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Abstract

Using a variational method in the effective mass approximation and considering a noninteracting model, we have c
the binding energy and the polarizability of shallow donor impurities in cylindrical GaAs quantum dot under an a
magnetic field. We have considered an infinite and finite confinement model to describe the barriers on the dot bo
We present our results as function of the size of the dot and several values of the magnetic field strength. It is found
polarizability decreases as the dot radiusR decreases, reaches a minimum at a certain value ofR and then increases as th
radius becomes smaller. The magnetic field increases the binding energy and strongly reduces the polarizability.
barrier-height effects are important for smaller dot widths. For higher field strength and large dot, the magnetic field ef
predominant.
 2003 Published by Elsevier Science B.V.
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1. Introduction

With the recent improvements in microfabricati
technology of nanostructures, the growth of semic
ductor systems with reduced dimensionality has b
actively pursued in recent years as consequenc
their promising technological applications. Quant
dots (QD) have been constituted one of the intens
studied semiconductor nanostructure from theoret
[1–5] and experimental [6–8] point of view due to t
extreme degree of confinement of the electrons.

* Corresponding author.
E-mail address:izorkani@hotmail.com (I. Zorkani).
0375-9601/03/$ – see front matter 2003 Published by Elsevier Scien
doi:10.1016/S0375-9601(03)00640-6
effect of an applied electric field on the binding ene
has been the subject of intensive investigation [9–
When an electric field is applied to a nanostructu
this originates the polarization of the distribution
carriers and a shift of the energy of quantum sta
An electron bound to an impurity state at the cen
of a large QD is never influenced by the boundary, a
behaves as a three-dimensional (3D) electron boun
an impurity in a GaAs/Ga1−xAlxAs structure. For in-
termediate QD size (of the order of the effective Bo
radiusa∗), the electron confinement due to the pot
tial barrier cane be greater than the confinement
to the impurity, and the electron behaves as quas
system, therefore, the binding energy increases an
polarizability decreases. For much smaller sizes,
ce B.V.
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infinite-well model fails strongly because tunneling
fects become very important and the electron leaks
as 3D electrons in Ga1−xAlxAs bound to impurities
and is weakly perturbed by the potential well, the
fore the binding energy restarts to decrease and the
larizability increases; while for an infinite barrier p
tential model, the electron bound to the impurity i
stays inside the dot, thus increasing the binding
ergy.

There are several reports on the polarizabilities
shallow donor impurities in quantum well (QW) an
quantum well wire (QWW) [12–15]. Recently, Duqu
et al. [16], have studied the effect of applied ele
tric field on the binding energy and polarizability
shallow donor implanted in rectangular cross sec
GaAs/Ga1−xAlxAs QWWs. They have found that, fo
larger dimensions of QWW, both the binding ener
and the polarizability decreases with the increas
electric field intensity, while for the smaller dime
sions the variation of the binding energy is very sm
and the polarizability stays constant. The effects of
interaction electron phonon on the polarizability o
shallow donor in QWW have been studied by Fil
et al. [17]. They have reported that the polaronic
fects significantly decrease the polarizability and
crease with increasing wire size. Murillo et al. [1
have calculated the binding energy of a donor impu
in GaAs/Ga1−xAlxAs spherical quantum dot with pa
abolic confinement and with an applied electric fie
They have found that the binding energy decrea
with increasing electric field intensity for even rad
of the dot.

The application of a magnetic field to a crys
changes the dimensionality of electronic levels a
leads to a redistribution of the density of states.
the Refs. [19,20] the authors have studied the hyd
genic impurity binding energy in QWWs and QDs
the presence of a magnetic field by using a variatio
approach. Zhigang et al. [21] have calculated the b
ing energy of the ground state of a hydrogenic do
in a cylindrical wire in the presence of a magnetic fie
parallel to the wire axis as a function of the wire rad
and the magnetic field intensity. Recently Niculescu
al. [22] have calculated the binding energy of a sh
low donor in a cylindrical GaAs QWW in the presen
of an axial magnetic field. They have adopted an i
nite confinement potential and taken into account
impurity position in the wire. The effect of the ma
-

netic field on the polarizability of the shallow don
in the spherical QD has been analyzed by Feddi e
[23] using an infinite confinement potential case.

