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Electron interaction with confined acoustic phonons in quantum wires
subjected to a magnetic field
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We have studied the effect of an external magnetic field on electron-acoustic phonon scattering in rectan-
gular quantum wires taking into account both electron and phonon confinement. A magnetic field has two
major effects:(i) it dramatically quenchegby several orders of magnitudetrasubband scattering due to
acoustic phonons in hybrid “width” and “thickness” modes, afid) it increases electron interaction with
evanescent hybrid surface modes that peak at the wire edges. A simple intuitive picture to elucidate the origin
of these effects is presented.
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[. INTRODUCTION many new scattering channels are opened corresponding to
m#n, which were previously forbidden. Third, and most
Electron-phonon interaction in quantum wires has beenmportant, there is an effect that strongly influences electron-
studied by a number of researchers in the pastRefer-  phonon scattering in relatively wide wires. If the wire width
ences 4—10 studied the effect of an external magnetic fielgs much larger than the magnetic lengfit/qB (q is elec-
on ele_ctron scattering rates assuming builknconfined  {ronic charge and® is the magnetic flux densitythen op-
acoustic phonons, while Refs. 11-13 accounted for the conssitely traveling electron states in a quantum wire are
fined na}turc'e of acous.tlc phonons but omitted any effects of Qa\wved towards opposite edges of the wire by a magnetic
magnetic field. Ir_1 this paper, we report the first study Offield. As a result, the overlap between their wave functions
electron-phonon interaction taking into account both the Ef'decreases and the probability of “backscatteririgtattering

Between oppositely traveling stateis reduced. This was

Phonon confinement is expected to be important when. edicted befor®in the context of electron interaction with
ever the transverse dimensions of a quantum wire are small [ . .
ulk acoustic modes. We found that intrasubband back-

than the phonon coherence length. It increases electron- ) b d by f d ¢ .
phonon scattering rates by several orders of magnithidd, ~SCattering rates can be suppressed by four orders of magni-

and in the presence of a magnetic field, it assumes an addd¢de in GaAs wires with W|dth3v4QO,5_\ at a magnetic flux
importance. The scattering rate depends primarily on twdiensny.of 10.T. Since packscattermg is usually 'Fhe dominant
quantities; the joint eiectron_phonon density of Statesy andpteracuon with acoustic phononS, its suppression decreases
the interaction matrix element, which is determined by thethe total electron-phonon scattering rate at low temperatures.
overlap between three scalars: the wave function of the elecrhis is an important result since the quenching of back-
tron’s initial state, the wave function of the final state, andscattering in a magnetic field is an important ingredient in
the phonon’s normal mode. Both quantities are influencedhe Blitiker picture of the integral quantum Hall effelct.
strongly by a magnetic field when phonon confinement ef- The paper is organized as follows. In the next section we
fects are present. First, confinement causes significant nodescribe the calculation of electron eigenstates in a quantum
linearities in the dispersion relations of acoustic-phonorwire subjected to an external magnetic field. We compute the
modes and modifies the phonon density of states. The elegvave functions, the dispersion relations and the density of
tron density of state§in magnetoelectric subbands also  states(at a given energyin various magnetoelectric sub-
strongly influenced by the magnetic fiéttiAs a result, the bands. This is an exact and rigorous treatment. In Sec. lIl, we
joint density of electron-phonon states, which determines theerive the acoustic-phonon eigenmodes in a quantum wire
scattering rate, can be modulated by the magnetic field. Seassuming that a magnetic field does not affect phonons. The
ond, and perhaps more importantly, a magnetic field skewsormal modes of acoustic phonons are dilatatiqoalcom-

the wave functions of a traveling electron state towards on@ressional, flexural, torsional and she&t These modes have
edge of the wird“edge states’). This significantly alters the been calculated recentfusing a so-callectyz algorithm?®
overlap between the electron’s initial and final states’ wavelro simplify the calculation, we have employed Morse’s
function and the phonon mode. Obviously, the overlap withansatZ,’'8 which allows us to combine approximately all
surface phonon modes is increased and this increases tlieese modes into two hybrid modes: “width” modes and
surface phonon mediated scattering. Additionally, the wave'thickness” modes corresponding to the width and the
function of an electron in thenth subband is no longer or- thickness of the quantum wirghese are not true “normal
thogonal to thenth phonon mode fom#n. As a result modes” of the system, howevelEven though this approach
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X consider electron-phonon interaction in a magnetic field and
calculate the relevant scattering rates. Conclusions are pre-
sented in Sec. V.

