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Abstract: Thermodynamic stability in polypeptides is described using a novel Distance Constraint
Model (DCM). Here, microscopic interactions are represented as constraints. A topological
arrangement of constraints define a mechanical framework. Each constraint in the framework is
associated with an enthalpic and entropic contribution. All accessible topological arrangements of
distance constraints form an ensemble of mechanical frameworks, each representing a microstate
of the polypeptide. A partition function is calculated exactly using a transfer matrix approach,
where in many respects the DCM is similar to the Lifson–Roig model. The crucial difference is that
the effect of network rigidity is explicitly calculated for each mechanical framework in the ensemble.
Network rigidity is a mechanical interaction that provides a mechanism for long-range molecular
cooperativity and enables a proper treatment of the nonadditivity of a microscopic free energy
decomposition. Accounting for (1) helix 7 coil conformation changes along the backbone similar
to the Lifson–Roig model, (2) i to i � 4 hydrogen-bond formation 7 breaking similar to the
Zimm–Bragg model, and (3) structured 7 unstructured solvent interaction (hydration effects), a
six-parameter DCM describes normal and inverted helix–coil transitions in polypeptides. Under
suitable mixed solvent conditions heat and cold denaturation is predicted. Model parameters are
fitted to experimental data showing different degrees of cold denaturation in monomeric polypep-
tides in aqueous hexafluoroisopropanol (HFIP) solution at various HFIP concentrations. By
assuming a linear HFIP concentration dependence (up to 6% by mole fraction) on model param-
eters, all essential experimentally observed features are captured. © 2004 Wiley Periodicals, Inc.
Biopolymers 75: 1–31, 2004
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INTRODUCTION

Polypeptides make ideal systems of study both exper-
imentally and theoretically. The �-helix to coil tran-
sition in polypeptides is a well-studied problem, with

the thermodynamic driving forces described by
Schellman1,2 almost 50 years ago. Despite the accu-
mulated wealth of research on polypeptides, interest
continues as experimental techniques become more
sophisticated3–5 and computational methods6–8 im-
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prove, thereby providing ever increasing detailed in-
formation. Knowledge gained from these studies fur-
ther scientific understanding of the general problem of
protein stability.

It is well known that solvent conditions together
with the polypeptide composition play an important
role in the character of the transition. There are two
extreme limits. First, the normal transition where an
�-helix (hereafter simply referred to as a helix) at low
temperature unravels into a disordered coil at high
temperature. Second, the inverted transition where a
disordered coil at low temperature will self-organize
into a helix at high temperature.11 In mixed solvent
conditions, it is at least conceivable that there can
exist an experimentally accessible window of temper-
ature in which both effects occur. That is, starting
from low temperature and upon heating, the peptide
will change conformation characteristics from being a
disordered coil to helix, and then to disordered coil at
still higher temperature.

The effect of a protein denaturing upon heating or
cooling has been well established more than 30 years
ago,12 where cold denaturation is more pronounced
under mixed solvent conditions13 and/or high pres-
sures.14,15 Privalov and Gill16 proposed the explana-
tion that hydration (structured water) is the mecha-
nism responsible for cold denaturation. At low tem-
peratures, a high propensity for formation of
structured solvent around various residues makes it
favorable for the protein to open up, abandoning its
native fold. The disordered coil conformations at low
and high temperatures have distinctly different struc-
tural or topological characteristics. Experimental ob-
servation of cold denaturation in nonmonomeric
polypeptides has been readily demonstrated,17–19 and
it has also been observed in monomeric heteroge-
neous polypeptides in aqueous hexafluoroisopropanol
(HFIP) as first reported by Andersen et al.20

Phenomenological models are often employed to
describe helix–coil transitions in polypeptides.21

Most common is the Zimm and Bragg22 model
(ZBM) and the Lifson and Roig23 model (LRM). Both
models require a small number of parameters (typi-
cally 2 for ZBM and 3 for LRM) to describe a homo-
geneous polypeptide. They share two types of phe-
nomenological parameters that are ascribed to a nu-
cleation and propagation process. The ZBM and LRM
have since been generalized to account for heteroge-
neous polypeptides and additional interactions.21,24–26

In order to fit to a wide spectrum of experimental data,
nucleation parameters must be chain-length depen-
dent27 and propagation parameters temperature de-
pendent.28 With the exception of sophisticated param-
eterization, to our knowledge, the underlying coarse

grain statistical mechanical descriptions of the helix–
coil transition have not changed since the end of the
1960s.29

In this article, a Distance Constraint Model (DCM)
is introduced for homogeneous polypeptides based on
a new paradigm related to the nonadditivity of free
energy decomposition generally found in biopoly-
mers.30,31 In many respects the DCM is similar to the
ZBM and LRM. The principal difference is that net-
work rigidity of the polypeptide is explicitly calcu-
lated and used in defining the free energy of a con-
formation. Qualitative discussion of rigidity and flex-
ibility of polypeptides found in earlier works1 is
replaced with mechanical calculations for conforma-
tional entropy. Better estimates are achieved by not
over counting component entropies in rigid regions
associated with redundant constraints. Mathematical
details can be found in prior work.32 The main objec-
tive of this work is to show how network rigidity can
be used to solve, in a computationally tractable way,
problems arising from nonadditivity of component
free energies.

Here, the DCM is extended further to include hy-
dration effects in mixed solvent conditions. A mini-
mal six-parameter DCM is constructed that is able to
describe both normal and inverted helix–coil transi-
tions in a homogeneous polypeptide chain. These
parameters are physically motivated by considering a
minimum set of molecular mechanisms that are in-
voked ubiquitously throughout the literature on pro-
tein stability. Moreover, the six parameters are taken
to be independent of temperature and chain-length. It
is shown that cooperativity and the nucleation process
are described by the properties of network rigidity,
without recourse to a chain-length dependent nucle-
ation parameter. To demonstrate the potential useful-
ness of the DCM, CD measurements of Andersen et
al.20 are described using two representative models (I
and II) parameterized by fitting. An effective homo-
geneous chain is considered to keep the discussions
simple, and to minimize the number of free parame-
ters. Assuming the DCM parameters have a linear
dependence on HFIP concentration within the range
probed experimentally, excellent fits are obtained.

THEORY: DISTANCE CONSTRAINT
MODEL

The DCM is a coarse grain statistical mechanical
formalism32 that views a system as a network of
constraints, and focuses on topological properties of
that network. Each constraint corresponds to a type of
interaction associated with a microscopic free energy.
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Assuming additivity in free energy components gen-
erally leads to inconsistencies in molecular systems
exhibiting cooperativity. Hallerbach and Hinz33

pointed out that the second law of thermodynamics
can be violated when modeling cold denaturation by
simply adding positive conformational and negative
hydrational entropy contributions. Errors in confor-
mational entropy can be corrected by adding contri-
butions only from independent entropic contribu-
tions.34 Nonadditivity of component free energies30,31

(enthalpy is additive but not entropy) is accounted for
in the DCM by using network rigidity as an underly-
ing mechanical interaction to identify the relevant
independent constraints. The helix–coil transition in
polypeptides is special only in that the partition func-
tion is calculated exactly using transfer matrices.

The ZBM and LRM are limited in scope to
polypeptides, making theoretical generalizations to
proteins difficult. Moreover, the nucleation parameter
has been criticized in the literature due to misconcep-
tions of its meaning,35 it being inherently nontrans-
ferable27 and its use in calculating partition functions
yields ill-defined thermodynamic state functions.36 In
the DCM, there are no nucleation or propagation
parameters that are tied to a specific process. A nu-
cleation process is an outcome of the network rigidity
calculation. Chain-length dependence in the helix–
coil transition is related to the correlation length of
how far rigidity extends along the polypeptide. In
application to other biopolymers such as proteins, a
nucleation process will depend on the topology of
how constraints are distributed, which includes details
on the type of constraints present and how they are
cross-linked. Most important, the DCM parameters
should be transferable between systems modeled with
the same set of constraint types.

Network Rigidity

Network rigidity37 is used here as an umbrella phrase
referring to rigid clusters, overconstrained regions,
flexible regions, and independent constraints within a
generic mechanical bar-joint framework. The term
generic38 implies that all bar-joint frameworks with
the same topological distribution of constraints have
the same rigidity properties independent of geometri-
cal details. A mechanical description of this sort has
been shown to predict flexible and rigid regions in
proteins that correlate well with long-time biologi-
cally relevant motions.39,40 Follow-up investigations
have suggested that folding pathways are related to
network rigidity,41 and the folding transition is related
to a rigidity transition.42 These works have been made

possible because of recent developments in graph
algorithms43–48 that calculate network rigidity.

The algorithm to identify independent constraints
recursively adds one constraint at a time to build a
framework. A new constraint is redundant when
added to an already rigid region and independent if it
removes a degree of freedom. Although the numbers
of independent constraints and degrees of freedom are
unique, the specific assignment of which constraint is
independent and where the independent degrees of
freedom are located is not unique.49 The nonunique-
ness of assignments is tantamount to the freedom one
has in choosing generalized coordinates within a La-
grange formalism. The success of a strict mechanical
view of constraints is limited, however, because it is
athermal (i.e., a mechanical T � 0 calculation).

The DCM32 generalizes the network rigidity cal-
culations to finite temperatures by associating con-
straints with thermodynamic properties and taking
into account statistical ensembles of mechanical
frameworks. Constraints can be quenched or they can
fluctuate. Covalent bonds are quenched, while hydro-
gen bonds, dihedral-angle interactions, and hydration
shells are allowed to fluctuate. Each constraint corre-
sponds to a microscopic free energy component that
provides an enthalpy and maximal entropy contribu-
tion. Enthalpy and entropy estimates are made for all
accessible topological constraint arrangements, each
defining a subensemble of different coordinate geom-
etries represented by a single generic framework. To-
tal enthalpy is additive over the contributions from
each constraint, but the entropy is nonadditive.30 The
nonadditive property of component entropies derives
from not knowing which degrees of freedom are in-
dependent or redundant. However, even if one adds
entropy contributions from only the independent con-
straints as previously pointed out,34 this is not suffi-
cient information because as discussed above, the
identification of which constraint is independent is not
unique.

Constraints are quantified as strong or weak based
on their maximal entropy contribution. A (greater,
lesser) entropy contribution implies a (weaker, stron-
ger) constraint. Even feeble interactions having large
component entropies are regarded as a constraint. The
key aspect of the DCM is that stronger constraints are
placed in the network before weaker ones. This pref-
erential selection of independent constraints is imple-
mented operationally as follows:

1. Sort all constraints based on entropy assign-
ments in increasing order, thereby ranking them
from strongest to weakest.

2. Add constraints recursively one at a time ac-

Understanding the �-Helix to Coil Transition 3



cording to the rank ordering from strongest to
weakest, identifying the independent con-
straints until the entire framework is completely
rigid.

The condition that the framework is completely
rigid after all constraints are placed ensures the set of
constraint types is complete, in the sense that no
internal degrees of freedom appear in any framework.

Total conformational entropy is calculated as a
linear sum of component entropies associated with the
preferential independent set of distance constraints.
Redundant constraints do not change conformational
entropy. This prescription is an approximation32 that
appears adequate to accurately describe thermody-
namic response functions obtained from experiments
and computer simulation. Moreover, the DCM calcu-
lation is tractable and efficient. The DCM is mathe-
matically well defined, having the property that the
preferential set of independent constraints yields the
minimum total conformational entropy compared to
any other complete set of independent constraints
(discounting ties). Physically, the essential idea is that
weak constraints allow more conformational freedom
than strong constraints. Stronger constraints take pre-
cedence in defining rigid structures because weaker
constraints are more accommodating, thus providing a
natural mechanism for enthalpy–entropy compensa-
tion. For example, if by some fluctuation a strong
constraint breaks (such as a hydrogen bond or hydra-
tion shell) there will be a destabilizing gain in en-
thalpy, but also a compensating gain in conforma-
tional entropy as a weaker constraint substitutes.

Minimal DCM Describing Heat and Cold
Denaturation

The DCM is similar to the LRM in that it uses partial
configuration space integrals to define parameters. In
the LRM, w is associated with three consecutive res-
idues each in a local helical conformation defined by
the backbone (�, �) angles of a Ramachandran
plot.50,51 Because a small region of configuration
space is integrated, w has the same properties as a
partition function, and commonly expressed as

lnw � �
�H

RT
�

�S

R
(1)

where �H and �S are corresponding enthalpy and
entropy contributions, and R the universal gas con-
stant. The LRM invokes microscopic partition func-
tions u, v, and w characterizing three successive res-

idues along the polypeptide that are allowed to be in
either an �-helical state (denoted as a) or a coil state
(denoted as c). Note that the �-helical state is denoted
with the letter “a,” whereas the traditional letter “h”
will be used later to denote a locally hydrated state. In
particular, w corresponds to a triplet of residues with
conformation (aaa), v corresponds to any combina-
tion with a central helix and at least one coil (aac, caa,
cac), and u corresponds to all other triplets having the
center residue in a coil state (ccc, acc, cca, aca). In
principle, eight such parameters could be used to
account for 23 distinct states.

