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Abstract

Using a variational method in the effective mass approximation and considering a noninteracting model, we have calculated
the binding energy and the polarizability of shallow donor impurities in cylindrical GaAs quantum dot under an applied
magnetic field. We have considered an infinite and finite confinement model to describe the barriers on the dot boundaries.
We present our results as function of the size of the dot and several values of the magnetic field strength. It is found that the
polarizability decreases as the dot radRiglecreases, reaches a minimum at a certain value afid then increases as the
radius becomes smaller. The magnetic field increases the binding energy and strongly reduces the polarizability. The finite
barrier-height effects are important for smaller dot widths. For higher field strength and large dot, the magnetic field effects are
predominant.
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1. Introduction effect of an applied electric field on the binding energy
has been the subject of intensive investigation [9-11].
When an electric field is applied to a nanostructure,

technology of nanostructures, the growth of semicon- this _originates thg polarization of the distribution of
ductor systems with reduced dimensionality has been Zarm?rs and;\ Shgt of the energy of quantl;]m states.
actively pursued in recent years as consequence of fn ?ectronD oun to _a]q |mpurc|jt3é stﬁtebat t de cente(rj
their promising technological applications. Quantum ©f @!arge QD is neverinfluenced by the boundary, an
dots (QD) have been constituted one of the intensely behaves as a three-dimensional (3D) electron bound to

studied semiconductor nanostructure from theoretical 2" |m|3l_1r|ty Ina GaAS/fGﬁxAIéAS sftrrl]Jctu;fe. Eor In- h
[1-5] and experimental [6—8] point of view due to the termediate QD size (of the order of the effective Bohr

extreme degree of confinement of the electrons. The radiusa*), the electron confinement due to the poten-
tial barrier cane be greater than the confinement due

to the impurity, and the electron behaves as quasi-0D
* Corresponding author. syste_m, thgrefore, the binding energy increases and the
E-mail addressizorkani@hotmail.com (1. Zorkani). polarizability decreases. For much smaller sizes, the

With the recent improvements in microfabrication
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infinite-well model fails strongly because tunneling ef- netic field on the polarizability of the shallow donor
fects become very important and the electron leaks out in the spherical QD has been analyzed by Feddi et al.
as 3D electrons in Ga,Al,As bound to impurities  [23] using an infinite confinement potential case.

and is weakly perturbed by the potential well, there- In a previous paper [24], we have studied the
fore the binding energy restarts to decrease and the po-polarizability of a magneto-donorin a quantumwire. It
larizability increases; while for an infinite barrier po- has been found that the magnetic field reduces strongly
tential model, the electron bound to the impurity ion the polarizability. The finite barrier-height effect is
stays inside the dot, thus increasing the binding en- important for small well widths. For higher fields and

ergy.
There are several reports on the polarizabilities of
shallow donor impurities in quantum well (QW) and
quantum well wire (QWW) [12—15]. Recently, Duque
et al. [16], have studied the effect of applied elec-
tric field on the binding energy and polarizability of
shallow donor implanted in rectangular cross section
GaAs/Ga_,Al, As QWWs. They have found that, for
larger dimensions of QWW, both the binding energy
and the polarizability decreases with the increasing
electric field intensity, while for the smaller dimen-
sions the variation of the binding energy is very small
and the polarizability stays constant. The effects of the
interaction electron phonon on the polarizability of a
shallow donor in QWW have been studied by Filali
et al. [17]. They have reported that the polaronic ef-
fects significantly decrease the polarizability and in-
crease with increasing wire size. Murillo et al. [18]
have calculated the binding energy of a donor impurity
in GaAs/Ga_,Al As spherical quantum dot with par-
abolic confinement and with an applied electric field.

alarge wire, the magnetic field effects are predominant
and the barrier potential is a small perturbation.

Nevertheless, to the best of our knowledge, there
is no study on the effect of a magnetic field on the
polarizability of a donor in cylindrical quantum dot
(CQD). In the present Letter, we propose to calculate
the polarizability of a shallow donor placed at the
center of a CQD, with infinite and finite barrier, as
a function of the dot sizes and for various values of
the magnetic field. This Letter is organized as follows:
in Section 2, we present the general formalism; we
deduce the expression of the donor binding energy
and its polarizability in the presence of an uniform
magnetic field. The numerical results and discussions
are presented in Section 3 with application to a CQD
made out of GaAs.

2. General formalism

We consider a system consisting of a GaAs cylin-

They have found that the binding energy decreases drical quantum dot (CQD) with radiug and length#,

with increasing electric field intensity for even radii
of the dot.