In a previous paper [24], we have studied
polarizability of a magneto-donor in a quantum wire
has been found that the magnetic field reduces stro
the polarizability. The finite barrier-height effect
important for small well widths. For higher fields an
a large wire, the magnetic field effects are predomin
and the barrier potential is a small perturbation.

Nevertheless, to the best of our knowledge, th
is no study on the effect of a magnetic field on t
polarizability of a donor in cylindrical quantum do
(CQD). In the present Letter, we propose to calcu
the polarizability of a shallow donor placed at t
center of a CQD, with infinite and finite barrier,
a function of the dot sizes and for various values
the magnetic field. This Letter is organized as follow
in Section 2, we present the general formalism;
deduce the expression of the donor binding ene
and its polarizability in the presence of an unifo
magnetic field. The numerical results and discuss
are presented in Section 3 with application to a C
made out of GaAs.

2. General formalism

We consider a system consisting of a GaAs cy
drical quantum dot (CQD) with radiusR and lengthH ,
surrounded by Ga1−xAlxAs with an electron bound t
a shallow donor placed at the center of the dot. In
presence of an applied electric field and a magn
one along thez-direction, which is taken as the ax
of the dot. In the effective mass approximation,
Hamiltonian is given by

H = −∇2 − 2√
ρ2 + z2

+ ηz + γ 2

4
ρ2

(1)+ γLz + V (ρ, z),

where

(2)V (ρ, z) =




0 for ρ < R and|z| < H
2 ,

V0 for ρ > R and|z| < H
2 ,

V0 for |z| > H
2

is the electron confining potential,ρ and z are the
electron coordinates in the plane perpendicular
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along the cylinder axis, respectively.Lz is the z

component of the angular momentum operator. We

the effective Bohr radiusa∗ = h̄2ε0
m∗e2 and the effective

Rydberg constantR∗ = m∗e4

2h̄2ε2
0

as the units of length

and energy.η = ea∗F
R∗ is a dimensionless measure

the electric field,γ = h̄ωc

2R∗ is a dimensionless measu
of the magnetic field andε0 is the dielectric constan
m∗ is the electron band effective mass which is giv
by [25]

(3)

m∗ =
{
m∗

1 = 0.067m0 in GaAs,

m∗
2 = (0.067+ 0.083x)m0 in Ga1−xAlxAs,

wherem0 is the free electron mass andx is the Al con-
centration. The value of the potential heights are
termined from the Al concentrationx in Ga1−xAlxAs
through the expression of the energy band-gap dis
tinuity at the interfaces,�Eg = (1.04x+0.47x2) eV,
the value ofV0 is taken to be 60% of�Eg [15].

First, we study the much simpler case of infin
potential barrier in Section 2.1; the case of fin
potential barrier is presented in Section 2.2.

2.1. Infinite potential barrier case

We assume that a single donor impurity is loca
at the center of the CQD and we suppose an i
nite confinement potential (i.e.,V0 = ∞). Since the
Schrödinger equation cannot be solved exactly, we
low the Hass variational method. We choose the t
wave function in the form:

(4)ψi(ρ, z) = ψ0(ρ, z)(1+ βz),

whereβ is a variational parameter (which takes in
account the presence of the weak electric field)
ψ0(ρ, z) is the wave function in the absence of elect
field (η = 0) given by

ψ0(ρ, z)= NJ0

(
θ0

ρ

R

)
cos

(
πz

H

)

(5)× exp

(
−

(
ρ2

8b2
+ z2

8a2

))
,

whereJ0 is the Bessel function of zero order;θ0 =
2.4048255577 is its first zero,a andb are variational
parameters andN is the normalization constant. Th
single parameter trial wave function used by El Said
al. [12] is certainly not adequate since it preserves
spherical symmetry of the hydrogen-like wave fun
tion; it does the not take into account the anisotro
effects introduced by the external magnetic field (i
the compression of the wave function in thex- and
y-direction). In previous work we have used a line
combination of a cylindrical wave function and an o
cillating one which is valid at all magnetic field valu
[26,27].