It is convenient to reexpress Eq. (1) in terms of a
microscopic free energy function. Let �RT ln w 3
�Gt to give the thermodynamic relation

�Gt � �Ht � T�St (2)

where the subscript t labels some particular type of
partial configuration space integral. Microscopic in-
teractions are discretized and partitioned differently
than that done in the LRM. Each microscopic free
energy function corresponds to a particular type of
interaction. Here, a free energy decomposition is
made using five interaction types:

1. Covalent bonds (t § cb).
2. Residue i to i � 4 backbone hydrogen bonds

(t § hb).
3. Backbone �-helical conformation in (�, �)

space (t § a).
4. Backbone coil conformation in (�, �) space

(t § c).
5. Hydration shell or structured solvent (t § h).

Each type of microscopic free energy depends on
local geometrical details. Therefore, distinction be-
tween i to i � 4 backbone hydrogen bonds will be
made depending on (�, �) conformations of three
consecutive residues spanned by the hydrogen bond
(H-bond). End-cap solvation, residue heterogeneity,
side-chain interactions, i to i � 3 backbone H-bond-
ing, and other (�, �) regions can be added to the free
energy decomposition. However, these details are un-
necessary to capture essential features of (�)-helix–
coil transitions.

Each constraint type requires two thermodynamic
parameters (�Ht, �St) that in principle are functions
depending on temperature, pressure, and osmolyte
concentrations. At standard pressure and over the
accessible experimental temperature range, these pa-
rameters are taken as temperature independent. Addi-
tionally, each constraint type may contain one or more
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distance (or angular) constraints. Following previous
work,32 the constraint that restricts the backbone into
an a-conformation involves two mechanical dihedral
angle constraints (one for � and one for �), and
likewise for the c-conformation. The residue i to i � 4
H-bond is modeled as three constraints, associated
with the hydrogen–acceptor distance, the donor–hy-
drogen–acceptor angle, and the angle between the
hydrogen–acceptor–carbon atoms.39,40 Other alterna-
tives have been explored, but three constraints have
proved to be an optimal coarse grain description in the
sense that (more, less) constraints (over, under)esti-
mate the mechanical role of the H-bond.39

Manipulating the microscopic free energy given in
Eq. (2), the various constraint types share the same
generic form given by

�Gt � �t � RTmt�t (3)

where �t is an energy parameter, �t is a dimensionless
pure entropy (i.e., entropy � R�t

) per distance con-
straint, and mt is the number of independent distance
constraints associated with a particular constraint of
type, t. When isolated, a torsion constraint in the a-,
c-, or h-conformation has ma � mc � mh � 2, respec-
tively, and a H-bond has mhb � 3. A H-bond contrib-
utes a maximum of 3R�hb

to the entropy of the
polypeptide when all its distance constraints are inde-
pendent—as calculated from network rigidity using
the preferential selection rule. Depending on the con-
straint topology of the framework, the possible values
for mhb are {0, 1, 2, 3}. Strong H-bonds (having
relatively low �hb and �hb values) will be favored at
low temperature because they substantially lower the
energy of the polypeptide, despite not contributing
greatly to the entropy. When many strong constraints
are present, weak constraints will be redundant and
provide no additional entropy contribution. As tem-
perature is increased, it becomes more probable (and
eventually advantageous) for a strong H-bond to
break, giving way to weaker constraints that are not as
energetically favorable, but become independent and
compensate with a greater entropy contribution. Thus,
enthalpy–entropy compensation is intimately con-
nected with network rigidity, providing the basis for
molecular cooperativity.

The free energy of each accessible mechanical
framework, �, must then be calculated. For each of
these frameworks, corresponding to distinct topolog-
ical arrangement of constraints, the free energy of the
polypeptide (system) is given by

G��� � �
t

Nt�t � RT�
t

It
�p��t (4)

where Nt is the number of constraints of type t present,
and It

(p) is the number of independent constraints of
type t calculated by the preferential rules [emphasized
by the superscript (p)] as described above. The parti-
tion function is obtained by summing over all frame-
works as

Z � �
�

e�G���/RT (5)

where in this work, Z is calculated exactly using a
transfer matrix method described in, appendix A. Two
observations are worth pointing out. First, the cova-
lent bonds are assumed to be associated with the
lowest component entropies and they are quenched
constraints. Thus, they contribute the same amount of
free energy for all the frameworks in the ensemble.
Factoring out this common contribution eliminates the
need to explicitly consider them, as they do not affect
helix content and give a background contribution to
heat capacity. Thus, only noncovalent interactions are
parameterized. Second, an optimal ensemble of con-
straint topologies will be associated with the mini-
mum free energy. Changes in the most probable con-
straint topologies manifests itself as molecular coop-
erativity, where network rigidity serves as the
mechanism responsible for structural transitions.

In prior work32 the normal helix–coil transition
was described by torsion constraints associated with
a- and c-conformations, intramolecular backbone H-
bonding and H-bonding to unstructured solvent. To
describe the inverted transition, the “hydrated confor-
mation” (h-conformation) is introduced. The h-con-
formation models structured solvent (usually water)
around a residue that causes the local flexibility of the
polypeptide to be greatly limited. This is the same
mechanism that Privalov and Gill16 invoked to ex-
plain cold denaturation. Thus, the hydrated state, h,
posits a structural cage or clathrate of solvent mole-
cules surrounding the side chain and backbone of a
residue. Clathrate formation is energetically favor-
able, but is a state of low entropy for the polypeptide.
The introduction of this hydrated state is sufficient for
the DCM to predict heat and cold denaturation in
polypeptides in good, poor, and mixed solvents over a
broad temperature range.

The properties of a torsion constraint are assumed
to depend only on its local a-, c-, or h-conformation.
The conformation of its flanking neighbors is irrele-
vant. This is a simplification from the LRM, in that
three-body terms involving triplets of residues speci-
fied as aaa, aac, etc., have been replaced with one-
body terms involving a single residue. The three body
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terms in the LRM gives rise to molecular cooperativ-
ity, whereas this is the role of network rigidity in the
DCM. However, similar to the LRM, some local
molecular cooperativity is explicitly built into the
DCM by introducing some topological correlations.
Out of the 33 possible triplets of residues (such as aac,
aah, ach, etc.) any triplet having two neighboring
residues with one in the a-conformation and the other
in the h-conformation is disallowed. For example,
aha, aah, cah are disallowed, while ach, hcc, hhc, hhh
are allowed. Altogether, the DCM has 17 accessible
types of triplets. A c-conformation just before or after
a h-conformation provides the polypeptide with
enough plasticity to accommodate forces from sol-
vent. In addition, intramolecular backbone H-bonds
are not allowed to span over any residue in a h-
conformation.

To understand how the DCM parameters might
depend on concentration of cosolvents, it is useful to
compare the DCM with the Gibbs–Dimarzio model
(GDM) for a helix–coil transition in solvent.52 A
direct correspondence is made by recasting Eq. (2)
into a microscopic partition function, Qt, given by
e�	�Gt where 	 � 1/RT. In the GDM, Qt represents
properties of solvent molecules that either H-bond to
CO—group acceptors, QCO, or NH— group donors,
QNH, or are free solvent molecules not interacting
with the polypeptide, Qs. The latter case is important
in the GDM because the system is defined as the
polypeptide and solvent. However, in the end, Gibbs
and Dimarzio factor out all microscopic partition
functions associated with solvent degrees of freedom,
and work with the partition function for the polypep-
tide that retains terms that relate to the transfer of a
noninteracting solvent molecule to an interacting one.
In the DCM, the system is defined as the polypeptide,
where direct solvent interactions are accounted for by
specific constraint types. All solvent degrees of free-
dom are always integrated out under conditions spec-
ified by the particular constraint type. In principle, the
DCM goes further by integrating out all polypeptide
degrees of freedom consistent with the specified con-
straint topology! This is the reason why the partition
function given in Eq. (5) is a sum over discrete
topologies. In practice, the problem is broken down
into a finite number of discretized parts that define a
free energy decomposition, and then these parts are
pieced together while accounting for independent en-
tropy contributions.

Differences and similarities between the minimal
ZBM, LRM, GDM, and DCM are summarized in
Table I. Treating all constraints in all accessible
frameworks as independent, the DCM exactly maps
onto the ZBM, LRM, or the GDM—depending on the

choice of free energy decomposition. The GDM is
particularly important because it focuses on solvent
effects. It is worth noting that Gibbs and Dimarzio52

in passing (page 279, third to last paragraph) describe
the possibility of having two helix–coil transitions
based on an unsolvated random coil (here denoted as
c). The DCM also accounts for local solvation
through the hydration interaction (denoted as h). Most
importantly, the DCM is fundamentally different be-
cause better estimates for total conformational entro-
pies are calculated using network rigidity, accounting
for nonadditivity in free energy decomposition.30,31

Table I shows that a small number of parameters in
the ZBM and LRM result from implicitly lumping
different interactions into a single phenomenological
parameter. More parameters are required in the DCM
by distinguishing different interaction types. For ex-
ample, properties of an intramolecular backbone H-
bond depends on the conformation of the three resi-
dues it spans. Moreover, H-bonding to solvent is
considered to occur whenever an intramolecular back-
bone H-bond is broken. Within this scheme, two
different H-bond models (I and II) are considered and
compared.

Model I. The intramolecular i to i � 4 backbone
H-bond is allowed only when it spans the aaa-triplet

Table I Four Free Energy Decomposition Schemes to
Describe the �-Helix to Coil Transitiona

Type of Interaction ZBM LRM GDM DCM

Covalent bonds � � � �
Coil conformation No u � 1 z Vc, 
c, 2
Helical conformation No v, w 1 Va, 
a, 2
Hydration shell No No No Vh, 
h, 2
Intramolecular H-bond �, s No � Uxyz, �xyz, 3
Solvent H-bond No No QCO

Qs
,

QNH

Qs

Uo

Network rigidity No No No �
Electrostatics No No No No
Side-chain interactions No No No No
Self-avoidance No No No No

aAll models implicitly account for covalent bonding. ZBM
focuses on H-bonds, LRM focuses on backbone triplet conforma-
tions and GDM focuses on solvent effects. The DCM explicitly
accounts for network rigidity, encompasses all three of these mod-
els, and treats solvent interactions like a two-state model of water
having H-bonding to a clathrate structure or to unstructured mobile
solvent. The DCM column defines respectively the energy, pure
entropy and number of distance constraints associated with the
particular interaction. For intramolecular H-bonding, the variables
x, y, and z represent either a or c. For solvent H-bonding, only
energy is specified as explained in the text.
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of residues. That is, Uxyz is effectively set to positive
infinity for the other seven accessible triplets, which
requires H-bonds to form between the polypeptide
and solvent. Therefore, model I considers three H-
bond parameters, consisting of Uaaa, �aaa for the
intramolecular backbone H-bond, and Uo for solvent
H-bonding. For simplicity, no entropy parameter is
introduced for H-bonding to unstructured solvent be-
cause this bonding posits negligible decrease in the
flexibility of the polypeptide. Flexibility can be main-
tained in the polypeptide because unstructured solvent
mobility is considered sufficient to create the neces-
sary bonding geometries.

Model II. The intramolecular i to i � 4 backbone
H-bond is allowed to form across any triplet of resi-
dues that do not include h. For example, there can
exist an intramolecular H-bond spanning a ccc-triplet.
Model II is more realistic because there are many
geometries associated with the ccc-triplet that are
appropriate for formation of a H-bond, as confirmed
by a bioinformatics study of i to i � 4 backbone
H-bonds in protein structures.53 The reason is that
hard cutoffs are fictitiously imagined after coarse
graining, but actually there will always be some ccc-
conformations having (�, �) dihedral angles very near
that of some aaa-conformations. However, mathemat-
ical simplifications are made to reduce the number of
H-bond parameters. Here, aac-, aca-, and caa-triplets
are treated exactly the same, and cca-, cac-, and
acc-triplets are treated exactly the same. Therefore,
model II requires nine H-bond parameters, associated
with (Uaaa, �aaa), (Uaca, �aca), (Ucac, �cac) and (Uccc,
�ccc ) and Uo.

As demonstrated in next section, model II is not
needed to describe CD data of Andersen et al. because
model I gives excellent fits. Employing model II is
motivated by the tantalizing idea that DCM parame-
ters should be transferable. Since the backbone H-
bond interactions are viewed as residue-type indepen-
dent, the parameterization should not depend on com-
position of the polypeptide. Therefore, the eight
intramolecular parameters were uplifted from prior
work32 that were obtained by fitting to simulation data
for polyalanine in aqueous solution.54,55 The Uo pa-
rameter is free, as it is expected to depend on solvent–
polypeptide interaction details. Some parameters can
be arbitrarily fixed without affecting any thermody-
namic response function. There is freedom to fix one
of the torsion constraint energy parameters, {Vc , Va ,
Vh}, one of the H-bond energy parameters, {Uxyz ,
Uo}, and one of the pure entropy parameters {
c , 
a ,

h , �xyz}. In this work, the fixed parameters are Va

� 0, Uaaa � �4.64 kcal/mole, and �aaa � 2, leaving

the same 6 free fitting parameters for both models I
and II.

