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We present a theory of collective spin excitations in diluted-magnetic-semiconductor quantum wells in
which local magnetic moments are coupled via a quasi-two-dimensional gas of electrons or holes. In the case
of a ferromagnetic state with partly spin-polarized electrons, we find that the Goldstone collective mode has
anomalousk4 dispersion and that for symmetric quantum wells odd parity modes do not disperse at all. We
discuss the gap in the collective excitation spectrum which appears when spin-orbit interactions are included.
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I. INTRODUCTION

In the emerging field of spin electronics or
magnetoelectronics,1,2,56 the role of thespin degree of free-
dom in the properties of electronic systems is exploited in
the design of new functional devices. The recognition of this
additional degree of freedom suggests possibilities for elec-
trical manipulation beyond the tool set of conventional elec-
tronics which is based entirely on coupling to the electronic
charge. The effort to generate and manipulate spin-polarized
carriers in a controllable environment, preferably in semi-
conductors, has triggered the discovery of carrier-induced
ferromagnetism3,4 in diluted magnetic semiconductors
(DMS’s).5 In these systems a few percent of the cations in
III-V or II-VI semiconductor compounds are randomly sub-
stituted by magnetic ions, usually Mn, which have local
magnetic moments. The effective coupling between these lo-
cal moments is mediated by free carriers in the host semi-
conductor compound(holes forp-doped materials and elec-
trons forn-doped ones) and can lead to ferromagnetic long-
range order. Curie temperaturesTc in excess of 100 K have
been found in bulk(Ga,Mn)As systems.5–7

One approach to understand the magnetic and optical
properties of DMS’s is based on a phenomenological model
of the relevant low-energy degrees of freedom.8,9 In this pic-
ture, local S=5/2 spins10 from Mn2+ ions are exchange
coupled to itinerant carriers of a metallic nature. In typical
samples, the density of free carriers is much smaller than the
Mn ion concentration. Forn-doped materials, the exchange
is due to ferromagnetics-d coupling, while forp-doped ones
it is due to antiferromagneticp-d coupling, as illustrated
schematically in Fig. 1. In both cases, the free carriers are
believed to mediate an effective ferromagnetic coupling be-
tween the Mn spins, which is typically stronger than the
shorter-range antiferromagnetic direct exchange coupling
present in undoped systems.

The reliability of this phenomenological approach has
been tested by comparing theoretical predictions with experi-
mental findings. The tendency towards ferromagnetic order
and trends in the observedTc’s, domain structure properties,
the anomalous Hall effect, and magnetooptical properties,

have been successfully described by treating this phenom-
enological model in a mean-field approximation(MFT),13–22

which is analogous to the Weiss mean-field approach for
lattice spin models. In the mean-field theory the local Mn
ions are treated as independent but subject to an effective
magnetic field which originates from their exchange interac-
tions with spin-polarized free carriers. Similarly, the
itinerant-carrier system sees an effective field proportional to
the Mn density and polarization. This picture does not ac-
count, however, for correlations between Mn spin configura-
tions and the itinerant carrier state which reduce the energy
cost of local-moment spin fluctuations that have slow spatial
variations. As a consequence, MFT systematically overesti-
mates the Curie temperature, a problem which is severe for
systems with reduced dimensionality,23 including the quan-
tum well systems that will be discussed here.

One prediction that follows from the phenomenological
model is that the system’s collective excitations involve cor-
related dynamics of local moment and itinerant spins. In the
case of bulk DMS systems, we have predicted two branches
of collective spin waves and discussed their properties24 as
well as their impact on limiting the Curie temperature.25 This
analysis of collective excitations requires a theoretical de-
scription beyond MFT, which neglects correlations, and be-
yond the familiar Ruderman-Kittel-Kasuya-Yoshida(RKKY )
theory of pairwise carrier-mediated interactions, which fails
for the systems under consideration because it assumes a
carrier-band spin splitting that is small compared to the
Fermi energy. This assumption is not typically satisfied in
doped DMS systems,26 in part because the itinerant-carrier
concentration is usually much smaller than the Mn impurity
density.27 Moreover, the RKKY picture also assumes an in-
stantaneous static interaction between the magnetic Mn ions,
neglecting the retarded character of the itinerant-carrier re-
sponse that mediates the interactions.

An indication28 that the spin excitations of doped DMS
systems have collective local-moment and carrier character,
even in paramagnetic systems, has been provided by recent
electron paramagnetic resonance experiments29 in n-doped
DMS quantum wells. The aim of the present paper is to
extend the previous theoretical work to describe the full dis-
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persion of all collective spin excitations in quantum wells,
their dependence on the magnetic-ion doping concentration
and profile, and on the free-carrier density. This is a first step
toward the theoretical study of quantum and thermal fluctua-
tions in the magnetism of nanostructured DMS’s which are
starting to receive increased attention, partially because of
the possibility of quantum confinement control of magnetic
properties as in the recent experimental study of a DMS
quantum well in Ref. 30. Quantum confinement is expected
to drastically affect the magnetic properties of
nanostructures.31–40 In Ref. 28 only the long-wavelength
limit of the lowest spin-wave branch, the mode that electron
paramagnetic resonance probes, was considered.

The paper is organized as follows. In Sec. II we develop
the theoretical tools necessary to address collective excita-
tions in doped DMS quantum wells in a general way. After
introducing the many-body quantum Hamiltonian(Sec. II A)
we derive an effective action(Sec. II B) that leads to an
independent spin-wave theory for low temperatures in mul-
tisubband quantum wells(Sec. II C). Section III is dedicated
to the evaluation and discussion of collective spin excita-
tions, concentrating on the case in which a single electronic
subband is occupied and subband mixing is negligible. We
find that odd-parity collective modes of doped quantum-well
DMS systems are dispersionless in this limit, and that the
lowest-energy Goldstone collective mode of ferromagnetic
systems has anomalousk4 dispersion when the quantum-well
carrier system is nothalf-metallic(i.e., when the carriers are
not fully spin polarized). Results for dilute and moderate Mn

doping are shown in Secs. III C and III D, respectively. The
role of spin-orbit coupling, which gives rise to magnetic an-
isotropy and creates a gap in the excitation spectrum of a
ferromagnetic system, is discussed in Sec. III E. A summary
and discussion of our results is presented in Sec. IV.