The corresponding energy is given by

(6)E(β) = Ek + Ecoul + Em +Ee,

where

Ek = 〈ψi | − ∇2|ψi〉
=

(
θ0

R

)2

+ 1

2b2
− 1

2b2

θ0

R

I2
10

I1
00

− 1

16b2

I3
00

I1
00

(6a)+
(

π

H

)2

+ 1

4a2
+ A + β2B

Ī0
02 + β2Ī 2

02

,

(6b)Ecoul = 〈ψi | − 2√
ρ2 + z2

|ψi〉 = G + β2H

Ī0
02 + β2Ī 2

02

,

(6c)Em = 〈ψi |γ
2

4
ρ2 + γLz|ψi〉 = γ 2

4

I3
00

I1
00

,

where the matrix element〈ψi |γLz|ψi〉 = 0.

(6d)Ee = 〈ψi |ηz|ψi〉 = 2βĪ 2
02

Ī0
02 + β2Ī 2

02

η

with

A = − π

2Ha2 Ī
1
11 − 1

16a4 Ī
2

02,

B = 2
π

H
Ī1
11 + 1

2a2
Ī 2
02 − π

2Ha2
Ī3
11 − 1

16a4
Ī4
02,

G = − 2

I1
00

R∫
0

H/2∫
0

ρ√
ρ2 + z2

J 2
0

(
θ0

ρ

R

)
exp

(
− ρ2

4b2

)

× cos2
(
πz

H

)
exp

(
− z2

4a2

)
dρ dz,

H = − 2

I1
00

R∫
0

H/2∫
0

ρz2√
ρ2 + z2

J 2
0

(
θ0

ρ

R

)
exp

(
− ρ2

4b2

)

× cos2
(
πz

H

)
exp

(
− z2

4a2

)
dρ dz,
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ρpJm

(
θ0

ρ

R

)
Jn

(
θ0

ρ

R

)
exp

(
− ρ2

4b2

)
dρ,

Ī
p
mn =

H/2∫
0

zp sinm
(
πz

H

)
cosn

(
πz

H

)
exp

(
− z2

4a2

)
dz.

In the absence of electric field (η = 0, β = 0), the
binding energy of donor is defined as the ground s
energy of the system without Coulomb term minus
ground state energy in the presence of the Coulo
term

(7)Ei = Esub− min[a,b]
(
E(β = 0)

)
.

The polarizability of the shallow donor confined in t
CQD is defined in terms of the dipole moment by [1

(8)α = −Ee

η2 .

We note that the linear contribution to the ener
Ee which is proportional to the permanent dipo
moment is equal to zero due to the spherical symm
of the donor. The value ofβ that minimizes the
energy expressionE(β) is calculated and substitute
in Eq. (6). The final results are obtained by numeri
minimization of the energy expression with respec
the parametersa andb. Then theses values are used
deduce the polarizability given by Eq. (8).

2.2. Finite barrier potential case

For a finite barrier heightV0, we choose the tria
wave function of the form

(9)ψi(ρ, z) = ψ0(ρ, z)(1+ βz),

where

(10)

ψ0(ρ, z) = Nφ(ρ)φ(z)exp

(
−

(
ρ2

8b2 + z2

8a2

))
,

(10a)φ(ρ) =
{
J0(k1ρρ) for ρ < R,

AρK0(k2ρρ) for ρ > R,

J0 and K0 are, respectively, the zero-order Bes
function and the modified Bessel function.k1ρ andAρ

are constants determined by the boundary conditio
ρ = R, which is given by

(10b)Aρ = J0(k1ρR)

K0(k2ρR)
,

(10c)
k1ρ

m∗
1

J1(k1ρR)

J0(k1ρR)
= k2ρ

m∗
2

K1(k2ρR)

K0(k2ρR)
.

