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Abstract
We study the effect of a constant uniform magnetic field on an electrically
charged massive particle (an electron) bound by a potential well, which is
described by means of a single attractive λδ(r) potential. A transcendental
equation that determines the electron energy spectrum is derived and solved.
The electron wavefunction in the ground (bound) state is approximately
constructed in a remarkably simple form. It is shown that there arises the
probability current in the bound state in the presence of a uniform constant
magnetic field. This (electric) current, being by the gauge invariant quantity,
must be observable and involve (and exercise influence on) the electron
scattering. The probability current density resembles a stack of ‘pancake
vortices’ whose circulating ‘currents’ around the magnetic field direction
(z-axes) are mostly confined within the plane z = 0. We also compute the
tunnelling probability of an electron from the bound to free state under a weak
constant homogeneous electric field, which is parallel to the magnetic field.
The model under consideration is briefly discussed in two spatial dimensions.

PACS numbers: 03.65.Nk, 03.65.Ge, 03.65.−w

1. Introduction

The behaviour of quantum nonrelativistic systems in external electromagnetic fields has
attracted permanent interest in view of possible applications of the corresponding models
in many phenomena of quantum mechanics. Bound electron states play an important role
in quantum systems in condensed matter. When the external field configuration has the
cylindrical symmetry a natural assumption is that the relevant quantum mechanical system
is invariant along the symmetry (for example, z) axis and the quantum mechanical problem
then becomes essentially two dimensional in the xy plane. Such is the case when the external
field configuration is a superposition of a constant uniform magnetic field and a cylindrically
symmetric potential. Nonrelativistic electrons in such external field backgrounds are good
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quantum mechanical models for studying remarkable macroscopic quantum phenomena such
as the fractional quantum Hall effect [1] and high-temperature superconductivity [2]. A
related problem is the behaviour of electrons in trapping potentials in the presence of a
constant uniform magnetic field in an effective mass approximation. Magnetic fields seem
likely to have an effect on weakly bound electrons into singular potentials of defects in the
defect films [3] and solids [4].

Pure two-dimensional models are also of significant interest. The effect of magnetic
fields on a weakly bound electron in two spatial dimensions was studied by us in [5]. This
model is of interest because it gives a good example of a nonrelativistic analogue of the
so-called dimensional transmutation phenomenon first discovered by Coleman and Weinberg
in [6] in the massless scalar electrodynamics. Whereas above nonrelativistic systems can be
described by the Schrödinger equation, relativistic systems, related to the Dirac Hamiltonian
in 2 + 1 dimensions in a constant uniform magnetic field, show up in a certain type of
doped two-dimensional semimetals [7]. Similar problems are also related to a number of
problems in quantum theory, for example, the parity violation, the theory of anyons (particles
satisfying a fractional statistics), the Aharonov–Bohm effect [8] and other. At last recently,
a new type of spectral problem has been found [9, 10] in quantum mechanics of planar
electrons in a superposition of constant uniform magnetic and cylindrically symmetric potential
fields. For this new class of spectral problems, the so-called quasi-exactly solvable (QES)
models the energy spectra exist if a certain relation between the parameters characterizing the
intensity of the interaction of an electron with external fields holds and then solutions of the
corresponding equations of quantum mechanics can be expressed as the product of a weight
function and a finite polynomial. Some physical examples of QES models, which include the
two-dimensional Schrödinger or Dirac equation for an electron in a superposition of a constant
uniform magnetic field and an attractive Coulomb field, were studied in [11].

The purpose of this paper is to study the effect of a constant uniform magnetic
field on an electron bound by a single attractive λδ(r) potential. We derive a simple
transcendental equation determining the electron energy spectrum and construct the
approximate wavefunction for a bound electron state in the presence of a constant uniform
magnetic field. We show that the sizes of the electron localization region change and the
probability current arises even when the electron is in the bound state in a superposition of a
constant uniform magnetic field and a single attractive λδ(r) potential. The probability current
in three-dimensional space resembles a stack of ‘pancake vortices’ whose circulating (around
the z-axes) ‘currents’ are mostly confined in the weak magnetic field within the plane z = 0.