II. DERIVATION OF THE THEORY

A. Hamiltonian

We consider a symmetric quantum well of uniform width
d that confines the motion of itinerant carriers in thez direc-
tion (see Fig. 2; we later comment on the case of asymmetric
quantum wells). The carriers move freely in thex-y plane,
occupying one or several transverse modes or subbands. The
quantum-well geometry makes it convenient to split the
three-dimensional(3D) spatial coordinate intosr ,zd, wherer
corresponds to the two-dimensional(2D) x-y projection. The

field operator for the itinerant carriersĈsr ,zd can be written

as Ĉsr ,zd=om=1
M ĉmsr dxmszd, wherem=1, . . . ,M labels the

subband number,xmszd=Î2/d sinsmpz/dd is the real wave
function for subbandm, which satisfy the orthonormality

condition e0
d dz xmszdxm8szd=dm,m8, and ĉmsr d is a spinor

with componentsĉs,msr d. As indicated above, we will adopt
particle-in-a-box wave functions for explicit calculations, al-
though this approximation plays no critical role in our theory
and can easily be relaxed. The transverse wave function
xmszd degree-of-freedom will later be taken to be frozen in
its ground state; this is normally a good approximation ex-

FIG. 1. Schematic representation of the exchange coupling be-
tween itinerant-carrier and localized magnetic-impurity spins in
n-doped andp-doped DMS’s. When the local moments are parallel
to each other and the band system is spin polarized, the exchange
energy can be minimized for either ferromagnetic or antiferromag-
netic interactions.

FIG. 2. Sketch of a DMS quantum well. Itinerant carriers move
freely in thex-y plane, occupying subbandsxnszd due to quantum
confinement along thez axis (intersubband energy gapDd). The
magnetic-ion doping profile is represented by a continuous
Mn-density distributionNMnszd.
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cept in wide quantum wells. The in-plane degrees of freedom

are described byfluctuatingspinor fieldsĉs,msr d. The mag-
netic impurities are randomly distributed within the quantum
well.

The fact that the Mn density in typical quantum well sys-
tems is very much larger than the carrier density suggests the
replacement of the random distribution of local Mn magnetic
moments by a continuous densityNMnszd, thereby neglecting
disorder in the Mn ion locations.41 This leaves us with a
situation in which a growth direction degree of freedom ex-
ists for the local moment spins, but not for the quantum well
electrons. It is the quasi-3D character of local moments that
are coupled together by quasi-2D electrons that is respon-
sible for unusual aspects of the collective excitation spec-
trum that we will discuss later. The Debye-like continuum
approximation we use for the Mn ion density distribution
will, of course, fail for modes that involve either in-plane or
growth-direction spatial variation on a scale shorter than the
distance between Mn ions, as we discuss later. The depen-
dence ofNMnszd on the growth-direction coordinatez allows
for the possibility of a nonuniform doping profile in the
quantum well. The two-component spinors we use for the
quantum-well electron fields restrict our attention to circum-
stances in which the electric subbands occur in pairs with
identical orbital wave functions, i.e., to hole quantum-well
subbands with small heavy-light mixing or to electron sub-
bands. Generalizing to arbitrarily spin-orbit coupled systems
considerably complicates the notation we use below and, in
the case of an external field, complicates the theory consid-
erably because of the interplay between orbital and Zeeman
coupling. We will, for the most part, restrict our attention to
n-doped quantum wells.

The total HamiltonianH consist of four terms:H=Hkin
+HZ+Hex+HD. In the presence of a magnetic fieldB= =
3A, the kinetic term for carriers of chargee reads

Hkin =E d2rE
0

d

dzĈ†sr ,zdF− "2

2m* ¹̃2 + Vszd − mGĈsr ,zd

=E d2r o
m=1

M

o
s

ĉs,m
† sr dF− "2

2m* ¹̃r
2 − mm8Gĉs,msr d, s1d

where =̃sr d==sr d−sie/"cdA, Vszd is the quantum-well con-
fining potential, andmm8 =m−em is the effective subband-
dependent chemical potential of the quasi-2D carrier gas,
with em the subband quantization energy. Here, we assumed
a parabolic dispersion for the free carriers, with an effective
massm* . This is well justified forn-doped systems, which
haves-band conduction electrons. For hole doped systems,
which havep-band valence carriers, this approximation is
often useful for qualitative discussions. The Zeeman term is

HZ = mBB ·E d2rE
0

d

dzfgeŝsr ,zd + gMnSsr ,zdg, s2d

wheremB.0 is the Bohr magneton,

ŝsr ,zd =
1

2
Ĉ†sr ,zdtĈsr ,zd

= o
m,m8

o
s,s8

xmszdxm8szdĉs,m
† sr d

tss8

2
ĉs8,m8sr d s3d

is the quantum-well carrier spin density(with Pauli matrix
vector t), and Ssr ,zd is the spin density of the Mn sub-
system. The coupling between the carrier spins and the local
Mn spins is described by

Hex = JexE d2rE
0

d

dz Ssr ,zd · ŝsr ,zd, s4d

where Jex,0 corresponds to ferromagnetic andJex.0 to
antiferromagnetic coupling(i.e., to n- and p-doped host
semiconductors, respectively). In symmetric quantum wells
spin-orbit interactions are described by the Dresselhaus
Hamiltonian43

HD = gE d2rE
0

d

dzĈ†sr ,zdkz
2s− txkx + tykydĈsr ,zd

= gE d2r o
m,m8=1

M

o
s,s8

kkz
2lm,m8ĉs,m

† sr ds− txkx

+ tykydss8ĉs8,m8sr d, s5d

where kkz
2lm,m8=e0

d dzxmszdkz
2xm8szd=kkm

2 ldm,m8 with kkm
2 l

=smp /dd2 when particle-in-a-box orbitals are used. The
above spin-orbit HamiltonianHD leads to az-oriented mag-
netic easy axis as we have shown in earlier work28 and dis-
cuss later. For comments on spin-orbit coupling in the case
of asymmetric quantum wells see Sec. III E.

B. Effective action

In analogy to our earlier work24 on bulk DMS ferromag-
nets, we want to describe elementary spin excitations in the
DMS quantum well in a language where the itinerant-carrier
degrees of freedom are integrated out. This leads to a re-
tarded free-carrier mediated interaction between the Mn-ion
S=5/2 spins. We are interested in small spin fluctuations
about the mean-field magnetic state. The ground states of
experimental doped quantum well DMS systems have some-
times been found to be ferromagnetic,30–40 and sometimes
exhibit complex spin-glass behavior. It is quite possible that
the complex spin-glass states that sometimes occur are due to
disorder effects that are not essential and can, in principle, be
avoided, due, for example, to inhomogeneities in the Mn ion
distribution, substitutional Mn ions, or other defects. In any
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event, the theory we discuss assumes a mean-field state in
which all Mn ions are aligned. When this simple state is not
the ground state of the system, or when we want to describe
the collective excitations of a system that is above its ferro-
magnetic transition temperature, our theory will apply only
in an external magnetic field that is strong enough to achieve
substantial Mn ion spin polarization. We choose this field to
be oriented in theẑ direction:B=s0,0,Bd. BecausegMn.0,
the Mn spins then tend to align along the opposite direction.
In the case of ferromagnets with anisotropy, we choose theẑ
direction to be along an easy axis.

