures will reveal a lot of subtle, unusual, andother hand, partly spin-polarized carrigi®., |p| <1) corre-
interesting physics. spond toes> |A.

Finally we emphasize that the numerical results presented
here are for the case of ferromagnetic interactions between
the carriers and the local moment& <0), which is ex- APPENDIX B: CORRECTION DUE TO CORRELATION
pected to apply for n-doped semiconductors. Since we have EFFECTS
taken the local-moment spins to point down in their ground
state, this means that the up spins are the minority spins and Correlation effects due to the response of quantum well
the down spins are the majority spins in the ferromagnetigarriers to Mn spin reorientations are taken into account in
case while their roles are interchanged in the antiferromagthe kernelD™%(k,z,z’,Q) by the second term of Eq14).
netic case. It follows that the only change in Etd) whenA  This is manifested by the momentum and energy dependence
changes sign is thaty, changes sign. This change has aof the integrall(k,Q), Eq.(23). In the absence of magnetic
number of consequences that are fairly subtle wkeims  field and spin-orbit coupling we find for zero temperature
small, but can, in principle, be more consequential. The mostsee Appendix A for definitions
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2 1y~ f(el "
d q [f(Eq) f(€q+k)]T=0 - m |:0(/~L, _ A/Z)(Q + A _ Ek)(l _ \/l —

A - A/2)ek)

m? Q+ eé - ;+k Amh2e (Q+A-¢g)?
o A +A/2)ek>
o +A/2)(Q+A+ek)<1 \/1 O+ h+e) (B1)
nt—=n' nl(u +A22+Q)-nl(u' -AI2-Q)
“a+n " (Q+4)° 6+ 0(&) ©2
=—(n' +nh)/e+O(1/€d), (B3)

where the integral has to be considered as a Cauchy principal value. Equ@®nand (B3) correspond to first-order
expansions irg, and 1/, respectively. The prefactors that expresszltependence in the second term of Ey) contain
information on the quantum well geometry and leadvtg in Eq. (20).
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