The equation for determining the energy levels of the electron states is also obtained
for the model under study in two spatial dimensions. We show that in difference from the
three-dimensional case the binding energy is not analytical in λ.

The tunnelling of an electron from the bound to free state under a weak electric field is of
importance. In the present paper, we compute the tunnelling probability of an electron from
the bound to free state under a weak constant homogeneous electric field, which is parallel to
the magnetic field.

2. Electron in a potential well in the presence of a constant uniform magnetic field

Let us consider an electron with the charge e < 0 in an attractive singular potential of the
form

U(r) = −h̄2λ

2m
δ(r) (1)
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and a constant uniform magnetic field B, which is specified in Cartesian coordinates as

B = (0, 0, B) = ∇ × A, A = (−yB, 0, 0). (2)

In (1) λ is a positive coupling constant of the length dimension, δ(r) is the three-dimensional
Dirac delta function and m > 0 is the effective mass of an electron. It is well to note that the
attractive λδ(r) potential can be considered as the limit of a sequence of appropriate narrow
rectangular potential wells

U(r) = −U0, r < R, U(r) = 0, r > R. (3)

Then the parameter λ is expressed via U0 and R as

λ = 2mU0R
3

h̄2 .

The Schrödinger equation is

1

2m

[(
−ih̄

∂

∂x
+

eB

c
y

)2

− h̄2 ∂2

∂y2
− h̄2 ∂2

∂z2
− h̄2λδ(r)

]
�E(r) = E�E(r). (4)

The electron wavefunction in the magnetic field (2) can be found in the form [12]

ψnp(t, r) = 1

2
e−iEns t/h̄ ei(p1x+p3z)/h̄Vn(Y )

(
1 + s

1 − s

)
, (5)

where

Ens = h̄ω

(
n +

1

2

)
+

p2
3

2m
+ sh̄ω

m

2me

(6)

is the eigenenergy, ω = |eB|/mc,me is the mass of the free electron, p1, p3 are the eigenvalues
of a generalized momentum operator and s = ±1 is the spin quantum number. Note that for
me = m and for sign eB < 0, all the energy levels except one with n = 0, s = −1 are doubly
degenerate: the coincident levels are those with n, s = 1 and n + 1, s = −1. In this paper, we
consider the case me = m. Then, the energy eigenvalues depend only on the number n.

Note that p1 is constrained by |p1| � eBL/c (see [12]). The functions

Vn(Y ) = 1

(2nn!π1/2a)1/2
exp

(
− (y − y0)

2

2a2

)
Hn

(
y − y0

a

)
are expressed through the Hermite polynomials Hn(z), the integer n = 0, 1, 2, . . . indicates
the Landau level number,

a =
√

h̄c

|eB| ≡
√

h̄

mω

is the so-called magnetic length and y0 = −cp1/eB. It should be recalled that the classical
trajectory of an electron in the xy plane is a circle. The quantity y0 corresponds to the
classical y-coordinate of the circle centre. All the electron states (5) are not localized in the
x-, z-directions.

Solutions of equation (4) are sought in the form

�E(r) =
∞∑

n=0

∫
dp1 dp3 CEnpψnp(r) ≡

∑
n,p

CEnpψnp(r), (7)

where ψnp(r) is the spatial part of wavefunctions (5).
Then, for coefficients CEnp, one obtains

CEnp

(
n + cp2

3 + b
) = λ0

∑
l,k

CElkVl(0)Vn(0), (8)
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where

c = 1

2mh̄ω
, b = − E

h̄ω
, λ0 = λ

8π2mh̄ω
, Vl(0) ≡ Vl(y = 0).