It is convenient to represent theS=5/2 spins by Holstein-
Primakoff (HP) (Ref. 4) bosons. For small fluctuations
around the mean-field state the spin densitySsr ,zd is ap-
proximated byS+< v̄Î2NMnszdS, S−<vÎ2NMnszdS, and Sz

=v̄v−NMnszdS, where the complex variablesv̄, v are boson
creation and annihilation operators that become bosonic co-
herent state labels in the path-integral formalism we employ.
The vacuum with no HP bosons corresponds to full(nega-
tive) polarization of the Mn system, while the creation of a
HP boson describes an increase in the total Mn spin by one
unit. The partition functionZ of the compound system is
calculated using a coherent-state path integral representation

Z =E Dsc̄cdDsv̄vdexpS−E
0

b

dt Lsc̄c,v̄vdD s6d

with Dsc̄cd;Dsc̄1c1d¯Dsc̄McMd and the Lagrangian

Lsc̄c,v̄vd =E d2rFo
m=1

M

c̄msr ,td]tcmsr ,td

+E
0

d

dzv̄sr ,z,td]tvsr ,z,tdG + Hsc̄c,v̄vd,

s7d
where the Grassmann numbersc̄=sc̄1, . . . ,c̄Md and c
=sc1, . . . ,cMd describe fermion(itinerant carrier) fluctua-
tions within each of theM subbands.

Since the Hamiltonian is bilinear in the fermionic fields,
we can integrate them out and arrive at a representation for
the bosonic partition function of the formZ=eDsv̄vd
3exps−Sefffv̄vgd, with an effective action

Sefffv̄vg =E
0

b

dtE d2rE
0

d

dzfv̄sr ,z,td]tvsr ,z,td

+ gMnmBB ·Ssv̄vdg − lnfdet G−1sv̄vdg. s8d

The total kernelG−1sv̄vd can be split into a mean-field part,
which does not depend on the bosonic(Mn spin excitation)
fields v̄ and v, and a fluctuating part by writingG−1sv̄vd
=GMF

−1 +dG−1sv̄vd, with

sGMF
−1 dm,m8 = F]t −

"2

2m* ¹̃r
2 − mm8Gdm,m8 +

1

2
sgemBBdm,m8

− Dm,m8dtz + gkkm
2 ls− txkx + tykyddm,m8, s9d

dGm,m8
−1 sv̄vd =

Jex

2
E

0

d

dzxmszdxm8szdfÎ2NMnszdSsv̄t− + vt+d

+ v̄vtzg. s10d

The exchange coupling contributes to the conduction-
band spin splitting inGMF through the mean-field inter-

action Dm,m8=JexsN̄Mndm,m8S, where sN̄Mndm,m8
=e0

d dz xmszdxm8szdNMnszd.45 We recognize here that cou-
pling to a Mn-spin system with an inhomogeneous doping
profile NMnszd leads to mixing of the quantum-well sub-
bands. These intersubband interactions are present at the
mean-field level, as seen in Eq.(9), but also appear in the
term which expresses the coupling between carriers and local
moment fluctuations, Eq.(10).

C. Quantum-well subband decoupling and independent spin-
wave theory

The above picture simplifies considerably when quantum-
well subband mixing is negligible,46 i.e., when the energy
gap Dd (see Fig. 2) is much larger than the spin-splitting
energiesDm,m8. This regime can be reached either by narrow-
ing the quantum wellsDd→`d, or by diluting the Mn doping
sDm,m8→0d, independently of the number of occupied sub-
bandsM, which is controlled by the carrier density. In this
limit we arrive at a Green’s function that is diagonal in sub-
band space, withGm

−1=sGMF
−1 dm+dGm

−1,

sGMF
−1 dm = F]t −

"2

2m* ¹̃r
2 − mm8G +

1

2
sgemBB − Dmdtz + gkkm

2 l

3s− txkx + tykyd, s11d

dGm
−1sv̄vd =

Jex

2
E

0

d

dzxm
2 szdfÎ2NMnszdSsv̄t− + vt+d

+ v̄vtzg. s12d

HereDm=Dm,m is the subband-dependent exchange contribu-
tion to the itinerant carrier mean-field splitting. This approxi-
mation leads to a convenient subband separation
lnfdet G−1g=om=1

M lnfdet Gm
−1g in Eq. (8).

Expanding lnfdet Gm
−1g up to second order in

dGm
−1, lnfdetGm

−1g=trflnsGMF
−1 dmg+trfsGMFdmdGm

−1g
−s1/2dtrfsGMFdmdGm

−1sGMFdmdGm
−1g+¯, and collecting all

contributions up to quadratic order inv̄ andv we arrive at
an independent spin-wave theory where the spin excitations
are treated as noninteracting HP bosons. This is a good ap-
proximation for temperatures well below the maximum of
the ferromagnetic transition temperature and/or the tempera-
ture defined by Zeeman coupling to the external field, in
which case spin excitation amplitudes are small. Fourier
transforming the resulting spin-wave action(keeping z in
real space and defining bosonic Matsubara frequenciesnn)
we obtain
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Sefffv̄vg =
1

b
o
n
E d2k

s2pd2 E d2k8

s2pd2E
0

d

dzE
0

d

dz8 3 v̄sk,z,nndD−1sk,k8,z,z8,nndvsk8,z8,nnd. s13d

The kernel of the quadratic action(13) is the inverse of the spin-wave propagatorDsk ,k8 ,z,z8 ,nnd and is given by

D−1sk,k8,z,z8,nnd = F− inn + gMnmBB −
Jex

2 o
m=1

M

snm
↓ − nm

↑ dxm
2 szdGdsz− z8ddsk − k8d

+
Jex

2

2
SÎNMnszdNMnsz8do

m=1

M

xm
2 szdxm

2 sz8d o
a,a8

fsem,a
↓ d − fsem,a8

↑ d

inn + em,a
↓ − em,a8

↑ Fm
a,a8*skdFm

a,a8sk8d. s14d

We arrive at Eq.(14) by introducing a wave-function repre-
sentation of the mean-field Green’s function of Eq.(11),

sGMFdm
ssr 8,r ,nnd = o

a

fm,a
s sr 8dfm,a

s* sr d
inn − em,a

s , s15d

wherefm,a
s sr d are the 2D mean-field itinerant carrier eigen-

states for spins and subbandm, with energy em,a
s =ea

+ss /2dsgemBB−DmdÎ1+4em,a
so / sgemBB−Dmd−mm8 .47 The in-

dexa accounts for quantum-numbers associated with orbital
motion, with kinetic and spin-orbit energiesea and em,a

so

= uk↓ ,m,augkz
2s−txkx+tykydu↑ ,m,alu2/ sgemBB−Dmd, respec-

tively. To first order in spin-orbit couplingfem,a
so ! sgemBB

−Dmdg, the eigenenergy isem,a
s =ea+ss /2dsgemBB−Dmd

+sem,a
so −mm8 . In Eq. (14) fsed is the Fermi distribution,nm

s is
the 2D mean-field itinerant carrier spin density for them,s
subband obtained by summing over occupied states, and we
have introduced Fourier-transform factors defined by