z
B / II. ELECTRON EIGENSTATES
IN MAGNETOELECTRONIC SUBBANDS
We consider a quantum wire as shown in Fig. 1 with a
constant magnetic field directed along thedirection. The

thickness along thix direction is so small that only the
lowest transverse subband in this direction will be occupied
0 under all circumstances. This restriction, coupled with the
-a Y fact that thex-directed magnetic field does not affect the
-d d component of the electron wave function, allows us to drop
the x component from further consideratiéwe assume that
thex component of the electron wave function is always the
FIG. 1. A rectangular electron waveguidguantum wirg sub-  lowest particle-in-a-box stateThe time-independent Schro
jected to a magnetic field along axis. The width of the wire is dinger equation describing our system is given by
much larger than the thickness.

_ 2
misses the edge modes of Ref. 13, it is not a serious defi- % W(Z,Y) FV(Y)¥(z,y)=E(zy), (1

ciency since edge modes are not very important for electron-

phonon interaction. Since the electron wave function always

decays at the edges of the quantum wire, the matrix elementhereV(y) is the confining potential in thg direction and
for electron interaction with edge phonon modes is negligi-A is the magnetic vector potential. We neglect spin effects
bly small. We point out that in spite of using Morse’s ansatz,and assume hard-wall boundary conditions\4y). For a
which was used by Refs. 11 and 12, we have found manyandau gauge

new branches in the phonon spectra that Refs. 11 and 12

missed because they assumed particular forms of the solu-

tions for the lattice displacements. We makeanpriori as- A=(0,0,-By), 3]
sumption about the forms and solve the secular equations for

the displacements exactly. This reveals the existence of newhereB is the magnetic flux density, the solution for the
branches in the dispersion relations. Finally, in Sec. IV, wewave function is
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FIG. 2. Electron wave functions and dispersion relations in a GaAs quantum wire subjected to a magnetic field ¢f) M¥ave
functions of electrons in the first and the third subbands with wave végte? X 10° cm™! skewed by a magnetic fieldb) Dispersion
relations for the first and the third subbands) Wave functions of oppositely moving electrons in the first subband wjth+7
x 10° em™2. (d) Dispersion relation for the first subband and schematic elastic scattering process between two states.
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W(z,y)=€*2p (y), ) uy =AU (y,x)cog hy)e' "z~ cv, @)

wherek, is the electron wave vector along the wire’s length, .

and ¢,(y) is they component of the wave function for the uy=Aw(y.X)sin(hy)ex9z=<v, (8)
state with wave vectd, in the sth magnetoelectric subband.

It obeys the equation

uy=Aw;(y,x)coghy)e! "=, ©)
2 2
d d)(ZY) N 2n12* Eq&(y)—(%) B(Y) where y is the z-directed longitudinal-phonon wave vector
ay h | along the length of the wire, is the phase velocity of sound,
andh=(n+1/2)w/d (n is an integer. We will choose only
y ) the principal mode corresponding te=0 based on Morse’s
22 ke(y)—k°8(y)=0 (4 experimental observation that this mode is domirféc-
cordingly,h=7/2d. For “width” modes, the displacements
with boundary conditions are
¢(—d)=¢(d)=0. ©) Uy = AyUy( ,y)sin(kx)e' 7=y, (10)

Herel is the magnetic length. This equation is solved nu- ‘

merically fqllowing the prescript'ion of Rgf. 14 to yield 'ghe u;"=AWvW( y,y)cog kx)e' vz v, 1y
wave functions, energy dispersion relations, and density of

states in hybrid magnetoelectric subbands. Some examples _

are shown in Fig. 2. us'= AW, (7,y)cog kx)e Yz eV (12)

[ll. CONFINED ACOUSTIC PHONON EIGENMODES with k=0 for the principal modes. To complete the solu-

tions, we need to find(y,x), uy(y,y), vi(v,X), vu(y,Y),

The derivation of confined acoustic phonon eigenmod
was reported in Refs. 11-13, 17, and 18. In this paper W%th](u);t)i(ghsand Wu(7:y). These are found from the secular

employ the approximate technique of Refs. 11, 12, 17 an
18, but unlike them, do not assunaepriori any particular
form of the solutions for the ionic displacements. ue(y,X) Ue(,X)
The elasticity equation can be written'h$>1"18 Dt( ) _ wz( )
n )

vi(,%) vi(7,X) (13
wWi(y,X) W(y,X)
192U 2w 2 2 2
W=stV u+(sf—sdf)vV(Vv-u), (6)
¢9Ut &Ut &Wt .
. . o Y _:hutr - = Iy, (14)
where u is the displacement vector, arsd and s, are the 28 IX 2

speeds of longitudinal and transverse acoustic waves in bulk
media. For GaAs, 5=4.78x10° cm/s and s,=3.35 and
X 10° cm/s in the[001] direction.