The application of a magnetic field to a crystal
changes the dimensionality of electronic levels and
leads to a redistribution of the density of states. In

the Refs. [19,20] the authors have studied the hydro-

genic impurity binding energy in QWWs and QDs in
the presence of a magnetic field by using a variational
approach. Zhigang et al. [21] have calculated the bind-
ing energy of the ground state of a hydrogenic donor
in a cylindrical wire in the presence of a magnetic field
parallel to the wire axis as a function of the wire radius
and the magnetic field intensity. Recently Niculescu et
al. [22] have calculated the binding energy of a shal-
low donor in a cylindrical GaAs QWW in the presence
of an axial magnetic field. They have adopted an infi-
nite confinement potential and taken into account the
impurity position in the wire. The effect of the mag-

surrounded by Ga Al ,As with an electron bound to

a shallow donor placed at the center of the dot. In the
presence of an applied electric field and a magnetic
one along the-direction, which is taken as the axis
of the dot. In the effective mass approximation, the
Hamiltonian is given by

2

14
+nz+ 4,0

2
/02 f 72

+yLZ+V(107Z)7 (1)
where
H
0 forp<Rand|z| <7,
V(p.2)=1{ Vo forp>Rand|z| <%, 2

Vo for|z| > %

is the electron confining potentiah and z are the
electron coordinates in the plane perpendicular and
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along the cylinder axis, respectively., is the z al. [12] is certainly not adequate since it preserves the

component of the angular momentum operator. We use spherical symmetry of the hydrogen-like wave func-

the effective Bohr radius* = ﬁ?g and the effective  tion; it does the not take into account the anisotropy
m*e

* . effects introduced by the external magnetic field (i.e.,
Rydberg constankR* = & ¢ as the units of length y g (

T 2n%Z the compression of the wave function in the and
and energyn = e‘gf is a dimensionless measure of y-direction). In previous work we have used a linear
the electric fieldy = gﬁi is a dimensionless measure combination of a cylindrical wave function and an os-

of the magnetic field aney is the dielectric constant. cillating one which is valid at all magnetic field value
m™* is the electron band effective mass which is given [26,27].

by [25] The corresponding energy is given by
m? = 0.067mo in GaAs E(B) = Ex + Ecoul+ Em + Ee, (6)
- m; = (0.067+ 0.083x)mg in Ga_,Al  As, where
3) ,
wheremy is the free electron mass ands the Al con- Ei = (il _2V Vi)
centration. The value of the potential heights are de-  _ (6o 1 i@lio 1 IL30
termined from the Al concentrationin Ga;_, Al ,As ~\R 22 2b2 R Y 16b2 1
: ) 00 00
through the expression of the energy band-gap discon- 2 At g2
tinuity at the interfacesA E, = (1.04x +0.47x2) eV, + (l) 4 ﬂ, (6a)
the value ofVy is taken to be 60% oA E, [15]. H da? 19,4+ p2I5
First, we study the much simpler case of infinite 2 G+ B%H
potential barrier in Section 2.1; the case of finite Ecou=(Vil - ——=—=Vi)= 5= (6D)
. o ; ) Vp?+ 722 19, + 821
potential barrier is presented in Section 2.2. ) 2023 02
Y. 2 Y< Ioo
- . . E, = (Yi|— L) = ——, 6¢c
2.1. Infinite potential barrier case m =¥l 2Pty i) 4 1% (6¢)

We assume that a single donor impurity is located where the matrix elemert); [y L:|yi) = 0.

at the center of the CQD and we suppose an infi- 2ﬂi022

nite confinement potential (i.e¥p = oc). Since the  Ee = (Vilnzlyi) = 70 272 (6d)
Schradinger equation cannot be solved exactly, we fol-
low the Hass variational method. We choose the trial With
wave function in the form: b - =5
A= on T 15402

vi(p,2) =Yo(p, 2)(1+ B2), (4) . 1, - 1

_o" 7l T 4
where is a variational parameter (which takes into 5 =211t 5 3102 = 55111~ 75202
account the presence of the weak electric field) and R H/2 )
Yo(p, z) is the wave function in the absence of electric .~ _ _i/ / P 12( 602 ) exp — 2=
field (y = 0) given by 1% 2+22 °\'R 4b2

0 0
o b4 2
I//O(P, Z)ZNJO(90E> CO{g) X CO§(% exp _Z_Z) d,OdZ,
2 2
0 Z R H/2
expl (== +==1): 5
g p< <8b2+8‘12)) © H——iff e Jc?(@OB)e p<_p_2)