Fm
a,a8skd =E d2r expsik · r dfm,a

↑ sr dfm,a8
↓* sr d. s16d

The first line on the right-hand side of Eq.(14) is local in
space. It represents the mean-field expression for the ex-
change field that the Mn spins experience. The second line is
nonlocal in space and describes correlation effects that occur
because of the(space- andm-subband-dependent) response
of the quantum-well carriers to Mn spin orientations. We
note thatD−1 is not a function ofz−z8 only, because of the
absence of translational symmetry in thez direction. Addi-
tionally, a 2D Debye cutoffkD

2 =4pNMn/ sN/dd ensures that
our continuum approximation has the correct number of
magnetic-impurity degrees of freedom.[Here, NMn
=e0

ddzNMnszd /d (Ref.48) and N is the number of growth-
direction modes included in the theory as we explain below.
We associateN with the mean number of Mn ions encoun-
tered on crossing the quantum well; e.g., for isotropic doping
N,NMn

1/3d.]
We comment now on the factorsFm

a,a8skd which are
trivial for the plane-wave functions of field-free systems.
They are included to allow us to simply account for the
consequences of orbital coupling of itinerant carriers to
magnetic fields. The indexa includes both the Landau
levels index and the gauge-dependent index for states
within a Landau level. At zero field the mean-field eigen-
statesfm,a

s sr d are plane waves with momentuma;q, ki-
netic energyeq="2q2/ s2m*d, and spin-orbit energyem,q

so

=g2kkm
2 l2q2/ sgemBB−Dmd. In either case Eq.(14) is diagonal

in the in-plane momentumk and we denote its diagonal el-
ements byD−1sk ,z,z8 , innd. The case of a uniform magnetic
field was considered in Ref. 28 and will not be discussed
further in this paper.

III. ELEMENTARY SPIN EXCITATIONS

Even the bulklike epitaxially grown thin film samples
studied in typical experiments do not contain a very large
number of occupied 2D carrier subbands. Our formalism
could, in principle, be used to calculate the collective modes
of thin films, taking account of the variation in Mn density
across the film, although the approach becomes numerically
cumbersome when more than a few subbands are occupied.
It is likely, though, that greater insight into vertical inhomo-
geneity effects in thin films can be obtained with more ap-
proximate approaches.49 We limit the discussion here to true
quantum-well samples in which a single subband is occupied
sM =1d and subband mixing can be neglected. For definite-
ness we concentrate on the case of constant Mn density
NMnszd=NMn. Similarly we assume that the state we are
studying is an ordered ferromagnetic phase with theẑ direc-
tion magnetic easy axis that is favored by(weak) spin-orbit
coupling. The situation in which the magnetization direction
has been reoriented by an external magnetic field is readily
included in the formalism as explained above. Generaliza-
tions to the cases of multiple subbands, and inhomogeneous
Mn density are straightforward.

Collective spin-excitation dispersionVskd branches are
located by finding the frequencies at which the determinant,
detfD−1sk ,z,z8 , inn=Vdg, of the quadratic action kernel in
Eq. (13) vanishes. The continuum of spin-flip particle-hole
(Stoner) excitations is located by identifying thek-dependent
frequency range over which ImfD−1sk ,z,z8 , inndg is nonzero
after the analytic continuationinn→V+ i0+.

A. Stoner continuum

We start by evaluating the continuum of Stoner excita-
tions introduced above. They correspond to flipping a single
spin in the itinerant carrier subsystem and typically have
relatively large energies of the order of the itinerant carrier
mean-field spin splittingD=JexNMnS. The continuum is ob-
tained by determining the conditions for ImfD−1sk ,z,z8 ,V
+ i0+dgÞ0. With this aim it is convenient to define the di-
mensionless carrier spin polarizationp=sn↑−n↓d / sn↑+n↓d
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and the Fermi energy of the majority-spin carrier bandes
=m8+ uDu /2, wherem8 is the effective chemical potential of
the 2D carrier gas. For half-metallic carriers(upu=1, es
ø uDu, see Appendix A) these excitations carry spinSz= ±1,
depending on the sign ofD (i.e., on whether the coupling
between carriers and Mn ions is ferromagnetic or antiferro-
magnetic). On the other hand, for partly polarized carriers
(upu,1, es. uDu, see Appendix A) excitations carrying both
Sz=1 andSz=−1 contribute, independent of the sign ofD. In
the absence of spin-orbit couplingsg=0d, one finds a con-
tinuum of excitations with dispersion lying between the
curves −D−sgnfDgek ±2Îesek for esø uDu, and also between
−D+sgnfDgek ±2Îses− uDudek for es. uDu. For small spin-
orbit coupling, the energy width of the Stoner continuum
does not vanish atk =0, instead approaching the width

DV = 4
g2kkz

2l2m*es

"2uDu
. s17d

In the case of multisubband quantum wellssM .1d multiple
continua arise, each of them associated with the correspond-
ing subband by means ofDm, kkm

2 l andmm8 .

B. Spin-wave modes

The number of collective modes that appear in our theory
depends on the doping concentration and the width of the
quantum well. It is natural to choose the mean numberN of
Mn ions along thez direction as a dimensional cutoff for the
representation of the inverse propagatorD−1sk ,z,z8 ,Vd. This
motivates the choice of an appropriate basis ofN orthonor-
mal excitation profiles hvnszdj, with 0ønøN−1 and
e0

ddzvnszdvn8szd=dnn8, for expanding Eq.(14), i.e.,

Dnn8
−1 sk,Vd =E

0

d

dzE
0

d

dz8vnszdD−1sk,z,z8,Vdvn8sz8d.

s18d

We later solve detfDnn8
−1 sk ,VdgN3N=0 for V and obtain a set

of N+1 solutionshVsldskdj with the mode profilesvsldszd
=oncn

sldvnszd. The coefficientscsld=sc0
sld ,c1

sld , . . . ,cN−1
sld d are ob-

tained fromfDnn8
−1 sk ,VslddgN3Ncsld=0. We combine this pro-

cedure with a Debye cutoff of the 2D wave vectors to get the
correct number of magnetic degrees of freedom. This ap-
proximate procedure, a silent partner of the continuum Mn
density approximation that we use to avoid dealing with dis-
order, obviously breaks down to some degree for the shortest
wavelength modes which must be sensitive to the discrete-
ness of the magnetic degrees of freedom. The procedure
should be accurate for longer wavelength modes, however,
and we believe that it gives a good qualitative description of
the overall spectrum. We employ it without further comment
in the rest of the paper.

We assume that the magnetization direction of the Mn
spins located at the borders of the quantum well is not fixed
by an anisotropy field or magnetic coupling to an adjacent
layer. Then we can use free-end boundary conditions for the
magnetic excitations,dvnszd /dz=0 at z=0,d. This deter-
mines the choice of the basis functions

vnszd = ancosSnpz

d
D, an =HÎ1/d for n = 0

Î2/d for n ù 1.
s19d

We now calculate the matrix elementsDnn8
−1 sk ,Vd using

Eqs.(14)–(19) for M =1 and constantNMn in the absence of
an external magnetic field. The quantum-well subband is de-
fined by the wave functionxszd=Î2/d sinspz/dd. We find

Dnn8
−1 sk,Vd = − Vdnn8 + xsuDufM1 + Isk,VdM2gnn8, s20d

with the N3N-matrices

M1 =1
1 0 − 1/Î2 0 0 . . .