Note that terms on the right-hand side of equation (8) are the matrix elements of the interaction
operator of the electron with the singular potential (1). Correctly, these matrix elements must
be obtained at first for the interaction potential (3) with finite U0, R and then by proceeding
to the limits R → 0, U0 → ∞. But for finite U0 and R the main contribution in the matrix
element Unp3,n′p′

3
gives the quantum number regions |p3 − p′

3|R < h̄,
√

n − n′R < a because
the matrix element falls off quickly due to the oscillations outside the above regions. Moreover,
for the sharp potentials, one can obtain Unp3,n′p′

3
∼ −λ for n, n′ < N and p3, p

′
3 < P and

Unp3,n′p′
3

= 0 for n, n′ > N and p3, p
′
3 > P, λ → 0 N,P → ∞ as R → 0. So, for such

potentials the sum taken over n on the right-hand side of equation (8) is limited by the value
N and the bound-state energy becomes dependent on N and λ, which, as well as U0 and R, are
considered finite. In the limits R → 0, U0 → ∞, according to the above given estimations,
we have λ → 0, N → ∞.

Thus, when transforming to the singular potential the bound-state energy remains finite
(and, moreover, any given) value only if N will tend to infinity as

N3/2 = 12
√

2aπ

λ
+

(
−E0

h̄ω

)3/2

(9)

as R → 0.
Let us write CEnp as

CEnp = CE

Vn(0)

n + cp2
3 + b

, (10)

insert (10) into (8) and take account of the formulae∑
n,p

|CEnp|2 = 1, (11)

∫
dp1Vn(0)Vk(0) = h̄

a2
δn,k. (12)

Then, one obtains equations

1 = λ

8π2mh̄ω

N∑
n=0

∫ ∞

−∞
dp3

1

n + b + cp2
3

, (13)

(CE)−2 =
N∑

n=0

∫ ∞

−∞
dp3

1(
n + b + cp2

3

)2 . (14)

Integrating the right-hand side of equation (13) we obtain the following transcendental
equation:

1 = λ
√

m

8
√

2π

N∑
n=0

ω√|h̄ωn − E| , (15)

the roots of which determine the energy levels of the electron in the considered combination
of fields. This equation can be solved numerically (graphically); its roots xn = En/h̄ω for
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Figure 1. The plot of the function f (x).

different λ are determined by the crossing of horizontal 8
√

2aπ/λ with different values λ with
the function

f (x) =
N∑

n=0

1√|n − x| . (16)

It is seen from equation (16) that for an attractive potential the main contributions in the
sum gives small lengths �x, which adjoins to the corresponding root with n to the left. The
plot of f (x) as a function of x near the roots with n = 1, 2, 3, 6, 10 is given in figure 1 for
N = 106.

It follows from equation (15) that if the potential energy is small compared with h̄ω then
the energy level En is located between two energy levels h̄ωn and h̄ω(n+1) with the exception
of the negative energy level E0.

The energy levels can be approximately calculated if

λ

8πa
√

2
� 1.

Then, representing

En = h̄ωn + δn, δ < 0 (17)

for any number n = 0, 1, . . . , we obtain

δn = −λ2mω2

32π2
. (18)

First, let the singular potential can be considered as a perturbation; therefore, the coupling
constant λ < a. All the levels δn are shifted down with respect to the corresponding Landau
levels h̄ωn for any n = 0, 1, . . . . In this case |δn| � h̄ω. If E0 < 0 is the electron energy in
the pure singular λδ(r) potential, then δ0 is the magnetic field correction to the level E0.

If the coupling constant λ obeys the inequality 8π
√

2 	 λ > a, then |E| > h̄ω and E is
determined by equation (18). It should be emphasized that there exists the only energy level
(E0 < 0) in a single attractive λδ(r) potential.
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Figure 2. Function f (x) near the root n = 0.

The plot of f (x) as a function of x near the root with n = 0, which corresponds to the
ground (bound) state, is given in figure 2 for N = 106.

Graphically the root x0 = E0/h̄ω is determined by the crossing of horizontal 8
√

2aπ/λ

with the function plotted in figure 2. We also see that the energy of the bound electron state is
analytical in λ.