T 2
where Jy is the Bessel function of zero ordely = Ioo 0 0 p?+22 R 4b
2.4048255577 is its first zera, andb are variational 2 2
parameters and/’ is the normalization constant. The X C°§<ﬁ) exp ——2) dpdz,

single parameter trial wave function used by El Said et
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R . . .
2 o = R, which is given by
I, = / PP (90%>J,, (90%) exp(—%) dp, Jotks, )
0 Ap= e (10)
e 2 k1, J ZO(%R) ko, K1(ko,R)
= . TZ TZ Z 1p J1\K1p 2p K1(K2p
b, = / 7P sin® (ﬁ) cog' (ﬁ) exp(—ﬁ) dz. m? Jotki,R) — mi5 Kok, R)” (10c)
0 The corresponding energy is given by
In the absence of electric field) & 0, 8 = 0), the -
binding energy of donor is defined as the ground state . _ hkg, (10d)
energy of the system without Coulomb term minusthe ~# — 2m}
ground state energy in the presence of the Coulomb and
term
2m* 1/2
E; = Esup— {nibr}(E(ﬂ =0)). (7) k2p = ( hzz (Vo — Ep)) : (10e)
a,
The p_olaringility of the shallow QOnor confined in the cosk1.z) for |z < 4,
CQD is defined in terms of the dipole moment by [15] ¢(z) = (11a)
A exp(—kz:|z|) for|z| > 4,
o= —%. (8) k1, andz;xlz are determined by the boundary conditions
at|z| = 5
We note that the linear contribution to the energy ?
E. which is proportional to the permanent dipole A, =COS<klz£) exp(kzzﬁ), (11b)
momentis equal to zero due to the spherical symmetry 2 2
of the donor. The value of8 that minimizes the wal x HY _ m_’{kzZ 1
energy expressiol (g) is calculated and substituted 9| *1: 2 ) m’ ki, (11c)
in Eq. (6). The final results are obtained by numerical Th di L b
minimization of the energy expression with respect to € corresponding energy Is given by
the parameterg andb. Then theses values are used to hzki
deduce the polarizability given by Eq. (8). E; = me (11d)
2.2. Finite barrier potential case and

2m3
For a finite barrier heighto, we choose the trial k2. = | —52(Vo— Ex). (11e)
wave function of the form h

To minimize the energy and deduce the polarizability,

Vi(p,2) =vo(p,2)(1+ Bz2), (9) we have used the same procedure as in Section 2.1.
where
2 2 . .
P Z 3. Resultsand discussion
) = N B ) ) )
Vo(p,2) = Ne(p)9(z) EXIO( (8b2 + 8a2>>
(10) Using a variational method in the effective mass ap-
proximation and considering a noninteracting model,
Jo(k1,p) for p < R we have calculated the polarizability and the bind-
d(p) = { A Kp(k p) forp>R (10a) ing energy of a shallow donor placed at the center
p ROK2p s

of a cylindrical quantum dot (CQD). We apply this

Jo and Ko are, respectively, the zero-order Bessel model to CQDs made out of GaAs surrounded by
function and the modified Bessel functidn, andA, Ga Al As. The physical parameters used in this
are constants determined by the boundary condition atwork are given by:R* = 5.8 meV, a* = 98.7 A and
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Infinite barrier

Fig. 1. The binding energy as a function of the dot radius for two
values of the length and several values of the magnetic field
(infinite barrier case).

o = 12.5. For the finite barrier case, we will use one
value of the barrier-height equal to 219.2 meV (i.e.,
corresponding ta = 0.30). Our results for the polar-
izability are obtained for a very small intensity of an
electric field ¢ = 0.01).

For the infinite barrier case, we have reported in
Fig. 1, the donor binding energy as a function of the
radius of the dot for two values of lengtli/(= 1la*,
3a*) and for different intensity of a magnetic field
(y =0,1, 3wherey = 3 corresponds t@ ~ 20 T).

This figure reflects the competition between the
magnetic field effect and the spatial confinement
effect. For a very small radiu®, the strong geometric
confinement leads the electronic wave function to be
more compressed in the CQD. The binding energy is
significant and relatively insensitive to the magnetic
fields since the electron spatial localization prevails
over the magnetic field confinement. To the vicinity
of 1a*, the effect of the magnetic field begins to be

A. Zounoubi et al. / Physics Letters A 312 (2003) 220-227
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Fig. 2. The binding energy as a function of the dot radius for various
values of the length and for two values of the magnetic fie(finite
barrier case).

other, as the dot radius rises, reaching asymptotically
to the quantum well values case. For the large values of
the radius, R > 1a™), the magnetic field governs the
behavior of the binding energy because it overcomes
the spatial localization. Furthermore, for given values
of R and y, the binding energy increases when
the length of the dot decreases which reflects the
increasing confinement.