0 1/2 0 − 1/2 0 . . .

− 1/Î2 0 1 0 − 1/2 . . .

0 − 1/2 0 1 0 . . .

0 0 − 1/2 0 1 . . .

A A A A A �

2
N3N

,

s21d

M2 =1
1 0 − 1/Î2 0 . . .

0 0 0 0 . . .

− 1/Î2 0 1/2 0 . . .

0 0 0 0 . . .

A A A A �

2
N3N

. s22d

In Eq. (20) we have defined the ratio of the free-carrier spin
density to the Mn spin densityxs= un↑−n↓u / s2NMnSdd, which
typically satisfiesxs!1, and the dimensionless integral

Isk,Vd =
uDu

un↑ − n↓u E d2q

s2pd2

fseq
↓d − fseq+k

↑ d
V + eq

↓ − eq+k
↑ . s23d

The last can be evaluated analytically forT=0 in the absence
of spin-orbit coupling, as described briefly in Appendixes A
and B.

The term containingM1 corresponds to the term propor-
tional to Jex in Eq. (14) and describes the mean-field ex-
change interaction between Mn spins with free-carrier spins.
The appearance of off-diagonal matrix elements, indicating a
mixing of basis functions for the Mn spin excitations, is of
geometric origin, determined by the projection
e0

ddzx2szdvnszdvn8szd. The nonlocal correlations are ac-
counted for by the term containingM2, which corresponds to
the term proportional toJex

2 in Eq. (14). Mixing appears here
also, determined this time by fe0

ddzx2szdvnszdg
3fe0

ddzx2szdvn8szdg. The structure of the matrices in Eqs.
(21) and(22) shows that basis functions with different parity
hvnszdj do not mix.50 This allows us to write the expanded
kernel (20) as the(external) product of two matrices corre-
sponding to evens+d and odds−d modes:fDnn8

−1 sk ,VdgN3N

=fDnn8
−1 sk ,VdgN+3N+

+
^ fDnn8

−1 sk ,VdgN−3N−
− , with N++N−=N.

Spin modes obtained as solutions of detfDnn8
−1 sk ,VdgN3N=0

can now be classified according to their parity by
solving separately detfDnn8

−1 sk ,VdgN+3N+
+ =0 and

detfDnn8
−1 sk ,VdgN−3N−

− =0, respectively. This leads toN++1
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even modes andN− odd ones. Moreover, it is possible to see
from Eq. (20) that fDnn8

−1 sk ,VdgN−3N−
− is independent of

Isk ,Vd. This means that correlations between local moment
and band configurations do not influence spin modes of odd
parity. As a consequence these modes are dispersionless,50 as
we see explicitly below. More interesting are the even modes
for which correlation effects due to the coupling to itinerant
carriers show up.

In the following we apply the above formulation to the
cases of dilute and moderate Mn doping in the limit of van-
ishing spin-orbit couplingsg→0d. We then(Sec. III E) com-
ment on how these results are altered by a finiteg.

C. Dilute Mn doping

For illustration we start discussing the limiting case of
dilute Mn doping or, equivalently, narrow quantum wells.
This corresponds to very few Mn ions across the quantum
well leading in our approach to a low-dimensional kernel
fDnn8

−1 sk ,VdgN3N [Eq. (20)] with N of order 1. In this situa-
tion we can easily approach the problem analytically. We
choose for simplicityN+=N−=1 (i.e., N=2). In this case the
dispersion relations of even and odd spin modes[corre-
sponding tov0szd andv1szd, respectively; see Eq.(19)] are
obtained by solving

detfDnn8
−1 sk,Vdg+ = f1 + Isk,VdgxsuDu − V = 0, s24d

detfDnn8
−1 sk,Vdg− = xsuDu/2 − V = 0. s25d

Equation(25) leads to a single odd mode with flat dispersion
V−=xsuDu /2. For the calculation of the even modes we limit
ourselves for now to the case of ferromagnetic coupling
sD,0d at T=0; the difference between ferromagnetic and
antiferromagnetic cases is commented on later in Sec. IV. We
solve Eq.(24) for long and short wavelengths(i.e., long- and
short-range correlations), using the expansions(B2) and(B3)
up to first order inek and 1/ek, respectively. This leads to
two solutions: one soft modeVsoft

+ ,xsuDu, and one hard
mode Vstiff

+ ,uDu, where typically Vsoft
+ !Vstiff

+ . For half-
metallic carriers(upu=1, esø uDu, see Appendix A) we obtain
for the small- and large-momentum limit

Vsoft
+ skd =

xs

1 + xs
S1 −

es

uDuDek + Osek
2d s26d

=xsuDuS1 −
uDu
ek
D + Os1/ek

2d, s27d

Vstiff
+ skd = s1 + xsduDu +

1

1 + xs
S1 +

es

xsuDuDek + Osek
2d, s28d

respectively. Correspondingly, for partly polarized carriers
(upu,1, es. uDu, using the results summarized in Appendix
A) we find

Vsoft
+ skd = 0 +Osek

2d s29d

=xsuDuF1 +S1 −
2es

uDu D uDu
ek
G + Os1/ek

2d, s30d

Vstiff
+ skd = s1 + xsduDu +

1

xs
S2es

uDu
− 1Dek + Osek

2d, s31d

for small and large momenta, respectively.
The branchVsoft

+ corresponds to a gapless Goldstone
mode reflecting the spontaneous breaking of rotational sym-
metry for the Mn spins subsystem, as expected generically in
ferromagnets and found in bulk magnetic semiconductors.24

At long wavelengthssek →0d the dispersion in bulk isotropic
ferromagnets is proportional to the spin stiffnessr divided
by the magnetizationM [i.e., V=sr /Mdk2]. Similarly, in
the adiabatic limites! uDu, our long wavelength result for
quantum wells(26) shows a spin stiffness due only to the
increase in kinetic energy of the fully spin-polarized band
when the spin orientation is spatial dependent,r
="2n↓ / s4m*d. The magnetization, with parallel contributions
from Mn ions and itinerant carriers coupled ferromagneti-
cally, readsM=SNMnd+n↓ /2=SNMnds1+xsd. However, un-
like bulk systems the spin stiffness vanishes ases→ uDu, Eq.
(26), and stays equal to zero fores. uDu, Eq. (29). This un-
usual feature should lead to some nonstandard phenomenol-
ogy in these ferromagnets, for example, in the physics that
controls domain wall widths and finite-temperature magneti-
zation suppression. For short wavelengthssek →`d, Eqs.
(27) and (30), the excitation energyVsoft

+ tends to a mean-
field value xsuDu, corresponding to the magnetic-ion spin
splitting.