The key difference between models I and II is the
occurrence of entropy replacements that occur when-
ever there are redundant constraints. Fits to model I
find �aaa � 
a. As will be discussed in detail, this
means that spanning H-bonds over triplets of aaa do
not further constrain the helix. In this case, no entropy
replacement occurs because the intramolecular
H-bond constraints are always redundant. This makes
model I as close to a generalized LRM as possible, but
differences remain in both the free energy decompo-
sition and not counting entropy contributions from
redundant constraints.

DCM Parameter Dependence on
Denaturant Concentration

Models I and II contain 6 free parameters that encom-
pass normal and inverted transitions, and provides the
possibility of both heat and cold denaturation. As
solvent properties are modified by changing denatur-
ant concentration, the model parameters must also
change. The question then becomes: Is there any
simple concentration dependence, at least for dilute
aqueous solutions, on the model parameters?

Free energy shifts of molecules and biopolymers
are generally found to be linearly dependent on the
concentration of denaturant in dilute solutions, with
the proportionality constant defined as an m-value.
Likewise, a linear dependence should apply for mi-
croscopic free energies, �Gt, defining model param-
eters. Since model parameters reside in exponents of
Boltzmann factors, they will depend more weakly on
cosolvent concentration than the total free energy
itself. We expect this approach to be quite general —
consistent with the common finding that for low mole
fractions a mixed multicomponent solvent acts effec-
tively as a one component solvent.52,56 Therefore,
DCM parameters are Taylor expanded away from
their aqueous values as a function of cosolvent con-
centration up to first order. A conversion between
volume concentration and mole fraction for HFIP was
done using measured molar volume data,57 which is
virtually independent of temperature. Up to 30%
HFIP (v/v) there is a near linear relationship to mole
fraction, making the choice in linearly expanding by
% volume or mole fraction to be a matter of conve-
nience. Note that 30% (v/v) corresponds to a mole
fraction of 	6.5%. Here, percent by volume is used to
directly compare with Andersen et al. raw data. Un-
less stated otherwise, all following discussions give
HFIP concentrations as percent by volume. The linear
dependence on denaturant concentration, c, requires
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specifying (d/dc)�t�c � 0 for all energy parameters and
(d/dc�t�c � 0 for all pure entropy parameters. Using
this linearity assumption, data of Andersen et al.20

will be fitted to obtain model parameters, consisting
of 6 pure water and 6 slope parameters. However,
HFIP is a halogen alcohol that has an unusual degree
of potency for inducing helix conformation, for which
the origin is unclear.58–65 An exotic mechanism
might jeopardize the proposed generic approach.

Considering Special Properties of HFIP. The mea-
sured activity coefficient66 of HFIP in aqueous solu-
tion starts very high (	15.3) and monotonically de-
creases until a minimum of 	0.75 is reached at 80%,
at which point it increases to unity at 100% HFIP. The
activity of water is suppressed at low HFIP concen-
trations, reaching a shallow minimum near 27%, then
increases to a maximum near 76%, after which it
monotonically decreases until 100% HFIP is reached.
Considering the entire range from 0 to 100%, there is
significant variation in the nature of how HFIP inter-
acts with itself and with water as HFIP concentration
is varied. More recently, it has been shown by x-ray
scattering that near 30% HFIP there is a maximum in
micelle-like clustering of HFIP, but these clusters
were not thought to be held together as rigidly as that
found in amphiphiles such as SDS.61 Additionally, it
was reported61 that helix content in melittin does not
decrease for HFIP concentration above 30%, beyond
which HFIP clustering decreases.

Apparently, the minimum in water activity can be
associated with the maximum HFIP micelle-like clus-
tering. The range of HFIP concentration used by
Andersen et al.20 goes as high as 25%, and the most
interesting features exhibiting cold and heat denatur-
ation is around 8–10%. Therefore, attributing the
interesting signature of heat and cold denaturation to
the intrinsic HFIP clustering behavior in water is not
possible, unless the concentration of polypeptide has
an affect. Andersen et al. showed their data to be
independent of polypeptide concentration (at low di-
lution), so this is implausible. Moreover, the dramatic
effects of activity coefficients for HFIP and water as a
function of HFIP concentration is not present until
75% — considerably beyond the range of Andersen’s
experiment and expected range of the proposed linear
dependence on cosolvent concentration. In addition,
the m-value approach has been applied in the study of
induced helix transition in melittin using HFIP cosol-
vent up to 20% by volume.60 Despite its unusual
behavior, there appears no reason to make special
exceptions for HFIP in the modeling scheme of the
DCM.

RESULTS

Both models I and II are compared to experimental
data of Andersen et al.20 where heat and cold dena-
turation was observed for some HFIP concentrations
in several different monomeric heterogeneous
polypeptides. Raw experimental data from CD mea-
surements over temperatures between 270 and 340 K
and HFIP concentrations between 0 and 25% by vol-
ume were shown for two polypeptides labeled as
sCT(8–32) and YGG-3V. Model predictions for helix
content are transformed to compare directly with CD
measurements at 221 nm wavelength. Following stan-
dard practice it is assumed that a linear transformation
between the calculated helix content, �a, and the mea-
sured signal, [�]221, exists. Consequently,

�a � a�221 � b (6)

where �a gives the fraction of helix ranging between
0 and 1. The coefficients a and b are situation-depen-
dent transformation variables that depend on experi-
mental setup and the precise coarse graining proce-
dure used to define the helix conformation. Moreover,
there is no reason to expect that the linear relationship
given in Eq. (6) should be independent of HFIP con-
centration. Therefore, the two transformation param-
eters (a and b) are viewed as functions of HFIP
concentration. A linear relationship between [�]221

and �a is used as the fitting objective to optimize the
model parameters. The slope of the transformation
given by a and the y-intercept given by b are deter-
mined by least squares linear regression for each
HFIP concentration separately. This method of fitting
offers the advantage that neither temperature depen-
dent baselines nor helix content saturation values in
[�]221 are a priori required. To our knowledge, fitting
to experimental data in this way has not been em-
ployed before. Details of the fitting procedure are
given in appendix B.

Fitting the minimal DCM predictions to data from
heterogeneous polypeptides gives a set of effective
parameters where differences in residues are averaged
out. Consequently, the chain length of the effective
homogeneous polypeptide refers to the number of
residues playing an active role in the transition, which
is not well defined. Therefore, different chain lengths
were considered in fitting. It was found that the pre-
cise chain length was not crucial to obtain an excellent
fit to the data. Nevertheless, there is a strong depen-
dence on chain length for a fixed set of model param-
eters due to molecular cooperativity. The DCM pa-
rameters presented here corresponds to n � 16 for the
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sCT(8–32) polypeptide and n � 18 for the YGG-3V
polypeptide.

Figures 1 and 2 show the raw CD data20 and the
corresponding predictions of model I and II, using
best-fit parameters to the data. Table II list the best-fit
DCM parameters for both models, for both polypep-
tides, and for 0 and 20% HFIP concentrations. Param-
eters for any other HFIP concentration is obtained by
linear interpolation using the 0 and 20% data points.
The best fits for models I and II were obtained by
simulated annealing while simultaneously fitting both
polypeptides consisting of 12 data curves. This dual
dataset fitting involved 16 free model parameters as
summarized in the caption of Table II and explained
in appendix B. In spite of models I and II having
considerably different H-bond parameterization, both
models fit to experimental CD data equally well
within experimental error bars.

Helix Content

Within the measured temperature range, the DCM
predicts practically 0% helix content at 0% HFIP
concentration, and at 20% HFIP concentration there is
nearly 100% helix content. These predicted saturation
limits are in agreement with the interpretation of the
raw CD measurements given by Andersen et al.20 The
predicted helix content as a function of temperature
over an extended temperature range is shown in Fig-
ure 3. DCM predictions show weak reentrant behavior
in helix content, even at optimal HFIP concentrations,
due to the mild gain in disordered coil conformations

at high temperatures. Moreover, for large HFIP con-
centrations, the predicted helix content saturates at a
high value at high temperatures. Thus, the behavior of
helix content as a function of temperature closely
resembles that of an inverted helix–coil transition,
with only small amount of reentrant behavior for a
narrow window of intermediate HFIP concentrations.
According to the DCM predictions, hydration effects
at low temperature are playing the dominant role in
the structural transition, in agreement with the re-
ported observation of dramatic cold denaturation,20

but heat denaturation is marginal. Although there is a
decrease in helix content upon heating, a peak in the
heat capacity is necessary as part of the signature for
a second helix–coil transition. It will be shown in the
Discussion how the sharpness of the transition(s) de-
pend on chain length as a consequence of molecular
cooperativity.

Hydration Content

The predicted hydration content, �h, is plotted in
Figure 4. Hydration content also ranges between 0
and 1 and is used as a second order parameter. Helix
content, regarded as the primary order parameter, and
hydration content together characterize the transi-
tion(s). It is seen that both models show that both
polypeptides have very high hydration content at low
temperatures, decreasing as temperature increases. As
HFIP concentration increases from 0% up to about
5%, the DCM predicts hydration content will increase
slightly, and then this trend reverses. In particular, at
some critical HFIP concentration (near 9%) the hy-

FIGURE 2 Best fits to experimental CD data for polypep-
tide YGG-3V. Calculated results from models I and II are
(inversed) transformed and shown as dashed and solid lines,
respectively. From top to bottom the curves correspond to 0,
6, 7, 8, 10, and 20% HFIP concentration.

FIGURE 1 Best fits to experimental CD data for polypep-
tide sCT(8–32). Calculated results from models I and II are
(inversed) transformed and shown as dashed and solid lines,
respectively. From top to bottom the curves correspond to 0,
6, 8, 10, 12, and 25% HFIP concentration.
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dration content exhibits a sharp transition. As HFIP
concentration increases above this critical value, there
is an increase in sharpness of hydration loss with a
corresponding decrease in the (cold) transition tem-
perature. At very high HFIP concentrations, there is
virtually no hydration content. The trends predicted
by the DCM above the critical HFIP concentration is
indicative of molecular cooperativity found in in-
verted helix–coil transitions.

Hydrogen-Bond Content

In addition to hydration and helix content, it is also
possible to track H-bond content. Both models I and II
explicitly account for the possibility of having H-
bonding to solvent in favor of intramolecular back-
bone H-bonding. The greatest difference between
models I and II is in how the backbone H-bonding is
modeled. Nevertheless, as Figure 5 shows, H-bond
content is remarkably similar between models I and
II, as well as for both polypeptides. It is seen that
H-bond content has similar reentrant behavior exhib-
ited in helix content. Comparing the results of helix
and H-bond content gives no indication whether in-
tramolecular H-bonds can be considered to be the
driving mechanism for the (heat) transition or not. In

the Discussion, it will be shown that models I and II
give slightly different answers to this question, but in
both models H-bonding plays an important role in
thermodynamic stability that influences the degree of
molecular cooperativity. For example, it will be seen
that the hydration content is depleted because forming
intramolecular H-bonds is more favorable.

Thermodynamic Characteristics

It is worth mentioning that a few entries in Table II
have a negative best-fit hydration pure entropy param-
eter, 
h. Although fundamentally all pure entropy
parameters should be positive, it is also true that in the
DCM the entire set of pure entropy parameters can be
globally shifted by an arbitrary constant without af-
fecting any order parameter, heat capacity, or differ-
ences in thermodynamic quantities. Recall that this
freedom was exercised when the intramolecular back-
bone H-bond parameters were preset to the best-fit
values obtained from prior work32 on polyalanine in
aqueous solution, where �aaa � 2 is used here as the
pure entropy reference for both models I and II. Thus,
there is no special significance in having a positive or
negative pure entropy. To reflect the intrinsic arbitrary
reference, all free energies, enthalpies, and entropies

Table II A List of all Model Parametersa

Parameter

sCT(8–32) YGG-3V

Model I Model II Model I Model II

0% HIFP 20% HIFP 0% HIFP 20% HIFP 0% HIFP 20% HIFP 0% HIFP 20% HIFP

Vh �2.84 �3.16 �2.84 �2.20 �3.04 �3.37 �2.87 �2.24

h �0.0212 �1.19 0.763 0.552 0.0541 �1.11 0.731 0.520
Va 0 0 0 0 0 0 0 0

a 1.39 1.39 2.25 2.25 1.67 1.67 2.24 2.24
Vc �0.579 2.00 1.14 1.51 0.597 2.02 1.08 1.46

c 3.19 2.69 4.10 3.08 3.52 3.01 4.10 3.07

Uccc 
 
 0 0 
 
 0 0
�ccc — — 2.92 2.92 — — 2.92 2.92
Ucac 
 
 �2.34 �2.34 
 
 �2.34 �2.34
�cac — — 2.76 2.76 — — 2.76 2.76
Uaca 
 
 �2.83 �2.83 
 
 �2.83 �2.83
�aca — — 2.15 2.15 — — 2.15 2.15
Uaaa �4.64 �4.64 �4.64 �4.64 �4.64 �4.64 �4.64 �4.64
�aaa 2 2 2 2 2 2 2 2

Uo �3.63 �3.32 �3.27 �3.21 �3.63 �3.32 �3.27 �3.21

aThe parameter Va is fixed to zero as an arbitrary energy reference. The parameters 
a, Uo, Uxyz, �xyz are fixed to the values given in the
table, independent of HFIP concentration. The value of 
 for Uxyz indicates that such a H-bond is not allowed to form, and dashes are used
for �xyz whenever the H-bond is disallowed. In each model, all slope parameters are constrained to be the same for both polypeptides.
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per residue for the polypeptide are labeled as �g, �h,
and �s, respectively. These free energy differences do
not refer to differences between the native and dena-
tured (unfolded) states.