In Fig. 2, we present the binding energy of the
CQD in the case of finite height potential barri&p &
2192 meV) as a function of the radius of the dot for
several values of lengtt{ = 1a*, 3a™*, 20a*) and for
two values of magnetic field intensity (= 0, 3). For
each value of length, the binding energy increases with
increasing radius of the dot, reaches a maximum value
and finally decreases monotonically. The effect of the
magnetic field becomes remarkable only in the large
radius region, as an infinite barrier case. In addition,
we should signal that with our model, we can describe

apparent and the curves corresponding to different any low-dimensional structure going from 2D (two-

strength of the magnetic field tend to deviate from each

dimensional) to 0D (zero-dimensional) by taking into
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Table 1
Binding energies (in effective Rydbergs) of a shallow donor in (CQD}(54*, H = 20a*) for several values of the magnetic field intensity
y 0 0.5 1 1.5 2
Ei(R*) Present 1.0973 1.2803 1.5438 1.7536 1.9272
Ref. [22] 1.3822 1.6196 1.9663

Fig. 4. Variation of the diamagnetic coefficient versus the dot radius
Fig. 3. The binding energy as a function of the magnetic field for two values of lengthi and fory = 0.1.
intensity y for several values of the dot radius and for the length
H = 3a* (finite barrier case).

magnetic field at highy. This result agrees well
account the ratio between the length and the radius with previous results in QWW (see Niculescu et al.
of the structure, that isH/R) <« 1 for a QW (2D), [22]). For weak magnetic field intensity, the energy
(H/R) > 1fora QWW (1D) and H/R) = 1 for QD can be written as£(y) = E(0) + y2D where D is

(OD). the diamagnetic coefficient. In Fig. 4, we repdpt
We present in Table 1, the binding energies of as function of R (for y = 0.1); we remark thatD
a shallow donor for a CQDR = 5a*, H = 20a™) decreases with decreasi®gand tends to zero in the

and for several values of magnetic field intensity. case of infinite barrier potential. A similar behavior
Our model gives good results for high intensity, a has been reported in Ref. [23]. In contrast, for the
comparison has been made with Niculescu et al. [22]. case of finite barrierD reaches a minimum value
The Fig. 3 shows the dependence of the binding and increases aR becomes smaller. This result is
energies upon the magnetic field for several values reasonable, since wheR decreases, the electronic
of R and for H = 3a*. We see that at low magnetic orbital is more and more localized and it becomes
fields the shift of the energy is diamagnetitE; ~ insensitive to the influence of magnetic field, abd
y2, and increases approximately linearly with the tends to zero for the case of infinite barrier. For the
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1.2

R=52" Finite barrier

H=6a"

Fig. 6. The polarizability as a function of the magnetic field intensity
y for several values of the radiug and for the lengthHH = 6a*
Fig. 5. The polarizability values as a function of the dot radius and  (finite barrier case).

several values of length (finite and infinite barrier).

In Fig. 6, we present the results of the polatizabil-

case of finite barrier and for very smatl, the orbital ity as a function of the magnetic field for a length
escapes out towards the barrier material. H = 6a* and for various radiu®. This figure reflects

In Fig. 5, we have reported the effect of finite correctly the effect of the magnetic field, which con-
barrier height using two values of the barriéfy = fines more the electron and reduces the polarizability.

2192 meV andVy = co. From this figure we remark  For larger radial dimension of the CQD, the polar-
that the polarizability decreases with the decreasing izability decreases as the magnetic field intensity in-
of the size of the dot. In the finite barrier potential creases, while for the smaller dimensiaR & 1a*)
case, the polarizability reaches a minimum value at a the polarizability is nearly independent of the mag-
certain value oR (R = 0.25a¢*) and then increases as netic field. This fact is in agreement with our discus-
R becomes smaller. In order to explain this behavior, sion above on the strong confinement of the impurity,
we notice that due to confining potential barrier the so it is not possible to further compress the impurity
bound-electron wave function becomes compressed,wave function. In contrast, for a strong magnetic field
reducing in this way the polarizability. When the width  (i.e.,y > 3) and for large dotR > 2a*), the three up-

of the dot becomes very small the tunneling effects per curves coincide, so the spatial confinement is neg-
become very important, so the wave function escapesligible and the magnetic field effects are predominant.
out of the dot towards the material barrier and then In conclusion, we have studied the effect of the
the polarizability starts to increase. Also, this figure magnetic field on the polarizability and the binding
shows, that the difference between the results for the energy of a shallow donor in a GaAs CQD. Our
finite and infinite barrier is important for average well results indicate that the polarizability and he binding
length (see, for example the curves corresponding to energy of the donor depend strongly on the quantum
H = 4a*). confinement and strongly on the applied magnetic
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field. The effects of the electron—phonon interactions
on the polarizability of a magneto-donor in CQD are
in progress.
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