The branch of stiff excitationsVstiff
+ , Eqs.(28) and(31), is

primarily bandlike in character and is centered around the
much larger energy scale of the itinerant carrier mean-field
spin splittinguDu.

D. Moderate Mn doping

We now switch to the case of higher dimensions
sN+,N−.1d, which corresponds to several Mn ions across
the quantum well. As in Sec. III C, dedicated to dilute Mn
doping, we consider Mn spins coupled ferromagnetically to
the itinerant carrierssD,0d at T=0. Comments regarding
the antiferromagnetic coupling case will be introduced later
in Sec. IV. As an example we chooseN+=N−=5 with a rela-
tive spin densityxs=0.05. The dispersions corresponding to
even and odd modes are obtained numerically by solving
detfDnn8

−1 sk ,Vdg535
+ =0 and detfDnn8

−1 sk ,Vdg535
− =0, respec-

tively. This leads to a set of six even modes, five relatively
soft sVsld

+ d and one hardsVstiff
+ d, and five odd modessVsld

− d.
The indexl s1ø l ø5d orders the modes from the bottomsl
=1d to the topsl =5d of the spectrum in each case. Our results
for Vsld

+ (solid lines) andVsld
− (dashed lines) are summarized

in Figs. 3(a)–3(c) for three characteristic ratioses/ uDu=0.9,
0.975, and 1.5, respectively. Panels(a) and(b) correspond to
half-metallic carriers while panel(c) depicts results for the
case of partly polarized carriers. Related results forVstiff

+ are
shown in Fig. 4. In all plots the shaded zones represent the
Stoner continuum. For each case, the normalized excitation
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energiesV / uDu are plotted as a function of the normalizedk
vector Îek / uDu=Ask/kdd, where A=Îekd

/ uDu. For typical
DMS quantum well systems we estimate thatA.10. Hence,

the results shown in Figs. 3 and 4 correspond tok/kd!1, the
regime well below the Debye cutoff in which the continuum
approximation is most reliable.

We start by discussing the properties of the relatively soft
even modesVsld

+ depicted in Fig. 3 by solid lines. Panel(a)
corresponding toes/ uDu=0.9 is representative of results for
half-metallic cases withes/ uDu!1. There we find a set of
modes atk =0 that are distributed in the small energy win-
dow 0øV,2xsuDu and havek2 dispersion at finite wave
vectors, corresponding to a finite spin stiffness. The upper
limit in this spectrum is twice the mean-field value predicted
in the case of bulk systems.24 This is due to the fact that the
carrier spin density is modulated byxszd=Î2/d sinspz/dd
across the quantum well(lower density close to the border
z=0,d and higher density close to the centerz=d/2). Spin
modes with large relative amplitude near the center of the
quantum well see a carrier spin density which is effectively
higher than in the uniform spin-density bulk case.

The first branchVs1d
+ corresponds to a gapless Goldstone

modevs1d
+ szd=v0szd, Fig. 5(a), similar to the one discussed

above for the dilute Mn doping case, in Sec. III C. For the

FIG. 3. Dispersion of low-energy spin excitations in a single-
subband DMS quantum well with ferromagnetic couplingsD,0d
and dimensional cutoffN+=N−=5 (see text). Panels(a) and (b)
correspond to half-metallic(i.e., fully polarized) carriers (es/ uD u
=0.9 and 0.975, respectively). Panel(c) depicts results for partly
polarized carriersses/ uD u =1.5d. The even modesVsld

+ are denoted
by solid lines and the dispersionless odd modesVsld

− by dashed
lines. The spatial profiles of the even and odd modes are illustrated
in Figs. 5(a)–5(e) and Fig. 7, respectively. The integer labels order
the modes by increasing frequency. The shaded zones indicate the
Stoner continuum.

FIG. 4. Dispersion of high-energy spin excitations in a single-
subband DMS quantum well with ferromagnetic couplingsD,0d
and dimensional cutoffN+=5 (see text) for half-metallic(i.e., fully
polarized) carriers with es/ uD u =0.9. Similar features appear for
partly polarized carriersses/ uD u .1d. The stiff branchVstiff

+ (solid
lines) corresponds to the modevstiff

+ [Fig. 5(f)]. The Stoner con-
tinuum is represented by the shaded zone. Ferromagnetic interac-
tions with the local moments peel a collective mode off the particle-
hole continuum.

FIG. 5. Spatial profiles across a single-
subband DMS quantum well for even parity col-
lective modes(solid lines). The well has widthd
s0øz/dø1d, ferromagnetic couplingsD,0d,
and the dimensional cutoffN+=5 (see text). The
carrier densityx2szd (dashed line) is shown for
comparison. Note that the Goldstone mode, panel
(a), is constant in space corresponding to uniform
spin rotation. The other modes tend to have
higher energy when they have higher weight to-
ward the middle of the quantum well, where ex-
change interactions are stronger.
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l .1 modes, the spatial structurevsld
+ szd is not constant

within the quantum well[see Figs. 5(b)–5(e)] and the ener-
giesVsld

+ skd therefore approach a finite value asuk u→0. The
dependence of the excitation energiesVsld

+ sk =0d on l is not
obvious, since the gap is not simply related to the effective
transverse momentumkz

+sld=e0
ddzvsld

+ ]vsld
+ /]z associated with

each mode. Instead, the local excitation densityvsld
+2szd and

its correlation with the carrier density, proportional tox2szd,
is more relevant.(See Fig. 5 for a comparison.) We illustrate
the l dependence ofVsld

+ sk =0d in Fig. 6 for N+=20 (full
circles). We observe a spin-mode accumulation close to the
boundaries of the spectrum that is not evident for smallN+.
Furthermore, the inset in Fig. 6 shows that the dispersion
doesnot appear to be quadratic for smalll. Since Vs1d

+ sk
=0d=0, a quadratic fit has a single free parameter. The
dashed(dotted) line corresponds to a quadratic fit between
the l =1-mode and thel =2-modesl =5d. The curves differ by
a (relatively large) factor of order 3.5.

As es/ uDu increases[Fig. 3(b)] and the Stoner continuum
meets the differentVsld

+ branches, the corresponding spin
stiffness drops to zero. Fores/ uDuù1 [partly spin-polarized
carriers, Fig. 3(c)] all branches are nearly dispersionless until
they enter the particle-hole continuum; the softness of these
excitations is certain to have an impact on the magnetic
properties of these ferromagnets. The spectral density shows
that the relatively soft modes survive in the midst of the
Stoner continuum, but the stiff mode does not as discussed
below.

Regarding Mn doping and kernel dimensionality,N+ in-
creases with higher magnetic-ion density and quantum well
width. In this situation, new, relatively soft, modes arise from
the top of the spectrum squeezing the rest to the bottom in
order to satisfy 0øVsld

+ ,2xsuDu. This happens because in-
creasing the dimension of the kernel admits the presence of
higher-order Fourier components in our expansion and al-
lows lower energy modes to acquire a larger relative ampli-
tude at the borders of the quantum well, where the free-

carrier density is reduced and the Mn spin splitting is
consequentially weaker. The same consideration applies to
the odd mode(see below) behavior as a function ofN−.