Model I predictions for the Gibbs free energy,
enthalpy, entropy, and heat capacity are shown in
Figure 6 for the sCT(8–32) polypeptide, and Figure 7
shows the corresponding model II predictions. Predic-
tions from models I and II are in qualitative agree-
ment, having similar thermodynamic response. It is
seen that the free energy increases as HFIP concen-
tration is increased, although the rate of increase de-
creases. As HFIP concentration increases above 11%,
the free energy curves hardly shift. For all HFIP
concentrations, both the enthalpy and entropy in-
crease with temperature, which allows for enthalpy–
entropy compensation (at least in part). At low HFIP
concentrations the increase in enthalpy and entropy as
a function of temperature takes the form of a broad

sigmoid curve requiring a temperature range from
nearly 100 to 600 K to fully capture the lower and
upper baselines. In Figures 6 and 7 only the top part
of the sigmoid curves can be seen for 6 and 8% HFIP
concentrations. Near the critical HFIP concentration
of 	9% and above, both the enthalpy and entropy
increase sharply at both low and high temperatures.
The dramatic change in enthalpy and entropy at low
temperature is associated with the rapid decrease in
hydration content as observed in Figure 4 that governs
cold denaturation. After a near plateau, there is a
second increase at higher temperature that reflects
having helical conformations changing to disordered
coil conformations and the breaking of intramolecular
backbone H-bonds.

The predicted heat capacity for both models has a
single broad peak at 8% HFIP concentration and below.
Interestingly, the heat capacity at 8% concentration ex-
hibits a shoulder that appears at the onset of a secondary

FIGURE 3 Using parameters linearly interpolated from Table II, helix content over an extended
temperature range is shown for 4, 7, 8, 9, 10, 12, and 15% HFIP concentrations, which correspond
to the solid line curves ordered from bottom to top in each panel. In panels (a) and (c) results are
shown for polypeptide sCT(8–32) with an effective chain length of 16, using models I and II,
respectively. Also included are the symbols square, circle, and diamond corresponding to the
transformed CD data onto fractional helix content for 8, 10, and 12% HFIP concentrations.
Similarly, panels (b) and (d) show results for polypeptide YGG-3V with effective chain length of
18, using models I and II respectively. The symbol up triangle, square, and circle correspond to the
transformed CD data onto fractional helix content for 7, 8, and 10%) HFIP concentrations.
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peak. Indeed, for larger HFIP concentrations two well
defined peaks in the heat capacity curves are predicted
by both models. However, the low temperature peak is
located below 260 K, and the high temperature peak is
above 340 K. The two peaks shift further apart when
HFIP concentration is increased, indicating the low and
high temperature transitions are governed by an increase
in molecular cooperativity. The (decrease, increase) in
the transition temperature for (cold, heat) denaturation is
akin to the (inverted, normal) helix–coil transitions that
occurs as chain length is increased. Unfortunately, at any
fixed HFIP concentration, these predicted dramatic ef-
fects as a function of temperature are not fully experi-
mentally accessible. As a function of HFIP concentra-
tion, at fixed temperature, helix and hydration content
and heat capacity give a pronounced signature for
changes in molecular cooperativity, as shown in Figure
8. It is seen that models I and II are in qualitative
agreement, but do have quantitative differences that can
be easily discerned at low temperatures. Similar results

for both models are obtained for the YGG-3V polypep-
tide (not shown).

DISCUSSION

The general formalism of the DCM is applicable to
biopolymers and many other physical systems. The
helix–coil transition in polypeptides serves as a well
suited example for illustrating the DCM, and the
important role that network rigidity plays in determin-
ing molecular cooperativity. Except for some com-
ments on the generalization of the DCM to heteroge-
neous polypeptides at the end of this section, the
analysis given below is restricted to a homogeneous
polypeptide.

Three-State Model for an Infinite Chain

Similar to Schellman’s two-state model,1,2 the essen-
tial features of the helix–coil transition for an infi-

FIGURE 4 Using parameters linearly interpolated from Table II, hydration content over an
extended temperature range is shown for 0, 4, 8, 10, 12, and 15% HFIP concentrations. In panels
(a) and (c), results are shown for polypeptide sCT(8–32) with an effective chain length of 16, using
models I and II, respectively. In panels (b) and (d) results are shown for polypeptide YGG-3V with
an effective chain length of 18, using models I and II, respectively. Because hydration content
curves cross, the symbols plus, square, circle, diamond, and filled down triangle) are added to
identify the 4, 8, 12, and 15% HFIP concentrations. The solid line without any symbol corresponds
to 0% HFIP concentration.
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nitely long polypeptide immersed in arbitrary solvent
conditions can be understood using three limiting
states. Employing the minimal 6-parameter DCM pre-
sented here, the free energy of five distinct frame-
works are worked out, three of which govern the
limiting states of interest. These free energies (per
residue) denoted as �gh, �ga, and �gc with respect to
an arbitrary reference state, correspond to a frame-
work that is 100% hydrated, 100% helix, and 100%
disordered. In terms of the DCM parameters,

�gh � Vh � Uo � 2RT
h (7)

�ga � Va � min��ga
1, �ga

0� (8)

�gc � Vc � min��gc
1, �gc

0� (9)

where (�ga
1, �ga

0) correspond to a polypeptide that is
100% helix with all H-bonds (present, missing). Like-
wise, (�gc

1, �gc
0) correspond to a polypeptide that is

100% disordered coil with all H-bonds (present, miss-
ing). These latter four free energies are given by

�ga
1 � Uaaa � 2RTmin�
a,�aaa�

and �ga
0 � Uo � 2RT
a (10)

�gc
1 � Uccc � 2RTmin�
c,�ccc�

and �gc
0 � Uo � 2RT
c (11)

Although near room temperature it can be expected
that �ga

1 � �ga
0 and �gc

0 � �gc
1, these inequalities

need not be the case. Therefore, five distinct frame-
works must be considered to properly determine the
three limiting states of interest.

Examples of the three limiting case free energies
given in Eqs. (7)–(9) are shown in the right two panels
of Figure 9 for 8% HFIP concentration. Each of these
free energies are linear functions of temperature with
negative slope. The state with the lowest free energy

FIGURE 5 Using parameters linearly interpolated from Table II, H-bond content over an
extended temperature range is shown for 15, 12, 10, 8, 4, and 0% HFIP concentrations, which
correspond to the solid line curves ordered from top to bottom in each panel. In panels (a) and (c),
results are shown for polypeptide sCT(8–32) with effective chain length of 16, using models I and
II respectively. Panels (b) and (d) show results for polypeptide YGG-3V with an effective chain
length of 18, using models I and II, respectively. In all cases, no H-bond content is found at 0% HFIP
concentration, and only a tiny amount is predicted by model II at 4% HFIP concentration.
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at any given temperature is the most thermodynami-
cally stable. Free energy crossings will generally oc-
cur as temperature is increased, shifting (less, more)
importance to the (enthalpy, entropy) contributions.
At 8% HFIP concentration, both models I and II form
a triangle with a long base of lowest free energy in the
helix state. The apex of the triangle corresponds to a
transition directly from the disordered hydrated state
to the disordered coil state. However, both these dis-
ordered states are thermodynamically unstable at the
temperature where the apex forms. Instead, the
polypeptide will track the state with lowest free en-
ergy, which depends on the temperature. As temper-
ature increases starting from low temperature, the
three-state model predicts the polypeptide will un-
dergo two transitions—passing from disordered hy-
drated to helix to disordered coil. The introduction of
a third state, representing the effects of structured
solvent (hydration) allows the possibility of having
cold denaturation take place, forming a limit-triangle
as shown in Figure 9.

The limit-triangle continuously changes shape as a
function of HFIP concentration. The lowest free en-
ergy from the three limiting states is also plotted in
Figure 9 as a function of concentration. At low HFIP

concentration the limit triangle is inverted, such that
the helix state is always relatively unstable compared
to both the hydrated and coil states for all tempera-
tures. Thus at low enough HFIP concentration the
polypeptide is exposed to a good solvent and it will
not form a helical structure. As HFIP concentration
increases, a limit-triangle forms and proceeds to grow
in such a way that the cold-denaturation (transition)
temperature, locating the crossing between the hy-
drated and helix states, decreases. Simultaneously, the
heat-denaturation temperature, locating the crossing
between helix and coil states, increases. Thus the two
transition temperatures describing cold and heat de-
naturation move away from one another as HFIP
concentration increases. When the two transition tem-
peratures move past experimental accessibility, the
polypeptide will remain a helix—characteristic of
poor solvent conditions. When a single (normal, in-
verted) transition is observed, the (first, second) free
energy crossing occurs (below, above) the experimen-
tally accessible temperature range.

It is natural to use 6 free parameters in a minimal
DCM since it takes six parameters to describe the
limit-triangle (a slope and y-intercept for each of the
three lines). However, with further thought it would

FIGURE 6 Using model I parameters determined from Table II, predicted free energy (a),
enthalpy (b), entropy (c), and heat capacity (d) are plotted over an extended temperature range for
polypeptide sCT(8–32) and effective chain length of 16. The colors black, red, green, blue, and
magenta correspond to HFIP concentration of 6, 8, 10, 12, and 14%.
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appear that only four parameters are required to ex-
plain two distinct transitions. This is because the
limit-triangle will yield the same predictions whether
all slopes (representing negative entropies) and all
y-intercepts (representing energy) of each of the three
free energy functions are shifted by the same amount.
However, this freedom of selecting an arbitrary over-
all energy and entropy reference has been used up
already. In this work, the selection of Va � 0, Uaaa

� �4.64 kcal/mole and �aaa � 2 was made. Thus, it
is more appropriate to consider 6 free parameters as a
minimal model (one for the H-bond to solvent and
five for the residue).

Heat and Cold Denaturation in Finite
Length Chains

Whether a polypeptide will actually exhibit cold and
heat denaturation as predicted by the presence of the
limit-triangle shown in Figure 9(a and c) depends on
the length of the polypeptide and relative free energy
differences between different frameworks. Note that a
limit-triangle can be defined for finite length polypep-
tides. The existence of a limit-triangle is necessary for

both cold and heat denaturation to take place, but it is
possible that one or neither of the predicted two
transitions is realized due to the subtle balance of
many interactions. The detailed DCM computations
will agree well with the three-state model predictions
when (a) polypeptides are much longer than the rigid-
ity correlation length, and (b) there is a small subset of
frameworks that have free energies well below all
others making up most of the ensemble. This, how-
ever, generally does not occur. In Figure 9(a and c)
the exact free energy as as a function of chain length
is compared with the limiting infinite chain length
prediction of the three-state model. In both models I
and II, exact DCM calculations for chain lengths more
than 100 times longer than the rigidity correlation
length have free energies (per residue) less than that
predicted by the three-state model. The lower free
energy can be ascribed to mixing of many frameworks
having similar free energy assignments.

Molecular Cooperativity

The DCM makes a distinction between two types of
mechanisms that lead to molecular cooperativity. The

FIGURE 7 Using model II parameters determined from Table II, predicted free energy (a),
enthalpy (b), entropy (c), and heat capacity (d) are plotted over an extended temperature range for
polypeptide sCT(8–32) and effective chain length of 16. The colors black, red, green, blue, and
magenta correspond to HFIP concentration of 6, 8, 10, 12, and 14%.
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first type of mechanism has to do with forming a
favorable geometric arrangement to lower the en-
thalpy, without an associated cost in conformational
entropy. Cooperativity resulting from this first type of
mechanism is entropically irrelevant. In the DCM,
this situation arises whenever a constraint type is
completely redundant. A good example of such a
constraint is the aaa H-bond that is allowed in model
I. Specifically, from Table II for the sCT(8–32)
polypeptide, the pure entropy for an �-helical confor-
mation is given as 
a � 1.39 compared to the pure
entropy for the allowed H-bond given as �aaa � 2.
With these numerical values, the H-bond constraint is
always redundant thereby providing cooperativity
only via lowering enthalpy when three �-helical con-
formations consecutively occur. The presence of these
H-bonds do not reduce conformational entropy.