We assume that the width of the wire id 2and the thick-
ness is 2. The origin of the coordinates is located at the D (UW( V’V)): _w2< Vul y,y)) (15)
geometric center of the cross section. The normal compo- “wy(7,Y) M wy(y.y))’
nents of the stress tensors on free-standing surfaces must
vanish; consequently, the boundary conditions for free stand-
: : _ _ _ _ Jdv IW .
ing quantum wires arer, ,=oy,=0,,=0 atx==*a and —Y_pg, 2= —iyvy, (16)
oxy=0yy=0,,=0 aty=+d. To find the eigenmodes for ady ay
acoustic vibrations defined by Eg®), we follow Morse’s
assumption of separation of variabfé$8which allows us to  for thickness and width modes, respectively. Hexgis the
decompose the modes into “thickness” modes and “width” angular frequency of thath phonon branch for a phonon
modes. For the former, the solutions can be expressed in tHengitudinal wave vector. The differential matrix operators

form are given by
SF&XX—SIZ(hZ-i—'yZ) h(S|2—St2)c9x iy(slz_stz)&x
Di=| —hsf-s))ax  stau—siy’=sfh?  —iyh(sf-s)) (17)

i y(sP—s2)dy iyh(sf—s))  SPax—sth?—siy?
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FIG. 4. Dispersion relations for the seven lowest withand

thickness(b) modes of a 48500 A GaAs quantum wire. The thickness(b) modes of a 28.3 56.6 A GaAs quantum wire. The
dashed lines are the dispersion curves of the bulk LA and TA wavegashed lines are the dispersion curves of the bulk LA and TA waves
along the[001] direction. Branches that are below the LA curve along the[001] direction. Again, branches below the LA curve

correspond to surface waves.
and

2 2.2
S| &yy— St Y
w

i'y(S|2—St2)ﬁy

(18)

correspond to surface waves.

sectional dimensions 2856.6 A for comparison with
Refs. 11 and 12, which used these dimensions. The compari-
son reveals many new branches that were not found in Refs.
11 and 12. They were obviously lost when certain forms
were assumed in Refs. 11 and 12 for the solutions of

i?’(slz_stz)ay Stzﬁyy_slzy2
ut(71x)! UW('}/,y), Ut(’)’,X), Uw(yay)v Wt('}/,X), and

We make no further assumptions about the form of disw,(7,y). One should note that,(y,x), uy(v.y), vi(7.X),
placements and solve the one-dimensional eigenvalue prob+w(7v.y), w(y,X), andw,(y) combine the characters of the
lems (13) and (14) and(15) and(16) exactly, using the nu- normal modes: dilatationalcompressiong) flexural, tor-
merical finite difference scheme. The solutions yield thesional, and shear. That is why the thickness and width modes
dispersion relations, versusy for the 1..n phonon modes. are hybrid modes and not true normal modes of the system.
In Fig. 3@ and 3b), we show the dispersion relations of  Finally, the amplitude#\; andA,, for thickness and width
thickness and width modes for a GaAs quantum wire withmodes are found from the energy quantization condition:
width=500 A and thickness40 A. The dashed straight
lines are the dispersion relations for bulk longitudinal and
transverse acoustic phonons. In Fig&)4and 4b) we also
show the dispersion relations for a quantum wire with cross-

A2
4ad

+a +d
f dxf dy[uu* +vv* +ww* |=
—d

—a

2Mw,,’
(19
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where o, is the radial frequency of the mode with wave Hae ) =E,V-u(r)
vectory andM is the mass of an ion.
An important insight can be gained from the generic

wave-vector relations, = Eagn [Cnm(¥)+Com(—¥)]
kg'i‘ h2+ ’yzz(w/Cd)Z, au  dv )
X| ==+ —+i 'z
x oy i yw|e'7?, (23

K2+ h2+ y?=(wlc,)?, (20) N L .
wherec, n(y) andc, ,(—v) are annihilation and creation
wherekg ¢ is the transverse wave-vector component of dila-OPerators and
tional (longitudina) and shear waves, respectively. They are

related to the Lameonstants\’ and u as u(n= > [Com(¥+Chm(—nIuxy,y)e? (24)
y.n,m
ci=(\"+2u)lp, (21)  The summation is taken over all acoustic-phonon modes.