In addition to the relatively soft modes we find one even,
stiff branchVstiff

+ (Fig. 4) lying above the Stoner continuum.
Its properties are similar to those discussed for the stiff mode
in the dilute Mn doping case, Sec. III C. The mode is re-
stricted to relatively large wavelengths if compared with the
case of soft modes. This is due to the proximity of the Stoner
continuum and their strong interaction. The corresponding
excitation profilevstiff

+ szd is shown in Fig. 5(f) (solid line). Its
similarity to the carrier density profilex2szd (dashed line)
demonstrates that this mode is primarily associated with the
itinerant-carrier subsystem dynamics.

We continue discussing briefly the properties of the dis-
persionless odd modesVsld

− depicted in Fig. 3(dashed lines).
As pointed out above, the flat dispersions have their origin in
the absence of correlation effects related to spin reorienta-
tions. Odd mode fluctuations of the local moment give rise to
effective fields that are averaged to zero byx2szd and are
consequently not correlated with carrier spin fluctuations.
This makes the odd modes transparent to the Stoner excita-
tions (they do not interact with the particle-hole continuum,
unlike the even modes) and independent of the ratioes/ uDu
(that is, of the carrier spin polarization). Moreover, all modes
are lodged within the(low) energy window 0,V,2xsuDu
and present a finite gap whose magnitude depends on the
particular excitation profilevsld

− szd (Fig. 7). This behavior is
similar to that found for the relatively soft even modes ex-
cept that there is no Goldstone mode in the odd spectrum; the
higher the weight at the border of the quantum well, the
lower the gap[see, e.g.,vs1d

− szd, Fig. 7(e), which corresponds
to Vs1d

− in Fig. 3]. As in the even case, the dependence ofVsld
−

on l is nontrivial. See Fig. 6(empty circles) for an illustration
of this dependence in the caseN−=20.

We further note that, as can be seen from Eq.(20), in the
limit of a large number of vertical modessN+,N−@1d it
holds thatVsld

− <Vsl+1d
+ sk =0d, provided thatxs!1. The even

and odd mode pairs are then nearly degenerate even and odd
combinations of excitations at opposite edges of the quantum
well.51

Our analysis holds for symmetric quantum wells only. We
comment shortly on how an asymmetry of the quantum-well
potential will affect our results. On the one hand, a gapless
Goldstone mode as found for symmetric quantum wells
when neglecting spin-orbit coupling(see also Sec. III E) still
exists. On the other hand, the spin-wave modes will have no
definite parity anymore, and the above classification into
even(dispersive) and odd(nondispersive) modes no longer
holds. The particular excitation profiles(Figs. 5 and 7) and
energies(Fig. 6) will depend on the local-carrier density
x2szd.

E. Effect of spin-orbit coupling

The presence of spin-orbit coupling described by the
Dresselhaus HamiltonianHD, Eq. (5), introduces easy-axis

FIG. 6. Dispersion of low-energy spin excitations in a single-
subband DMS quantum well for in-plane momentumk =0, ferro-
magnetic couplingsD,0d, and dimensional cutoffN+=N−=20, as a
function of the mode indexl (see text). The full circles depict the
excitation energiesVsld

+ sk =0d of even modesvsld
+ , while the empty

circles correspond toVsld
− sk =0d for odd modesvsld

− . The inset cor-
responds to two extreme quadratic fittings(dashed and dotted
curves, see text) to the dispersion of even modes(full circle) for
small l. The curves differ by a prefactor of order 3.5.
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magnetic anisotropy which is, of course, necessary for long-
range magnetic order in a quantum well. When the aniso-
tropy, which explicitly breaks rotational invariance for the
magnetization orientation, is accounted for, a finite energy
gap Vso appears in the lowest-lying collective mode branch
and several of the lower-lying branches in Figs. 3 and 6 are
shifted to higher energies. We calculateVso for the lowest
even mode of constant excitation profilevs1d

+ , Fig. 5(a). With
this aim we follow the procedure of Sec. III B and calculate
Vs1d

+ for small spin-orbit coupling andk =0. We find that

Vso=
g2kkz

2l2kF
2n

SNMnd maxhuDu,2eFj
, s32d

whereeF=s"2/2m*dkF
2 is the Fermi energy of the 2D electron

gas paramagnetic state andn=n↑+n↓. This coincides with
our previous result28 obtained by using perturbation theory.

The above result and discussion holds for symmetric
quantum wells. In asymmetric quantum wells, spin-orbit
coupling is not only described by the Dresselhaus terms, but
has also a Rashba52 spin-orbit contribution. For electrons in
the conduction band, the Rashba Hamiltonian is linear in the
in-plane momentumk. This will affect the magnetic aniso-
tropy and the energy gap in the spectrum of collective spin
excitations. The interplay of these two types of spin-orbit
coupling will complicate the dispersion of the spin waves
(Fig. 3). In particular, they will become anisotropic, analo-
gous to the anisotropic transport properties discussed in Ref.
53. For heavy holes in the valence band the leading Rashba
term is cubic in momentum.54 This complicates the evalua-
tion of the spin-wave dispersions even more.

IV. COMMENTS AND CONCLUSION

We have developed a theory of collective spin excitations
in DMS quantum wells by extending the approach that we
used previously for bulk systems.24 The theory goes beyond
mean-field and RKKY approaches and accounts for both fi-
nite itinerant carrier spin-splitting and dynamical correla-

tions. We applied this tool to the study of spin excitations in
the ordered magnetic state at zero temperature. As in the bulk
case, we have recognized two different energy scales on
which the spin excitation spectrum depends: one hard scale
uDu principally related to the itinerant-carrier subsystem, and
one soft scalexsuDu for the magnetic-ion spin excitations,
wherexsuDu! uDu. In addition, a continuum of Stoner excita-
tions (corresponding to flipping a single spin in the itinerant-
carrier band) also emerges from the theory. Although most
relevant to DMS ferromagnet properties in circumstances for
which the magnetic moments have a high degree of spin
alignment, this theory of the elementary excitation spectrum
of the system sheds considerable light on the nature of the
magnetic state and on the physics that controls the critical
temperature of the system.