The second type of mechanism concerns itself with
changes in conformational entropy that arise because
of a particular topological arrangement of constraints.
This second type of mechanism is entropically rele-

vant, and is generally associated with an enthalpy
change as well. Entropy changes are calculated in the
DCM using network rigidity. This case is clearly
demonstrated in model II, where from Table II using
the sCT(8–32) polypeptide, the pure entropy for an
�-helical conformation and the aaa H-bond are 
a

� 2.25 and �aaa � 2, respectively. The presence of an
aaa H-bond will lower the conformational entropy
that would otherwise be present if no intramolecular
H-bonds were present. As temperature is increased,
the entropic cost becomes more of a burden, and a
lower overall free energy can be achieved by the
H-bond breaking sooner than would happen in model
I if the changes in enthalpy were the same. Addition-
ally, model II has other types of weaker H-bonds,
such as one that spans a ccc conformation having pure
entropy of �ccc � 2.92. At 20% HFIP concentration,
the pure entropy for a disordered coil conformation is
given as 
c � 3.08. Since many of these pure entropy
contributions are similar, there are many frameworks
in the ensemble that have similar free energies. Con-

FIGURE 8 Additional predictions for the sCT(8–32) polypeptide with effective chain length of
16. In panels (a) and (b) the hydration and helix content are plotted HFIP concentration at four
different temperatures. The (dashed, solid) lines correspond to (hydration, helix) content. Panels (c)
and (d) show the heat capacity in units of cal/(mole K residue) for the same set of temperatures as
a function of concentration. The black, red, green, and blue curves correspond to the temperatures
of 275, 300, 325, and 350 K in all panels. Panels (a) and (c) are the predictions from model I, while
model II predictions are shown in panels (b) and (d).
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sequently, as shown in Figure 9 (a and c) the free
energy of the polypeptide obtained from exact DCM
calculations deviate from the simple three state model
predictions. More interesting is that combinations of
H-bonds forming various types of H-bond networks
pay different amounts of entropic penalties depending
on the details of constraint arrangements. Entropy
penalties paid by H-bonds (and other constraint types)
strongly depend on the topology of cross-linking be-
tween constraints, which is governed by the long-
range nature of network rigidity.

In the DCM, the first type of mechanism is just a
special case of the second type, but has important
consequences in predicting molecular cooperativity
and thermodynamic stability. Model I gives an exam-
ple where only entropically irrelevant H-bond con-
straints are accessible. In this case, the total confor-

mational entropy of a polypeptide having Nh hy-
drated, Na �-helical, and Nc coil conformations is
simply additive, given by �Sc � R(Nh
h � Na
a �
Nc
c). It is relatively straightforward to see how com-
ponent entropies add in a transfer matrix approach. In
the ZBM, LRM, DCM, or any other model using a
transfer matrix, the general form of the elements will
be e�	�G3 e�e�	�, where �G � 
 � RT�. Without
explicitly accounting for network rigidity during the
process of multiplying out the transfer matrix, prod-
ucts of various matrix elements result in an over
estimate for the total conformational entropy because
all entropic contributions are simply added. Specifi-
cally, an additional term of the form Naaa�aaa would
be generated using model I without accounting for
network rigidity — erroneously adding an aaa H-
bond entropy contribution whenever it is present in

FIGURE 9 The free energy for three limiting thermodynamic states of a hypothetical infinite
homogeneous chain is shown in panels (a) and (c) using best-fit parameters of model I and II at 8%
HFIP concentration for polypeptide sCT(8–32) respectively. The (hydrated, helix, coil) states are
shown as (long-dashed, solid, short-dashed) straight lines. Also, from bottom to top, a series of
curves show the free energy obtained from DCM calculations for chain lengths 5, 10, 15, 20, 50, and
10000, respectively. Panel (b) plots the lowest free energy among the 3 limiting states (for model
I) as a function of temperature at 0, 4, 8, 12, and 16% HFIP concentrations. The plus, square, and
diamond symbols identify the 4, 8, and 12% cases. The lowest two lines without symbols, which
form an upward “wedge,” correspond to the 0% case. Panel (d) is the same as (b) except model II
is used. Note the helix state serves as a fixed reference between panels (a and b) and between (c and
d) because Va and 
a are independent of HFIP concentration.
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the framework. Although model I is in many ways
similar to a generalized LRM that includes a third
state to model hydration, it is different in two respects.
First, the DCM separates out free energy contribu-
tions from different types of interactions. Second, the
redundant component entropies of H-bonds do not
contribute to the total entropy.

At the heart of the DCM, only the preferential
independent set of constraints contribute to total con-
formational entropy. As described in appendix A,
larger transfer matrices are required to employ net-
work rigidity as an underlying mechanical interaction
to account for proper entropy replacements so as not
to overestimate the total conformational entropy. The
DCM transfer matrix maintains all information about
the propagation of network rigidity along the polypep-
tide. More complex parameterizations, such as exem-
plified in model II, can be easily calculated, where
many entropy replacements occur. Yet models I and II
are described using the same mathematical formalism.
It is worth noting that models I and II serve as two
representative examples, as many more excellent fit-
ted parameterizations to the raw CD data have been
generated. However, for each of these good fits to the

experimental data at hand, there are dramatic conse-
quences when chain length and HFIP concentrations
are varied, both of which can be used to nail down the
true thermodynamic response. In prior work32 it was
found that model I (with any rank ordering of pure
entropies) could not fit well to the simulation data54,55

on polyalanine. Keeping transferability of parameters
as a goal, we favor model II.

Chain Length Dependence

The long-range character of molecular cooperativity
can be better understood by considering chain length
(size) dependencies. Key to the observed response is
the competition that plays out between the various
types of constraints defined in the DCM. As shown in
Results, changing the HFIP concentration changes the
relative importance of the various constraint types,
which also depends on the temperature. In Figure 10,
helix content, hydration content, and heat capacity are
plotted vs temperature for two extreme sizes: length 5
and 10,000 residues for both models at 4% HFIP
concentration. Virtually no differences are observed
as a function of size, although some difference is seen

FIGURE 10 Panel (a) shows (hydration, helix) content as (dashed, solid) lines for model I applied
to the sCT(8–32) polypeptide at 4% HFIP concentration. Panel (c) shows the corresponding heat
capacity. Similarly, panels (b) and (d) show results for model II. Two curves are shown for each
quantity plotted. In all cases, the (bottom, top) curve corresponds to a chain length of (5, 10,000).
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in model II due to weak backbone H-bonds (of the
type aca or cac) collectively increasing helix content,
at the expense of decreasing hydration content and
lowing the peak in heat capacity. At this low HFIP
concentration, the transition is not clear, involving a
large mixture of frameworks near all three limiting
states. The helix content curves resemble an inverted
transition, except that at high temperatures helix con-
tent remains at a low saturation value. High temper-
ature saturation values are always determined by the
pure entropies, as 	 3 0.

In Figure 11, helix content and heat capacity are
again plotted vs temperature for models I and II for
various sizes from length 5 up to 10,000, but at 8%
HFIP concentration. At this concentration the limit-
triangle shown in Figure 9(a and c) predicts a wide
experimentally accessible temperature range for
which the helical state is thermodynamically stable.
For small chain lengths, the H-bonds cannot form
long overlapping cooperative strings, and as a result
the actual helix content is far from unity for both

models. As chain length increases, however, helix
content rises in both models, where two peaks in the
heat capacity develop. Although the lower and upper
peaks move apart as chain length increases, many of
the features (if not the peaks themselves) are experi-
mentally accessible, such as the minimum between
the two peaks with sharp rise on both sides. Although
models I and II give virtually equivalent predictions
for the raw CD data they were fitted to, considerable
differences emerge as molecular cooperativity is
probed via chain length dependence.

At 12% HFIP concentration, Figure 12 shows the
same type of data as plotted in Figure 11 and dis-
cussed above. The results shown in Figure 11 clearly
indicate model II is more cooperative than model I.
Here, in contrast, less difference in chain length de-
pendency is found between predictions from models I
and II. Differences in molecular cooperativity ob-
served between models I and II further decreases as
HFIP concentration increases beyond 12%. To exam-
ine the nature of molecular cooperativity, or the lack

FIGURE 11 Panels (a) and (b) show helix content for models I and II, respectively, applied to the
sCT(8–32) polypeptide at 8% HFIP concentration. From bottom to top, the curves correspond to
chain lengths 5, 10, 15, 20, 25, 30, 40, 50, 100, and 10,000. Panel (c) shows the corresponding heat
capacities for model I. From top to bottom at temperature 300 K the curves correspond to chain
lengths 5, 10, 15, 20, 25, 30, 40, 50, 100, and 10000. In panel (d) the same ordering of chain lengths
occur at 310 K for model II. Note that in pannels (c) and (d) the ordering of the curves differ at
different temperatures because the heat capacity curves cross one another.
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thereof, Figure 13 plots hydration content vs temper-
ature for various chain lengths, for both models, and
at 8 and 12% HFIP concentrations. A chain length of
5 residues derives virtually no molecular cooperativ-
ity from the H-bond network. Therefore, hydration
content for a 5 residue polypeptide chain reflects the
natural propensity of the effective homogeneous chain
under consideration to be hydrated. Not unexpectedly,
hydration content is predicted to be high at low tem-
perature and it continuously decreases as the temper-
ature increases for any HFIP concentration. As chain
length increases, hydration content is depleted due to
the formation of many consecutive overlapping in-
tramolecular H-bonds along the helix. Up to some
rigidity correlation length, the longer the helix the
greater molecular cooperativity will be generated by
the presence of long strings of overlapping H-bonds.

The dip and subsequent recovery of hydration con-
tent shown in Figure 13 is directly related to the
cooperativity of the intramolecular H-bonds. The
sharp decline in the hydrated state, with correspond-
ing rise in the �-helical state, is a signature for struc-

tural self-organization. There is an optimal constraint
topology that changes depending on the thermody-
namic conditions. At 8% HFIP concentration and low
temperature, a large amount of hydration is present.
As the temperature is increased, hydration is disrupted
due to the more stable conformations that contain
many overlapping intramolecular spanning H-bonds.
The longer chains have more influence in disrupting
the hydration, as the H-bonds work collectively to-
gether. That is, redundant H-bonds are enthalpicly
favorable, but do not add any entropic penalty. In
general, regions of high density of H-bonds, will pay
less entropic cost than otherwise would be expected if
the same number and types of H-bonds were distrib-
uted as isolated units. However, as the temperature is
further increased, the entropic penalty paid by the
long strings of intact intramolecular backbone H-
bonds becomes too great, resulting in the aaa H-
bonds breaking, yielding to weaker intramolecular
H-bonds and/or H-bonds to solvent. With this, disor-
dered coil conformations appear as this is a strong
entropic driving force. At this point, the hydration

FIGURE 12 Panels (a) and (b) show helix content for models I and II respectively applied to the
sCT(8–32) polypeptide at 12% HFIP concentration. From bottom to top the curves correspond to
chain lengths 5, 10, 15, 20, 25, 50, and 10,000. Panels (c) and (d) show the corresponding heat
capacities for models I and II, respectively. At 300 K, from top to bottom the curves correspond to
chain lengths 5, 10, 15, 20, 25, 50, and 10,000. Note that at other temperatures the ordering is
different as heat capacity curves cross one another.
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content approaches the limiting value it has when
there is virtually no cooperativity from the H-bond
network.

The sharpness of the transition(s) is greatly influ-
enced by differences in slopes of the free energies of
two limiting-states. The difference in pure entropies
describing cold-denaturation for the sCT(8–32)
polypeptide at 8% HFIP using models I and II are 
a

� 
h � 1.88 and �aaa � 
h � 1.32, respectively. The
greater pure entropy difference in model I explains
why it has a much sharper cold denaturation transition
seen in Figure 11. Differences in pure entropies de-
scribing heat denaturation for models I and II are
respectively 
c � 
a � 1.6 and 
c � �aaa � 1.69.
Model II exhibits greater heat capacity peaks than
model I, although the pure entropy difference of
model II is only slightly greater. Not surprisingly, the
sharpness of the transition is more subtle to charac-
terize than by a single pure entropy difference (or
nucleation parameter) because of details in entropy
replacements. Dependent on chain length, nonadditiv-
ity of component entropies is intimately tied to mo-

lecular cooperativity. Nevertheless, the nucleation pa-
rameter, v, in the LRM can most closely be related to
differences in pure entropies, where ln(v) is given by
�2(
c � 
a) or �2(
c � �aaa) for models I or II—
yielding estimates of 0.040 and 0.034 respectively for
v. Interestingly, v � 0.0361 was used in a LRM to
describe helix content for the melittin helix–coil tran-
sition in HFIP–aqueous solvent,60 where v was as-
sumed independent of HFIP concentration. Here, dif-
ferences in pure entropies linearly depend on HFIP
concentration, implying cosolvents affect the ability
of a polypeptide to initiate a helical structure.