The Fermi golden rule scattering rate for an electron scatter-
) ing from an energy statgé, in subbandv to an energy state
Cs=wulp, (22) E/, is subbandy’ by absorbing or emitting a phonon of

] ] longitudinal wave vectory and energyw, is given by
wherep is the mass density.

If a branch in the phonon spectfsee Figs. 3 and)4or a o
portion thereof, falls below the longitudinal-acousticA ) s(EV,E’V, Eytw,)= o IM(E, ,E",,)|2(N+1/2%1/2)
branch(the slope of which igy), thenky becomes imaginary h
for that branch. This is an evanescent mode that is localized
near the edges of the wire and is termed a “surface mode.” XO(E,—E' ) Zhw,) 6k y,
Similarly, if a branch falls below the transverse-acoustic
(TA) branch,ks is imaginary and it is also an evanescent (29

surface mode. where the upper sign refers to absorption and the lower to

emission. The firsty function represents the usual energy
IV. CONEINED ELECTRON-CONEINED ::onservatlon ?nd trlle se;:r?nd _mroke_rélzeg'(res%nl:,s moThen—
ACOUSTIC-PHONON INTERACTION tum conservation along the wire axis. Hekeandx: are the
initial and final wave vectors of the electron along the wire
AND SCATTERING RATES . - . . . .
axis, N is the Bose-Einstein occupation number for acoustic
IN A MAGNETIC FIELD ry . .
phonons, andM (E, ,E,,) is the matrix element of Hamil-
The deformation-potential interaction of an electron withtonian(23) taken between electron envelope wave functions
an acoustic phonon at a certain wave vegtis described by \1/a¢(y,k%)cos@rx/2a) and 1/ad(y,kS+ y)cos@x/2a) of
the HamiltonianH 4{ y) given by*? initial and final states:

(L < cos(3E) g—g + Zv + iywlcos(5Z) > x
< ¢"(y, B'v)lcos(39)1(y, Ev) >,

M(E, E')) = E, - for thickness mode

. (26)

< 6"y, BL)IZ + iywlé(y, E.) >,

| for width mode

Depending on the sign ofy and Ziw, we distinguish a magnetic field spatially separates these two states by local-
among four types of scattering: forward and backward abizing them along opposite edges of a wisee Fig. 2c)], the
sorption and forward and backward emission. In forwardmatrix element for backscattering will be dramatically re-
scattering, the electron momentum increases, while in backduced. This can be clearly seen from E2f) in the case of
ward scattering it decreases. Typically, in backward scatterthickness modes.
ing, the direction of an electron’s motion will be turned For each type of scattering, the total scattering rate for an
around. Therefore, this will involve scattering between initialelectron initially at an energ¥ in the vth magnetoelectric
and final states that have opposite directions of motion. Sinceubband can be obtained by integrating over all possible final
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states and phonon wave vectors,

N
S(EV)=JO fo “dE’, dyS(E,.E', Ty, * 0,)
1

p)

Eny'yriﬁw7=0

f

D(E/V’ !wy)|M(EV1E,V’)|2

X (N+1/271/2), 27)

whereD(E’,/ ,w,) is the joint electron-phonon density of
states andy,,, is the maximum phonon wave vect@vhich

will be the Debye wave vector if we neglect Umklapp pro-
cessep In the equation above, we changed the double inte-

gration over all possible final states and the energy conserv-

ing & function by the summation over all zeros of the
function f=E,—E', *hw,. Its inverse derivative
D(E', ,w,) plays the role of the one-dimensional joint
electron-phonon density of states, which is defined as

2
Ey_ E'Vriﬁwy)/&'y

D(E’,,r,wy)=; x

X 0(E,—E., *fiw,), (29)

where 6 is the Heavisidgunit step function andn is the
number of phonon branches at a frequengy. Therefore,

the behavior of the scattering rate reflects the features of both

the electron and phonon densities of states.

The same procedure can be applied for polar acoustic

phonons (piezo-electric scattering The piezoelectric-
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potential interactiol depends on the displacement along
wire axis only and is described by

qufpz 2 [Cam(V) +Com(— ) IW(X,Y, y)€7,
0 vy,n,m (29)

where ep; is the piezoelectric constant and for GaAs, it is
0.16 C/nt along the[100] axis.

Pz= 25
ENERGY(meV )}

(b)

FIG. 5. Scattering rates vs energy for deformation-potential-
interaction in a 4& 500 A GaAs quantum wire at magnetic fighj
0 T and(b) 10 T. Energy is measured from the bulk conduction

V- RESULTS AND CONCLUSION band edge. The lattice temperature is 77 K.