The corresponding energy is given by

(10d)Eρ = h̄2k2
1ρ

2m∗
1

and

(10e)k2ρ =
(

2m∗
2

h̄2 (V0 −Eρ)

)1/2

.

(11a)φ(z) =
{

cos(k1zz) for |z| < H
2 ,

Az exp
(−k2z|z|

)
for |z| > H

2 ,

k1z andAz are determined by the boundary conditio
at |z| = H

2 :

(11b)Aρ = cos

(
k1z

H

2

)
exp

(
k2z

H

2

)
,

(11c)tg

(
k1z

H

2

)
= m∗

1

m∗
2

k2z

k1z
.

The corresponding energy is given by

(11d)Ez = h̄2k2
1z

2m∗
1

and

(11e)k2z =
√

2m∗
2

h̄2
(V0 − Ez).

To minimize the energy and deduce the polarizabi
we have used the same procedure as in Section 2.

3. Results and discussion

Using a variational method in the effective mass
proximation and considering a noninteracting mod
we have calculated the polarizability and the bin
ing energy of a shallow donor placed at the cen
of a cylindrical quantum dot (CQD). We apply th
model to CQDs made out of GaAs surrounded
Ga1−xAlxAs. The physical parameters used in t
work are given by:R∗ = 5.8 meV, a∗ = 98.7 Å and
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Fig. 1. The binding energy as a function of the dot radius for
values of the length and several values of the magnetic fielγ

(infinite barrier case).

ε0 = 12.5. For the finite barrier case, we will use o
value of the barrier-height equal to 219.2 meV (i.
corresponding tox = 0.30). Our results for the polar
izability are obtained for a very small intensity of a
electric field (η = 0.01).

For the infinite barrier case, we have reported
Fig. 1, the donor binding energy as a function of
radius of the dot for two values of length (H = 1a∗,
3a∗) and for different intensity of a magnetic fie
(γ = 0,1,3 whereγ = 3 corresponds toB ≈ 20 T).

This figure reflects the competition between
magnetic field effect and the spatial confinem
effect. For a very small radiusR, the strong geometri
confinement leads the electronic wave function to
more compressed in the CQD. The binding energ
significant and relatively insensitive to the magne
fields since the electron spatial localization preva
over the magnetic field confinement. To the vicin
of 1a∗, the effect of the magnetic field begins to
apparent and the curves corresponding to diffe
strength of the magnetic field tend to deviate from e
Fig. 2. The binding energy as a function of the dot radius for vari
values of the length and for two values of the magnetic fieldγ (finite
barrier case).

other, as the dot radius rises, reaching asymptotic
to the quantum well values case. For the large value
the radius, (R > 1a∗), the magnetic field governs th
behavior of the binding energy because it overcom
the spatial localization. Furthermore, for given valu
of R and γ , the binding energy increases wh
the length of the dot decreases which reflects
increasing confinement.

In Fig. 2, we present the binding energy of t
CQD in the case of finite height potential barrier (V0 =
219.2 meV) as a function of the radius of the dot f
several values of length (H = 1a∗, 3a∗, 20a∗) and for
two values of magnetic field intensity (γ = 0,3). For
each value of length, the binding energy increases
increasing radius of the dot, reaches a maximum v
and finally decreases monotonically. The effect of
magnetic field becomes remarkable only in the la
radius region, as an infinite barrier case. In additi
we should signal that with our model, we can descr
any low-dimensional structure going from 2D (tw
dimensional) to 0D (zero-dimensional) by taking in
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Table 1
Binding energies (in effective Rydbergs) of a shallow donor in (CQD) (R = 5a∗ , H = 20a∗) for several values of the magnetic field intensit

γ 0 0.5 1 1.5 2

Ei

(
R∗)

Present 1.0973 1.2803 1.5438 1.7536 1.92
Ref. [22] 1.3822 1.6196 1.966
eld
gth

dius

of

ity.
a

2].
ing
ues
ic

he

dius

ll
al.
gy

e
or
the
e
is
ic
es

the
Fig. 3. The binding energy as a function of the magnetic fi
intensity γ for several values of the dot radius and for the len
H = 3a∗ (finite barrier case).

account the ratio between the length and the ra
of the structure, that is (H/R) � 1 for a QW (2D),
(H/R) � 1 for a QWW (1D) and(H/R) ∼= 1 for QD
(0D).