The excitation spectrum of this magnetic system is quite
unusual because of its ambiguous dimensionality. A slab of
magnetic ions is coupled by a 2D electron system that is
frozen into a single growth direction electronic subband and
cannot distort itsz dependence to accommodate magnetic
fluctuations. We find that the excitation spectrum of this sys-
tem has multiple 2D branches. The number of reasonably
well-defined branches of excitations that have primarily local
moment character is close to the width of the quantum well
measured in units of the mean-separation between Mn ions,
as expected by analogy with a reference system in which the
local moments are placed on a lattice with the same volume
per Mn and a finite number of layers. On the other hand, we
find that there is only one 2D branch of collective excitations
that have primarily electronic character. When spin-orbit in-
teractions are neglected, the gapless Goldstone mode branch
has quartic rather than quadratic dispersion, implying that the
spin-stiffness vanishes, except when the carrier system is
half-metallic. Unless, that is,es, uDu and the mean-field car-
rier spins are consequently fully spin polarized. This prop-
erty arises somewhat accidentally from the particular fea-
tures of effective interactions mediated by carriers in 2D
parabolic bands and has partly been noted for the RKKY
limit ses@ uDud in previous work.35 If we had included
carrier-carrier interactions in our theory, the spin stiffness
would not vanish but, depending on the carrier density, might
have a negative sign implying that the ferromagnetically or-
dered state is unstable. When spin-orbit interactions are in-

FIG. 7. Spatial profiles for
spin excitation modes with odd
parity (solid lines) across a single-
subband DMS quantum well of
width d s0øz/dø1d with ferro-
magnetic couplingsD,0d and di-
mensional cutoffN−=5 (see text).
The transverse carriers’ density
x2szd (dashed line) is shown for
comparison.
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cluded, however, the collective excitation spectrum has a
small gap and negative dispersion in the lowest-lying collec-
tive mode, while unusual, does not necessarily imply insta-
bility. Finally, we remark that the excitation spectrum in-
cludes a large number of even and odd weakly dispersive or
nondispersive branches in which fluctuations in the local mo-
ments are concentrated in particular parts of the quantum
well and do not couple strongly to fluctuations in the band-
electron spin orientation. In these modes, the excitation en-
ergy is determined primarily by the local strength of the
mean-field interaction between the Mn moments and the
band electrons, which becomes small because of carrier
quantum-size effects toward the edges of the quantum well.

The results summarized above for the collective excita-
tion spectrum suggest that thermodynamic properties, the
temperature dependence of the magnetization, for example,
are likely to be quite unusual in DMS ferromagnets, particu-
larly when the carriers are in the conduction band where
spin-orbit interactions are rather weak. The influence of ther-
mal fluctuations on the magnetization will be enhanced not
only by the reduced dimension,23 but also by the small and
possibly even negative spin stiffness mentioned above.
(Fluctuations in the Goldstone mode branch have a relative
importance that goes like 1/N, whereN is the effective num-
ber of Mn layers in the film that we have discussed previ-
ously.) In the case of valence band DMS quantum well fer-
romagnets, strong magnetic anisotropy55 should lead to
ferromagnetism that is essentially Ising in character. The
magnetization should then be fairly constant over a wide
interval of temperature before dropping fairly rapidly to zero
near the critical temperature. In the conduction-band case for
which the model we have studied applies most directly, how-
ever, the gap in the excitation spectrum will be quite small,
much smaller than the mean-field ferromagnetic critical tem-
perature, as we have discussed earlier.28 The true critical
temperature is likely to be determined in large measure by
long length scale fluctuations and to be substantially smaller
than the mean-field temperature. Since the stiffness of this
system is very small, it will be significantly altered by spin-
orbit interactions; this part of the physics is something that
we have not addressed here.

Furthermore, the model we have studied ignores disorder,
which is likely to play an important role in adjudicating the
way in which these subtle competitions are resolved. We
believe that careful study of the magnetization and other
properties of electron quantum well DMS ferromagnets at
low temperatures will reveal a lot of subtle, unusual, and
interesting physics.

Finally we emphasize that the numerical results presented
here are for the case of ferromagnetic interactions between
the carriers and the local momentssD,0d, which is ex-
pected to apply for n-doped semiconductors. Since we have
taken the local-moment spins to point down in their ground
state, this means that the up spins are the minority spins and
the down spins are the majority spins in the ferromagnetic
case while their roles are interchanged in the antiferromag-
netic case. It follows that the only change in Eq.(14) whenD
changes sign is thatinn changes sign. This change has a
number of consequences that are fairly subtle whenxs is
small, but can, in principle, be more consequential. The most

important differences are that the collective mode with domi-
nant carrier character which appears above the Stoner
particle-hole continuum in the case of ferromagnetic interac-
tions, lies below the Stoner continuum in the case of antifer-
romagnetic interactions. In addition, 1/s1+xsd factors which
appear in expressions for the collective mode energies, fac-
tors that express the band electron contribution to the total
spin density of the system, are replaced by 1/s1+xsd factors
in the antiferromagnetic case. These factors are not present in
a RKKY description of the carrier mediated interactions.
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APPENDIX A: MEAN-FIELD ITINERANT CARRIER SPIN
POLARIZATION

The 2D mean-field itinerant carrier spin density for spins
and subband spin-splittingD=JexNMnS in the presence of
weak Dresselhaus spin-orbit coupling atB=0 is given by
ns=ed2k/ s2pd2fsek

sd, where ek
s=ek −ss /2dD+sek

so−m8, ek

="2k2/ s2m*d, ek
so=−g2kkz

2l2k2/D, m8 is the effective chemical
potential of the 2D carrier gas, andfsed is the Fermi distri-
bution. For zero temperature we find

ns =
m8 + ss/2dD

4ps"2/2m* − sg2kkz
2l2/Dd

u„m8 + ss/2dD…, sA1d

where we have usedfsedT=0=us−ed. The difference between
up and down contributions determines the net carrier spin
density defined asp=sn↑−n↓d / sn↑+n↓d. Denoting the Fermi
energy of the majority-spin carrier band byes=m8+ uDu /2,
we see from Eq.(A1) that the carrier system is fully spin
polarized orhalf-metallic (i.e., upu=1) whenesø uDu. On the
other hand, partly spin-polarized carriers(i.e., upu,1) corre-
spond toes. uDu.

APPENDIX B: CORRECTION DUE TO CORRELATION
EFFECTS

Correlation effects due to the response of quantum well
carriers to Mn spin reorientations are taken into account in
the kernelD−1sk ,z,z8 ,Vd by the second term of Eq.(14).
This is manifested by the momentum and energy dependence
of the integralIsk ,Vd, Eq. (23). In the absence of magnetic
field and spin-orbit coupling we find for zero temperature
(see Appendix A for definitions)
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E d2q

s2pd2

ffseq
↓d − fseq+k

↑ dgT=0

V + eq
↓ − eq+k

↑ =
m*

4p"2ek
Fusm8 − D/2dsV + D − ekdS1 −Î1 −

4sm8 − D/2dek

sV + D − ekd2 D
− usm8 + D/2dsV + D + ekdS1 −Î1 −

4sm8 + D/2dek

sV + D + ekd2 DG sB1d

=
n↓ − n↑

V + D
+

n↓sm8 + D/2 + Vd − n↑sm8 − D/2 − Vd
sV + Dd3 ek + Osek

2d sB2d

=− sn↑ + n↓d/ek + Os1/ek
2d, sB3d

where the integral has to be considered as a Cauchy principal value. Equations(B2) and (B3) correspond to first-order
expansions inek and 1/ek, respectively. The prefactors that express thez dependence in the second term of Eq.(14) contain
information on the quantum well geometry and lead toM2 in Eq. (20).
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