In Figs. 5 and 6, we plot the total scattering réitetra-
subband plus intersubbaredassociated with deformation within any magnetoelectric subband. This resolution between
potential and piezoelectric interactions—versus electron ersubbands is lost without a magnetic field because the sub-
ergy. All scattering rates are calculated for GaAs wires withband spacing is too small for a 500 A wire. In Figb§ as
the z axis along thd 100] direction and at a lattice tempera- soon as the second subband becomes accessible in energy,
ture of 77 K. In other words, we are plotting the quantity the scattering rate increases rapidly and shows a divergence
1/7(E) =3 ,S(E,) versusE after summing over all subbands associated with the singularity in the density of states at the
at energ)E. These rates are plotted for two cases: there is neecond subband bottom. Comparing Figs) &nd §b), one
magnetic field, and a magnetic flux density of 10 T iscan see that the magnetic field decreases the scattering rate
present. Two features stand out. First, in Fig)5the energy by four orders of magnitud@ust before the second subband
dependence of the scattering rates is fairly constant if wéecomes accessible. It happens because of the previously
neglect the fine structures associated with peaks and valleysentioned suppression of backscattering in a magnetic field.
in the joint density of electron-phonon states. However,This suppression becomes progressively larger at higher en-
when a magnetic field of 10 T is turned on, we can easilyergies within a subband because of the following reason. The
resolve the scattering rates associated with intrasubband traspatial separation between the wave functions of oppositely
sitions within the lowest magnetoelectric subband and thdravelling states—which is responsible for the quenching of
intersubband transitions to the next higher subband, whichackscattering—can be viewed as being caused by the Lor-
becomes accessible in energy past 25 meV. As expected, tleatz force pushing oppositely traveling electrons in opposite
intrasubband transition rate decrease monotonically with erdirections. Since the Lorentz force is proportional to the
ergy because the joint density of states has this dependenetectron velocity, the degree of spatial separation the wave
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' ‘ ' ' ' ' ' ' ' quently, the other two effects that we mentioned in Sec. |
el-e2 (10 Tesla) . g . .

. play a significant role. These af@® the opening of new

i l . scattering channel&electrons in thenth subband along the
\ i ! width interacting with phonons in thath width mode even
whenm#n) and (ii) the increased interaction with surface
phonons when the electron wave functions are skewed by the
magnetic field towards the edges of the wire. Both of these
effects tend to increase the scattering rate and this is what we
observe in Fig. 6 past an energy of 25 meV.

In conclusion, we have calculated the scattering rates of
confined electrons with confined acoustic phonons in a quan-

SCATTERING RATE (1/sec)

. K " ' 10 Tesla tum wire subjected to a magnetic field. We find that a mag-

" T AN A ] netic field can drastically quench intrasubband scattering.

ot-e2(0Tesl)) Obviously, this has an important bearing on the Buttiker pic-

1o [ . . . . ‘ , , , ture of the integral quantum Hall effect, which invokes the
L S suppression of backscattering between edge states in a Hall

bar to explain the vanishing of longitudinal resistance and
FIG. 6. Scattering rates vs energy dependence for piezoelectrighe quantization of the Hall resistance. Furthermore, it will
potential interaction in a 40500 A GaAs quantum wire at mag- resylt in strong negative magnetoresistance in quantum wires
netic field 0 and 10 T. The lattice temperature is 77 K. whenever acoustic phonon interactions determine the resis-
nce (namely, at low temperaturesUnexplained negative
agnetoresistance has recently been observed in experi-
ments with GaAs quantum wel(ghe same phenomenon can
be observed in both wires and wellehich could not be
The same magnetic-field-induced quenching is evident ifSC'I0ed to weak localization effe¢These and other re-
lated phenomertd may be associated with suppression of

the case of piezoelectric scattering the rates of which ar tic-nh terina. Finall h effect find
plotted in Fig. 6. Here one should note that the scattering ratBCOUStiC-pnonon scattering. Finaily, such efiects can find ap-
lications in magnetic-field sensors and they can be used to

at energies above the second subband bottom actually i . . .
creases slightly when a magnetic field is applied. It happen§nhance the mobility of electrons in quantum wires.
because this rate is dominated by intersubband scattering
from the first subband to the second subband. Unlike in the
case of intrasubband scattering, backscatteringatthe This work was supported by the U.S. Army Research Of-
dominant mechanism fomtersubbandscattering. Conse- fice.

functions and the degree of suppression of backscatterirﬁ
will increase at higher electron energies. That is why th

degree of “quenching” increases with increasing energy
within any subband.
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