We present in Table 1, the binding energies
a shallow donor for a CQD (R = 5a∗, H = 20a∗)
and for several values of magnetic field intens
Our model gives good results for high intensity,
comparison has been made with Niculescu et al. [2

The Fig. 3 shows the dependence of the bind
energies upon the magnetic field for several val
of R and forH = 3a∗. We see that at low magnet
fields the shift of the energy is diamagnetic,�Ei ∼
γ 2, and increases approximately linearly with t
Fig. 4. Variation of the diamagnetic coefficient versus the dot ra
for two values of lengthH and forγ = 0.1.

magnetic field at highγ . This result agrees we
with previous results in QWW (see Niculescu et
[22]). For weak magnetic field intensity, the ener
can be written asE(γ ) = E(0) + γ 2D whereD is
the diamagnetic coefficient. In Fig. 4, we reportD

as function ofR (for γ = 0.1); we remark thatD
decreases with decreasingR and tends to zero in th
case of infinite barrier potential. A similar behavi
has been reported in Ref. [23]. In contrast, for
case of finite barrier,D reaches a minimum valu
and increases asR becomes smaller. This result
reasonable, since whenR decreases, the electron
orbital is more and more localized and it becom
insensitive to the influence of magnetic field, andD

tends to zero for the case of infinite barrier. For
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Fig. 5. The polarizability values as a function of the dot radius
several values of length (finite and infinite barrier).

case of finite barrier and for very smallR, the orbital
escapes out towards the barrier material.

In Fig. 5, we have reported the effect of fini
barrier height using two values of the barrier:V0 =
219.2 meV andV0 = ∞. From this figure we remar
that the polarizability decreases with the decreas
of the size of the dot. In the finite barrier potent
case, the polarizability reaches a minimum value
certain value ofR (R ∼= 0.25a∗) and then increases a
R becomes smaller. In order to explain this behav
we notice that due to confining potential barrier t
bound-electron wave function becomes compres
reducing in this way the polarizability. When the wid
of the dot becomes very small the tunneling effe
become very important, so the wave function esca
out of the dot towards the material barrier and th
the polarizability starts to increase. Also, this figu
shows, that the difference between the results for
finite and infinite barrier is important for average w
length (see, for example the curves correspondin
H = 4a∗).
Fig. 6. The polarizability as a function of the magnetic field intens
γ for several values of the radiusR and for the lengthH = 6a∗
(finite barrier case).

In Fig. 6, we present the results of the polatizab
ity as a function of the magnetic field for a leng
H = 6a∗ and for various radiusR. This figure reflects
correctly the effect of the magnetic field, which co
fines more the electron and reduces the polarizab
For larger radial dimension of the CQD, the pol
izability decreases as the magnetic field intensity
creases, while for the smaller dimension (R < 1a∗)
the polarizability is nearly independent of the ma
netic field. This fact is in agreement with our discu
sion above on the strong confinement of the impur
so it is not possible to further compress the impu
wave function. In contrast, for a strong magnetic fi
(i.e.,γ > 3) and for large dot (R � 2a∗), the three up-
per curves coincide, so the spatial confinement is n
ligible and the magnetic field effects are predomina

In conclusion, we have studied the effect of t
magnetic field on the polarizability and the bindi
energy of a shallow donor in a GaAs CQD. O
results indicate that the polarizability and he bind
energy of the donor depend strongly on the quan
confinement and strongly on the applied magn
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in progress.
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