Physical Significance of Parameters

The essential physics of the helix–coil transition in a
polypeptide in mixed solvent has been captured using
an effective one component solvent model. Excellent
fits to measured CD data shown in Figures 1 and 2
were obtained using an effective homogeneous
polypeptide requiring only 6 parameters that linearly
depend on cosolvent concentration. With these sim-

FIGURE 13 Hydration content as a function of temperature for a variety of chain lengths is
shown. Panels (a) and (b) respectively show the results of model I and II for the sCT(8–32)
polypeptide at 8% HFIP concentration. From top to bottom the curves correspond to sizes 5, 15, 25,
40, 100, and 10000. Panels (c) and (d) show the corresponding information for models I and II at
12% HFIP concentration, where curves from top to bottom correspond to chain lengths of 5, 10, 15,
and 20.
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plifications and using 16 free parameters to fit 12
curves (6 curves per polypeptide as discussed in ap-
pendix B), an important question must be asked: How
physically sound are the best-fit values listed in Table
II? Since model II is more likely to have transferable
H-bond parameters, and due to the similarity between
the sCT(8–32) and YGG-3V polypeptides, only DCM
parameters given in Table II for model II and sCT(8–
32) are discussed here.

Correspondence with the LRM yields v � 0.015 in
pure water and v � 0.115 at 20% HFIP, indicating the
polypeptide nucleates into a helix more readily as
HFIP concentration increases. This result is a conse-
quence that 
c decreases as HFIP concentration in-
creases —physically implying proximity of HFIP re-
stricts the polypeptide conformational space in the
unsolvated coil more than mobile water. The greater
steric hindrance presented by HFIP is presumably
related to its mammoth size compared to water. This
effect is supported by molecular dynamics simula-
tions on melittin in HFIP–aqueous solution63,65 show-
ing a decrease in mobility of the polypeptide via HFIP
coating. There is also an increase in Vc as HFIP
concentration increases — indicating HFIP–polypep-
tide interactions not involving H-bonding, such as van
der Waals, are unfavorable compared to mobile water.
These trends are also consistent with molecular dy-
namics simulations of Dwyer62 showing HFIP and
trifluoroethanol (TFE) are superior helix initiators
while retaining unfavorable interactions with the
polypeptide.

Solvent H-bond interactions are characterized by
the Uo parameter. Uo increases slightly with increas-
ing HFIP concentration, but it can be regarded as
approximately constant. It is worth noting that a large
increase in Uo would provide a simple mechanism for
HFIP induced helix formation. Early explanations
along these lines were not successful, however, lead-
ing to investigations for alternative explanations.58–65

It is now well established that halogen alcohols pro-
vide (stronger, weaker) proton–(donor, acceptor) H-
bonding capability than water.54,61 Unlike the GDM,
the DCM presented here does not have individual
terms describing CO— and NH— solvent H-bonds,
but takes into account their average effect. Therefore,
weak dependence on HFIP concentration for net
change in energy to replace an intramolecular H-bond
with two solvent H-bonds (comprising of normal-
water, weak-HFIP, and strong-HFIP H-bonds) is con-
sistent with H-bonding properties of halogen alcohols.

For infinite chain length, and as T3 
, the ratio of
helix to coil conformational entropies determine he-
lix-saturation values. A smaller ratio of 
c/�aaa im-
plies greater steric hindrance by solvent molecules.

The limiting saturation value will depend on chain
length because of end-cap effects. Neglecting end-cap
effects (as done here) yields a chain length indepen-
dent saturation value, but the approach to this limiting
value strongly depends on chain length as shown in
Figures 10–12, also showing successive increase in
saturation value. Helix content will be higher than the
asymptotic saturation limit at accessible temperatures
due to stabilizing enthalpic gain of intramolecular
H-bonds and their cooperative effects. A subsequent
decrease in helix content toward the saturation value
will follow after an inverted transition. The shallow
reduction at high HFIP concentrations seen in Figure
3 is consistent with the general arguement given by
Gibbs and Dimarzio52 based on the unsolvated coil
state being entropically more favorable. Thus, high
concentration of HFIP destabilizes the unsolvated coil
state by raising the helix content saturation value and
suppressing the approach to the limiting value, even-
tually eliminating heat denaturation. These mechanis-
tic explanations are consistent with the finding that
TFE destabilizes the coil state.58

At low temperature and sufficiently low HFIP con-
centration, why is a helical structure unstable? This
is where the hydrated state is invoked in the
DCM. Clathrate structures (which dynamically form
and break) are enthalpicaly more favorable than mo-
bile solvent, but severely reduce conformational en-
tropy.16,67 In mixed solvent, there will be residues
with preferential hydration56,67 depending on their
chemistry and whether they are buried or not. Here,
all residues are treated equivalently, and preferential
hydration is a statistical process driven by cosolvent
concentration. Considering pure water, the best-fit
parameters is Vh � �2.84 kcal/mole and 
h � 0.763.
The corresponding LRM nucleation parameter is v
� 0.084, where in this case ln(v) is given by �2(
h �
�aaa). Since v is large (for example, greater than
0.0361 used in other works60, helical conformations
should initiate quite easily. However, there will be an
enthalpic penalty too, and a helix cannot form until
after the clathrate structures melt. Another helix ini-
tiation parameter is the z variable (see Table I) of the
GDM. The closest correspondence shows z � e2(
c

� �aaa) and z � e2(
h � �aaa) for helix 3 coil
(normal) and coil3 helix (inverted) transitions yield-
ing z � 66.7 and z � 0.084 respectively. In addition,
for a (normal, inverted) transition to occur, there must
be a cost in energy to change from (helix 3 unsol-
vated coil, hydrated coil3 helix) analogous to Table
I given in the Gibbs and Dimarzio paper.52 At 20%
HFIP, Vh � �2.20 and 
h � 0.552, implying the
addition of HFIP restricts the polypeptide more than
pure water, but the clathrate structures themselves are
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not as enthalpically favorable. The latter trend is in-
tuitive, as it can be expected that normal H-bond
patterns are disturbed by HFIP. As Figure 9 shows,
adding HFIP results in a lower melting point of clath-
rate structures — in similar way the melting point of
bulk water is lowered. This effect is a colligative
property, also consistent with the linear-dependence
assumption on free energy shifts.

The overall interpretation of the DCM parameters
suggests the polypeptide prefers interacting with wa-
ter, rather than HFIP. Then why doesn’t water push
HFIP away from the polypeptide? The unfavorable
cosolvent–polypeptide interactions are driven by ex-
perimental control, where increasing HFIP concentra-
tion increases polypeptide free energy as shown in
Figure 7. The high activity of HFIP in water,66 and its
micelle-like clustering behavior,61 explains why HFIP
(and to a lesser extent TFE) dislikes the polypeptide
less than water. Hydrophobic attributes of HFIP and
TFE are found to make them good helix induc-
ers.58,59,62,63 These bulk effects complete the big pic-
ture — showing that hydrophobic effects are driven
by the bulk solvent properties.64 However, bulk sol-
vent properties are part of a faceless thermodynamic
reservoir in the DCM, reflected in the concentration
dependence of parameters describing specific mecha-
nisms actuated by an effective one-component sol-
vent. Explicit modeling of hydration accounts for
hydrophobic effects between polypeptide and solvent.
The linear concentration dependence on parameters is
expected to hold in the dilute limit, but is not a
requirement nor expected to hold at high cosolvent
concentrations. It has not escaped our attention that
the enthalpy parameters could be linearly expanded as
functions of pressure to addresses pressure induced
cold denaturation.

The DCM provides a good interpretation for phys-
ical mechanisms responsible for cold and heat dena-
turation. However, the parameters in Table II should
not be cast in stone, because multiple good fits are
obtained with 16 parameters, implying there are phys-
ically multiple ways to achieve the same measured
helix content for a polypeptide. Does this mean that
the DCM is over parameterized? Absolutely not. The
DCM has many parameters, but they are all physically
well rooted, allowing the DCM to predict many re-
sponse functions, such as heat capacity, hydration
content, H-bond content, as well as absolute base-
lines, and changes in enthalpy, entropy and free en-
ergy. The uncertainty in the parameters given here
appear because only helix content was used to deter-
mine them. It is worth mentioning that no bias was
used in obtaining these parameters based on findings
from literature. Knowing specific details in advance, it

is possible to enforce trends, restrict parameter ranges,
or fix parameter values. Most polypeptides will not
show cold and heat denaturation over the accessible
temperature range, simply because the limit-triangle
shown in Figure 9 is difficult to achieve experimen-
tally.20 We propose transferable parameters can be
obtained by careful comparison to more experimental
data using a variety of polypeptides, solutes, and most
importantly different chain lengths. Undoubtedly
these measurements will require using heterogeneous
polypeptides.

Generalization to Heterogeneous Chains

The current source code that performs the DCM cal-
culations is able to handle heterogeneous polypep-
tides, where each type of amino acid has its own set of
5 parameters given as {Vh, 
h, Va � 0, 
a, Vc, 
c}.
Respecting differences between different types of res-
idues introduces considerably more parameters. This,
in turn, requires more experimental data to prevent
overfitting. For example, the amount of experimental
data used in this work was not sufficient to pin down
24 free parameters for two effective chains, and is far
from sufficient to determine 5 parameters for each
distinct residue contained within the sCT(8–32) and
YGG-3V polypeptides. Only with much additional
systematic experimental data that includes helix con-
tent and heat capacity for different chain lengths and
different residue rearrangements, will it be possible to
determine a transferable set of DCM parameters. Nev-
ertheless, it is worth making a comparison in the
nominal number of free parameters for the DCM and
LRM for describing heterogeneous polypeptides in
pure aqueous solvent.

Restricting the discussion only to �-helices, the
number of DCM parameters for i to i � 4 backbone
H-bonds as defined above is 17. This number derives
from requiring an energy and pure entropy parameter
for 23 types of intramolecular backbone H-bonds as-
sociated with conformations such as aaa, ccc, aca
(i.e., no h-state is allowed) as well as an energy
parameter to model H-bonding directly to solvent.
The important point is that these parameters do not
depend on the types of the three consecutive residues
that the H-bond spans. Considering 20 different resi-
dues each requiring 5 parameters gives a nominal total
of 117 DCM parameters. The generalized form of the
LRM, which does not account for hydration effects,
requires 2 parameters for each of the 23 possible
conformations, such as aaa, ccc, aca. However, the
LRM is based on 3-body interactions that couple
different types of consecutive residues, leading to 203

different types of triplets. Thus, the nominal total
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parameter count tallies to 128,000. The situation is far
worse than this because the so-called nucleation pa-
rameters (associated with each type of triplet) are
actually functions of chain length due to their inherent
nontransferability. Remarkably, with a variety of sim-
plifications, such as using the same parameters for
different types of triplet conformations and neglecting
differences in residue types on the flanking ends of a
triplet, many useful LRM parameterizations have
been made over the years, but with noticeable prob-
lems.36 Perhaps the most sophisticated parameteriza-
tion is applied in AGADIR,25 having more than 1000
parameters, but does take into account many effects
not considered here. With modern computing power,
applying the admittedly more mathematically com-
plex DCM could possibly prove advantageous in self-
consistently describing large amounts of experimental
data on polypeptides with far fewer number of free
parameters than has been accustomed.

The interesting prospect of applying the DCM to
heterogeneous polypeptides is that it can be expected
that some residues will have pure entropies for an
�-helical conformation lower than a particular H-
bond pure entropy, while other residues it will be
greater. Thus, it would be very surprising if moving
the different types of residues around, while maintain-
ing the same composition, does not yield a different
thermodynamic response. It is well known that resi-
due rearrangement at fixed composition does shift
transition temperatures and alters CD measurements.

CONCLUSION

A DCM has been employed to describe the helix–coil
transition. Microscopic free energies are assigned to
specific types of interactions, and the associated en-
thalpy and entropy contributions are assigned to dis-
tance constraints. Using network rigidity as a mechan-
ical interaction, the entropic contributions are added
over a preferential independent set of distance con-
straints. In this way, the problem of nonadditivity of
entropies (or free energies) has been directly ad-
dressed, which was shown to be intimately connected
to molecular cooperativity. The DCM is a general
formalism that can be applied to biopolymers and
other physical systems. The precise details of con-
structing constraint types remains unspecified, but the
DCM formalism is specific in how to construct the
partition function from component free energies. By
focusing on the �-helix to coil transition, exact cal-
culations were performed using a transfer matrix ap-
proach by taking advantage of the one dimensional
topology of the problem. The transfer matrix is gen-

erally much larger than the transfer matrices used in
other models, such as the Zimm–Bragg or Lifson–
Roig models, because the DCM explicitly accounts
for network rigidity, which is an inherently long-
range interaction. The size of the transfer matrix de-
pends on the details of constraint types considered in
a problem.

It was demonstrated that a 6 parameter model can
satisfactory describe inverted and normal transitions
under poor and good solvent conditions. The essential
constraint types used here model intramolecular back-
bone H-bonds, H-bonding to solvent, torsional forces
associated with �-helical and disordered coil confor-
mations, and a hydrated coil state that accounts for
structured solvent. The hydrated state turns the usual
two-state description into a three-state description,
allowing the DCM to describe an inverted transition
and cold denaturation. Besides the generalization of
including a third type of state, the most significant
aspect of the DCM is that it sums only independent
entropy contributions determined by network rigidity.
The nucleation process involved in a structural tran-
sition is an outcome of the rigidity properties, elimi-
nating the inherently nontransferable nucleation pa-
rameter.

Under certain mixed solvent conditions, the DCM
predicts that a polypeptide can exhibit both cold and
heat denaturation. This could have been demonstrated
easily by arbitrarily fixing parameters so as to empha-
size the effects. Instead, parameters were used that
gave excellent fits to experimental data of Andersen et
al.,20 using aqueous solutions at various hexaflu-
oroisopropanol (HFIP) concentration. The DCM pa-
rameterization assumed a linear dependence on HFIP
concentration, and appears to be an adequate descrip-
tion at least up to 6% mole fraction. A new method
was introduced for fitting to the experimental CD data
that does not require a priori knowledge of tempera-
ture dependent baselines and saturation values, which
is explained in detail in appendix B. Two representa-
tive specialized models (I and II) were defined and
parameterized. It was shown that the DCM is ade-
quate to explain the experimental data, but there is not
enough data to determine a good set of effective
parameters without overfitting. In the future, better
parameterizations can be obtained by fitting to mea-
sured CD and heat capacity data over systematic sets
of polypeptides that include many heterogeneous
polypeptides having same composition but different
residue arrangements, different chain lengths, and un-
der different mixed solvent conditions using one type
of denaturant, such as HFIP. Lastly, measurements
probing hydration content would also be desirable.
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APPENDIX A

For completeness, the rules on how to propagate ri-
gidity along the polypeptide while at the same time
determining the preferential independent set of con-
straints is described. This procedure gives the mini-
mum possible total conformational entropy consistent
with network rigidity. Each residue has two dihedral
angles, and these are constrained to be in a particular
conformational state, such as �-helical, hydrated, or
disordered coil by torsion constraints. Since proline is
not considered here, two distance constraints are used
per torsion constraint. In addition to these three types
of torsion constraints, there is also H-bond constraints
that start from the ith to (i � 4)th residue. The H-bond
is modeled as three distance constraints. When an
intramolecular H-bond is present, it spans three con-
secutive residues that contain three torsional con-
straints involving six distance constraints. Including
the three H-bond distance constraints, there are a total
of 9 distance constraints 6 of which will be indepen-
dent.

The procedure begins by rank ordering the pure
entropy values associated with each type of con-
straint. Entropies for the torsional constraints that
specify the conformational states along the backbone
are listed in consecutive order from the N-terminus to
the C-terminus. Two pure entropies (taken to be de-
generate) are listed per residue to account for the �
and � dihedral angles. A H-bond has three pure en-
tropies (taken to be degenerate). Working from the
N-terminus (the rules also work starting from the
C-terminus), the pure entropies of the torsional con-
straints can potentially be replaced by those from
H-bonding whenever the pure entropy of a H-bond is
lower than those of the torsion constraints it spans.
The question now becomes, which pure entropies

should be replaced to yield the minimum overall
entropy, while remaining consistent with network ri-
gidity. The answer to this question is explained in
detail elsewhere,32 but is briefly described below with
illustrative examples, not given before.

The replacement question is answered by the fol-
lowing algorithm: For each H-bond constraint en-
countered, working from the N- to C-terminus, re-
place the largest pure entropy available whenever the
pure entropy of the H-bond is smaller. If there are
multiple equal largest entropies, select the furthest
back from the direction of propagation (taken as the
leftmost) position. After replacement, consider all en-
tropies to the left of the replacement. If any of these
are larger than the replacement value, swap the re-
placement value with the largest value found to the
left. Again, in the case of a tie, choose the leftmost
position to swap with. Repeat looking left and con-
tinue to swap entropies with the next available largest
values (if any) until no larger values exist to the left,
or until all six ranks spanned by the H-bond have been
checked. Swapping is necessary because H-bonds that
might be encountered to the right as the right propa-
gation continues can possibly change which value the
earlier H-bonds should have replaced. This swapping
procedure properly allows for any eventuality.

Computing the partition function requires summa-
tion over all accessible frameworks consisting of all
possible conformations and H-bond configurations.
Before working into these details, some short example
conformations will be considered. A shorthand nota-
tion is employed to illustrate the algorithm. Each
entropy (
 or �) is replaced with its rank. Rank 1
corresponds to the lowest entropy and so on. For the
purpose of these examples, consider a specific rank
ordering:

pure entropy: 0 � 
h � �aaa � � �caa

�aca

�aac

� 
a � � �cca

�cac

�acc

� �ccc � 
c

rank: 0 1 2 3 4 5 6 7

(12)

Note that rank 0 is used for boundary conditions,
which are not discussed here, but are detailed in
previous work.32 First consider a triplet of states, aa�c,
that is spanned by a H-bond. The H-bond is indicated
by the bar over the center residue. The rank of the aac
H-bond is 3, the a-conformation has rank of 4, and the
c-conformation has rank of 7. Translating this seg-
ment into 9 ranks, gives (4, 4)(4, 4)(7, 7) � (3, 3, 3).
Propagating from left to right, the first entropy re-

placement gives (4, 4)(4, 4)(3, 7) � (3, 3), then after
swapping with larger ranks to the left yields (3, 4)(4,
4)(4, 7) � (3, 3). The next replacement gives (3, 4)(4,
4)(4, 3) � (3), then after swapping with larger ranks
to the left yields (3, 3)(4, 4)(4, 4) � (3). After the final
replacement and swapping, the triplet has the rank
ordering of (3, 3)(3, 4)(4, 4). The swapping allows a
later H-bond to replace the 4’s at the end, instead of a
3 to hedge against replacing to much or too little. If a
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future H-bond rank replaces a 4, it can be regarded as
replacing a 7, with the original H-bond rank replacing
a 4.

Now consider the segment cc�a�a as a longer exam-
ple. The first H-bond spanning cca has a rank of 5 and
the second H-bond spanning caa has a rank of 3.
Propagating from left to right, the first H-bond with
three rank 5 constraints is placed first, and is com-
pared to the ranks of the six constraints associated
with the three residues it spans. Thus the first triplet,
cc�a is translated into 9 ranks given as (7, 7)(7, 7)(4, 4)
� (5, 5, 5). After the first H-bond is placed, by
replacing one rank at a time followed by all necessary
swapping, the final ranking of the 4-residue segment
is given by (5, 5)(5, 7)(4, 4)(4, 4) � (3, 3, 3), where
the two leftmost ranks of 5 are out of range of the
second H-bond and can no longer be replaced by
anything lower. After the second H-bond placement,
the final ranking of the 4-residue segment is given by
(5, 5)(3, 3)(3, 4)(4, 4). Note the second H-bond re-
placed a constraint of the earlier (weaker) bond. No
distinction is made between the origins of the rank
values as propagation continues. To illustrate that the
same final rank count is obtained by propagation from
right to left, consider the placement of the first H-
bond. The rank ordering is given by (5, 5, 5) � (7,
7)(4, 4)(4, 3)(3, 3), where after the second H-bond is
placed gives a final rank ordering of (5, 5)(4, 4)(4,
3)(3, 3). Note only two of the second H-bond’s three
constraints are used, since it is a weaker constraint
and its third distance constraint is actually redundant.
Although the order of ranks differ between the direc-
tions of propagation, the number of each rank is the
same.

A much larger 16-residue example is now consid-
ered. Near the transition temperature for cold dena-
turation, one can imagine finding a conformation in
state hhhcaaaachcchhhh. To begin, consider model I,
where H-bonds can only form over aaa-triplets. There
are only two locations that an intramolecular H-bond
can form. The first position spans the first consecutive
triplet of a-conformations, and the second position is
located at the right neighboring aaa triplet. Once both
conformational and H-bond configurations are speci-
fied, computation of the total enthalpy and entropy of
the chain is possible. Consider a H-bond configuration
where both H-bonds are present. The energy of the

state is straightforward: four coil states, four �-helical
states, eight hydrated states, two intramolecular H-
bonds and 12 H-bonds to solvent. These enthalpies
add. The total entropy is the sum over contributions
only from the preferential set of independent con-
straints. This is trivial to evaluate when 
c � �aaa

� 
a � 
h, as there are no entropy replacements,
yielding a sum of 2(8
h � 4
a � 4
c). However, if the
pure entropies were ordered as 
c � 
a � �aaa � 
h,
then the total pure entropy is given by 16
h � 2
a �
6�aaa � 8
c. Note that for a chain of length n residues,
there will always be 2n entropy terms—enough to
constrain (lock) all the � and � angles. However, in
general there will be more than n energy terms.

Although the above 16-residue example is rather
simple, the complexity grows when model II is con-
sidered. In model II, H-bonds can span a variety of
different triplet types. Moreover, H-bond pure entropy
ranks cannot only replace the helix or coil states, but
also can replace each other. A minimum of five con-
secutive H-bonds is necessary to potentially begin
replacing one H-bond entropy by another. The rules
described above handle all these complications.

Working with model II, five 16-residue examples
are considered with the initial torsional ranks listed.
The final rank ordering obtained by applying the
above propagation rules from left to right, fully taking
into account any intramolecular H-bonds present, is
listed in Table III. The rank orderings used in these
next five examples are displayed in Eq. (12), which
were used in the initial short segment examples. Here,
however, the rank orderings are shown in compressed
notation, noting that all ranks are only single digits.

The framework listed in example A.1 will be taken
as an initial state from which four new states will be
derived by minor perturbations. Counting from the
left, the next four examples are related to changes at
positions in the seventh and the thirteenth residues.
The initial reference framework is repeated for mak-
ing easy comparisons in the differences between final
and initial frameworks. To illustrate long-range ef-
fects, the next two examples A.2 and A.3—Tables IV
and V respectively) add one H-bond in different lo-
cations along the chain, but are placed over identical

Table III Example A.1

Framework 1 hhhca�caa�a�c�ccaa�cc
Initial ranks 11111177447744444477777744447777
Final ranks 11111155445722233344557733344477

Table IV Example A.2

Framework 1 hhhca�caa�a�c�ccaa�cc
Framework 2 hhhca�ca�a�a�c�ccaa�cc
Initial ranks 11111177447744444477777744447777
Final ranks 11111155443322233334557733344477
�E � E2 � E1 Ucaa � U0

�S � S2 � S1 R(3�aca � 
a � �cac � 
c)
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triplets where the initial state having triplet caa�
changes to ca�a� . Changes in energy (enthalpy) and
entropy are listed with respect to the initial state in
example A.1.

In the final ranks (Table IV) boldface numbers
indicate the ranks that differ from the original final
rank ordering given in example A.1. The first two
rank 3�s have replaced a 5 and a 7 because of the new
H-bond. The third rank replacement occurs seven
dihedral angles down the chain. Consider the third
example (Table V).

Examining the �E columns from examples A.2
and A.3, we find them identical, yet the �S columns
differ. In A.3, a rank 7 was replaced instead of the
rank 5 that occurred in example A.2. So despite hav-
ing identical nearest neighbors, the difference in next-
nearest neighbors effects the entropy. More exotic
examples can arise in which even the next-nearest
neighbors can be identical, yet differences will arise
due to the long-range nature of network rigidity. A
fourth and fifth example is considered in Tables VI
and VII.

Examples A.4 and A.5 consist of changing the
a-conformation to a c-conformation at the seventh and
thirteenth residue respectively. The changes in energy
and entropy are due to next nearest neighbor effects
and the long-range nature of network rigidity.

Transfer Matrix

The transfer matrix is constructed from a direct prod-
uct space formed by a triplet conformational state
denoted by ��, x,y,z
, where � is one when a H-bond
spans the x,y,z triplet, zero otherwise, and x,y,z are

either helix (a), hydrated (h), or coil (c). A triplet is
completely specified as

triplet state � ��,x,y,z
 � �r1,r2,r3,r4
. (13)

where r1 and r2 are the ranks of the constraints on the
� and � backbone dihedral angles of the x state, and
r3 and r4 are the corresponding ranks of the con-
straints on the y state. The 4 ranks on the first two
amino acids, the presence or absence of a spanning
H-bond, and the conformational state (hydrated, helix,
or coil) of each residue together completely specify a
state. Most elements of the transfer matrix, T, will be
zero. The nonzero matrix elements have the form
given by

���,x� � y,y�

� z,z�� � �r1�,r2�,r3�,r4��T��,x,y,z
 � �r1,r2,r3,r4


� e��pe�	��p (14)

The matrix elements will only be nonzero if the set of
final ranks in the local rigidity state obeys the rigidity
propagation rules. The nonzero matrix element then
contributes a Boltzmann factor that accounts for both
the energy and pure entropy contributions of the con-
straints encountered. The variables ��p and ��p re-
spectively represent the change in pure entropy and
energy upon propagation of one step along the chain.
The contribution to ��p at each propagation step is
given by the sum of pure entropies of the two con-
straints that permanently lock the two degrees of
freedom within the first amino acid of a triplet. Thus
��p is determined by the rigidity state space in accor-
dance with the rigidity propagation rules described
above. In contrast, ��p is determined by the confor-
mational state space where it is a function of only
�[xyz] and it is found by summing the H-bond energy
given by Uxyz when � � 1 and U0 when � � 0, and
with the torsional force constraint energy given by Vx.
By construction, the zeros and nonzeros of the trans-
fer matrix accounts for the rigidity propagation rules,
thereby correctly propagating rigidity. As such, the

Table VII Example A.5

Framework 1 hhhca�caa�a�c�ccaa�cc
Framework 5 hhhca�caa�a�c�ccca�cc
Initial ranks 11111177447744444477777744447777
Final ranks 11111155445722233344557755445777
�E � E5 � E1 Ucac � Uaac � Vc � Vh

�S � S5 � S1 R(3�cca � 3�aca � 
a � 
c)

Table V Example A.3

Framework 1 hhhca�caa�a�c�ccaa�cc
Framework 3 hhhca�caa�a�c�cca�a�cc
Initial ranks 11111177447744444477777744447777
Final ranks 11111155445722233344553333334477
�E � E3 � E1 Ucaa � U0

�S � S3 � S1 R(3�aca � 
a � 2
c)

Table VI Example A.4

Framework 1 hhhca�caa�a�c�ccaa�cc
Framework 4 hhhca�cca�a�c�ccaa�cc
Initial ranks 11111177447744444477777744447777
Final ranks 11111155445733333344557733344477
�E � E4 � E1 Ucaa � Uaaa � Vc � Vh

�S � S4 � S1 R(3�aca � 3�aaa)
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matrix size is necessarily bigger than a transfer matrix
not accounting for correlations induced by network
rigidity.

Exact DCM calculations describing a helix–coil
transition is not difficult to perform using large trans-
fer matrices with todays computers. The greatest dif-
ficulty is to set up the transfer matrix that accounts for
the long-range nature of network rigidity. As such, the
size of the transfer matrix cannot be a priori deter-
mined as it depends on the values of the model pa-
rameters.32 For example, Model I requires a 21 � 21
matrix, whereas model II requires a 305 � 305 ma-
trix. The dimension of the matrix reported here does
not include the auxiliary boundary states, as was the
way matrix size was reported in earlier work.32 The
same matrix sizes were required for both polypeptides
because the pure entropy rankings were identical,
despite differences in numerical values. The matrix
size is large in order to account for correlations in-
duced by network rigidity. A large matrix gives some
indication that there is considerable amount of com-
petition between different types of interactions and/or
the transition will exhibit a high degree of cooperat-
ivity. Although these details are important, the essen-
tial features of the transition can be understood in
terms of a three-state model, similar to Schellman’s
two-state model.1,2

APPENDIX B

To compare directly to experimental results, it is
necessary to select baselines for the CD experiments.
Instead of a priori choosing arbitrary baselines, we
developed a method that intrinsically computes opti-
mal baselines for fitting the data. Finding the best fit
between the theoretical prediction for fraction of helix
content, �a, to CD measurement, �221, begins by com-
puting �a vs temperature for a given set of model
parameters. Assuming a linear relationship as speci-
fied by Eq. (6), a linear least squares fit is calculated
by plotting �a versus �221 at their respective temper-
atures. As shown in Figure 14 for polypeptides
sCT(8–32) and YGG-3V, a different linear fit is al-
lowed for each HFIP concentration. By simulated
annealing, the DCM parameters are adjusted and
eventually fine-tuned to obtain the best set of linear
fits. With this method, recourse to temperature-depen-
dent baselines is not needed, leaving only the single
most commonly used assumption that each experi-
mental curve has a linear correspondence to helix
content.

A set of linear transform variables is given for
both model I and II in Table VIII for polypeptide

sCT(8 –32) and in Table IX for polypeptide YGG-
3V. These tables also specify the precise sequence
of the polypeptides used in the experiment. The
slope and y-intercepts are not model parameters,
but do depend on the model employed and the
values of the DCM parameters. Note that the very
small slopes corresponding to pure water and ex-
treme high HFIP concentrations result in helix con-
tent curves that are nearly independent of temper-
ature. Effectively, Andersen et al. achieved the
same result by transforming all curves by temper-
ature-dependent baselines that are nearly parallel to
the pure water and maximum concentration curves
that were measured [25 and 20% for sCT(8 –32) and
YGG-3V respectively]. The y-intercepts approach
unity at extremely high concentration of HFIP. The
y-intercepts for the pure water and high HFIP con-
centration curves have special meaning. In these
cases, because the experimental curves are nearly
straight lines, and the slopes are very small, the
y-intercept roughly gives the fraction of helix con-
tent. It is found in both polypeptides (as predicted
by models I and II) that fractional helix content is
neither completely zero or unity in the extreme
limits. As the polypeptides do not solely consist of
excellent helix formers (or breakers) and are of
finite length, it is not expected that they should
achieve a complete saturation on either side of the
transition. Andersen et al. achieved the same effect
by leaving a gap between employed straight line
temperature dependent baselines with respect to the
data obtained at extreme limits.

The DCM appears to have more parameters than the
commonly used LRM, because it nominally requires
two parameters for each interaction that is explicitly
considered. The two models introduced here require 6
parameters that are temperature and chain-length inde-
pendent. Further, these parameters do depend on dena-
turant concentration. By assuming a linear dependence
on HFIP concentration, all 6 curves obtained from ex-
periment are described by 12 free parameters. Two free
parameters per curve yields considerably fewer param-
eters than applying the LRM for each curve separately
(as is usual practice) requiring minimally 18 model
parameters in addition to two baseline parameters per
curve. If there had been n curves measured, at more
denaturant concentrations and perhaps different chain
lengths, the number of DCM parameters remains con-
stant, while the number of LRM parameters increase
linearly with n, characterizing the size of the dataset. The
dependence on dataset size is a direct result from not
having model parameter transferability. The DCM has
the potential to produce transferable model parameters.
One step toward demonstrating transferability is to ex-
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plicitly show that large datasets can be self-consistently
fitted with a relatively small number of free model
parameters.

In attempting to fit to the 6 curves for each
polypeptide, while employing either model I or II and
using 12 free model parameters with two fitted base-

FIGURE 14 For the best-fit set of DCM parameters specified in Table II, linear fits between
calculated fraction of helix content vs the raw CD experimental measurement is shown. Panels (a)
and (c) show the results for model I and II, respectively, for polypeptide sCT(8–32), and the
symbols down triangle, left triangle, up triangle, diamond, square, and circle correspond to 25, 12,
10, 8, 7, and 0% HFIP concentration. In (a) the 7% concentration is not shown for clarity. Likewise,
panels (b) and (d) show models I and II results for polypeptide YGG-3V. The symbols down
triangle, left triangle, up triangle, diamond, and circle correspond to 20, 10, 8, 7, and 0% HFIP
concentration, where the 6% concentration is not shown for clarity. The solid straight lines through
the data points are the linear least squares fits. The slopes and y-intercepts defining the linear
transformation of Eq. six are given in Tables VIII and IX for polypeptides sCT(8–32) and YGG-3V.

Table VIII The HFIP Concentration-Dependent Transformations (Slopes and y-Intercepts) for Polypeptide
sCT(8–32) Obtained from Least Squares Linear Regression for Models I and II

sCT(8–32) % HFIP

VLGKLSQELHKLQTYPRTNTGSGTPNH2

Model I Model II

a b a b

0 �8.66 � 10�3 1.86 � 10�3 �1.79 � 10�2 �1.49 � 10�2

6 �2.32 � 10�2 �1.18 � 10�2 �4.02 � 10�2 �3.48 � 10�2

8 �2.89 � 10�2 2.53 � 10�2 �3.92 � 10�2 4.74 � 10�2

10 �3.82 � 10�2 0.239 �3.48 � 10�2 0.284
12 �1.60 � 10�2 0.614 �2.00 � 10�2 0.563
25 �3.57 � 10�3 0.930 �3.71 � 10�3 0.920
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line parameters a and b per curve, it was found that in
each case a multitude of excellent best-fit solutions
can be obtained. Unfortunately, many of the parame-
ters were not consistent in their trends between the
different best-fit solutions from simulated anneal-
ing—indicating that the 12 parameters are overfitting
the data. Since many different effects are competing,
it is not possible with the limited data at hand to
completely determine the best set of model parame-
ters that are most physically meaningful and transfer-
able. Instead of fitting the two datasets individually,
each having 6 curves, a dual fitting to all 12 curves for
both polypeptides were simultaneously fitted, nomi-
nally requiring 24 parameters. However, many of
these parameters were arbitrarily taken to be polypep-
tide independent, with some justification offered as
follows. Since both polypeptides behave similarly to
one another, it is reasonable to expect their depen-
dence on HFIP concentration to be similar. Therefore,
all slope parameters for both polypeptides were con-
strained to be the same, reducing the nominal total
number of free model parameters from 24 to 18. This
restriction forces all HFIP concentration-dependent
trends to be the same. The remarkable similarity be-
tween the two polypeptides could be an artifact of
requiring the slope parameters to be identical. With
more experimental data, this arbitrary choice will not
be necessary.

Parameters associated with solvent–peptide prop-
erties, such as the coil and hydrated states, are ex-
pected to be most affected by solvent conditions,
while intramolecular H-bonding and �-helical confor-
mation parameters are expected (or at least desired) to
be independent of denaturant concentration. To this
end, (d/dc) Va and (d/dc) 
a were set to zero. Thus, 16
parameters were used in both models I and II to fit to
12 curves simultaneously using simulated annealing.

The authors are grateful for financial support from Califor-
nia State University, Northridge, the Research Corporation
(CC5141), and to the NIH (GM48680-0952). We also wish
to thank Dennis Livesay for many useful discussions. Our
discussions on HFIP concentration dependence and physical
significance of the DCM parameters was motivated by an
anonymous referee, who we thank for pointing us to rele-
vant literature.

REFERENCES

1. Schellman, J. A. Compt-Rend Lab Carlsberg, Sér Chim
1955, 29(15), 230–259.

2. Schellman, J. A. J Phys Chem 1958, 62, 1485–1492.
3. Kishimoto A.; Mutai, T.; Araki, K. Chem Commun

(Camb) 2003, 21(6), 742–743.
4. Wallimann, P.; et al. J Am Chem Soc 2003, 125(5),

1203–1220.
5. Lapidus, L. J.; Eaton W. A.; Hofricheter J. J Mol Biol

2002, 319(1), 19–25.
6. Aremin, R.; Alonso D. O.; Daggett, V. Protein Sci

2003, 12(6), 1145–1157.
7. Garcia, A. E.; Sanbonmatsu, K. Y. Proc Natl Acad Sci

USA 2002, 99(5), 2782–2787.
8. Kise K. J.; Bowler, B. E. Biochemistry 2002, 41(52),

15826–15837.
9. Lowe, S. L. et al. J Pept Res 2003, 61(4), 189–201.

10. Witter, R. et al. J. Biomol NMR 2002, 24(4), 277–289.
11. Doty, P.; Bradbury, J. A.; Holtzer, A. M. J Am Chem

Soc 1956, 78, 947–954.
12. Tong, M. M.; Pinock, R. E. Biochemistry 1969, 8,

908–913.
13. Lin, S. H.; Von Wart, H. E. Biochemistry, 1982,

21(22), 5528–5533.
14. Foguel, D.; Weber, G. J. Biol. Chem 1995, 270(48),

28759–28766.
15. Ballard, J. J.; Nash, D. Biophys J 1998, 75(1), 445–

452.

Table IX The HFIP Concentration-Dependent Transformations (Slopes and y-Intercepts) for Polypeptide YGG-3V
Obtained from Least Squares Linear Regression for Models I and II

YGG-3V % HFIP

AcYGGKAVAAKAVAAKAVAAKNH2

Model I Model II

a b a b

0 �6.17 � 10�3 1.61 � 10�2 �1.21 � 10�2 1.32 � 10�2

6 �1.09 � 10�2 1.48 � 10�2 �1.73 � 10�2 1.15 � 10�2

7 �1.15 � 10�2 3.10 � 10�2 �1.70 � 10�2 4.50 � 10�2

8 �1.27 � 10�2 6.82 � 10�2 �1.56 � 10�2 0.108
10 �1.77 � 10�2 0.297 �1.56 � 10�2 0.342
20 �2.33 � 10�3 0.898 �2.57 � 10�3 0.883

30 Jacobs and Wood



16. Privalov, P. L.; Gill, S. J. Adv Protein Chem 1988, 39,
193–234.

17. Holtzer, M. E.; et al. Biophys J 2000, 78(4), 2037–
2048.

18. Ooi, T.; Oobtake, M. Proc Nat Acad Sci USA 1991,
88(7), 2859–2863.

19. Boice, J. A.; et al. Biochemistry 1996, 35(46), 14480–
14485.

20. Andersen, N. H.; et al. J Am Chem Soc 1996, 118,
10309–10310.

21. Doig, A. J. Biophys Chem 2002, 101–102, 281–293.
22. Zimm, B. H.; Bragg, J. K. J Chem Phys 1958, 31(2),

526–535.
23. Lifson, S.; Roig, A. J Chem Phys 1961, 34, 1963–1974.
24. Gans, P. J.; et al. Biopolymers 1991, 31(13), 1605–

1614.
25. Munoz, V.; Serrano, L. Nature Struct Biol 1994, 1,

299–409.
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