The electron energy in the bound state is not analytical in λ for the model under discussion
in the two-dimensional case. Indeed, equation (15) should be replaced by the equation

1 = λ

4π

N∑
n=0

1

n + b
, b = − E

h̄ω
(19)

for the two-dimensional case (see [5]). Here we took into account all remarks concerning the
number N, which were given when deriving of equation (15). The energy of the ground state
(that is a negative root of equation (19) E0 < 0) can be easily found for N 	 1. Replacing
the summation over n by the integration, we find as a result

1 = λ

4π
ln

(
N

b

)
(20)

and for the electron energy of the bound state we obtain

E0 = −h̄ωN exp

(
−4π

λ

)
. (21)

It is important to emphasize that in the two-dimensional case the coupling constant
λ is the dimensionless constant. Nevertheless, there exists a bound state in the attractive
λδ(r) potential. In the limits N → ∞, λ → 0, we must require that N should depend
on the dimensionless constant λ so that the binding energy −E0 would remain finite as
N → ∞. Thus, the cutoff dimensionless parameter N, which tends to infinity, transmutes
in the arbitrary binding energy |E0|. This is the nonrelativistic analogue of the dimensional
transmutation phenomenon. For the model under discussion in the absence of a magnetic field
this phenomenon was first considered in [13].
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3. Electron wave function and probability current in the bound state

Now, we shall construct the wavefunction of the electron in the negative-energy state with
n = 0. It can be found from equation (7) by putting n = 0. Then, using equations (10), (14)
we integrate over p1 by means of the following integral [14]:∫ ∞

−∞
dx e−ixyUn(x + z)Uk(x + u) = 1

a
exp

[
iy(z + u)

2
+ i(n − k) arctan

y

z − u

]
Ink(ρ), (22)

where the function Ink(ρ) = exp(−ρ/2)Ln−k
n (ρ) is the Laguerre function of the argument

ρ = y2 + (u − z)2

2
, (23)

Ln−k
n (ρ) is the Laguerre polynomial and in our problem n = k = 0.

Integration over p3,

I =
∫ ∞

−∞
dp3

e−ip3z/h̄

p2
3 + 2m|E0|

, (24)

can be carried out in the complex plane, closing the integration contour into the lower half-
plane for z > 0 and in the upper half-plane for z < 0. The case λ � a is of physical interest.
For this case, one obtains

I = e−√
2m|E0||z|/h̄

√
2m|E0|)

. (25)

Then, simple calculations lead to the normalized electron wavefunction in the form (see also
[5, 15, 16])

�0(r) ∼ h̄√
2πla

exp

(
−x2 + y2 − 2ixy

4a2

)
exp

(
−|z|

l

)
, l = h̄√

2m|E0|
. (26)

It is of great interest that there is the probability current even when the electron is in the
bound state in a superposition of a constant uniform magnetic field and a single attractive
λδ(r) potential. The probability current density is

Jx = − h̄

2πlma4
y exp

(
−x2 + y2

2a2
− 2

√
2|z|
l

)
≡ −J0y exp

(
−x2 + y2

2a2
− 2

√
2|z|
l

)
,

Jy = J0x exp

(
−x2 + y2

2a2
− 2

√
2|z|
l

)
, Jz = 0.

(27)

We see from equation (27) that the divergence of the probability current density is equal
to zero everywhere. Therefore, the probability density |�0(r)|2 and the current density (27)
satisfy the continuity equation

∂|�0(r)|2
∂t

+
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
≡ ∂|�0(r)|2

∂t
+ (∇ × J) = 0 (28)

everywhere and the function |�0(r)|2 is conserved in time.
The electron wavefunctions in an external electromagnetic field are known to have the

ambiguity, which is related to the ambiguity of the 4-potential (
, A) of the electromagnetic
field. The latter is determined just with the exactness up to the gauge transformation


 → 
 − 1

c

∂f

∂t
, A → A + ∇A, (29)
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Figure 3. Probability current density in space.

where f is an arbitrary function of coordinates. The Schrödinger equation does not
change provided the replacement of the vector potential in the Hamiltonian is carried out
simultaneously with the replacement of wavefunction

� → � exp

(
ie

h̄c
f

)
. (30)

In the considered case, we can cancel the phase factor in wavefunction (26) by means of
the gauge transformation of the vector potential with the function f = Bxy/2. Under such a
transformation the vector potential transforms from equation (2) to

A = B

2
(−y, x, 0), (31)

the wavefunction (26) becomes real, but the (electric) current density

J = ieh̄

2m
[(∇�∗)� − �∗∇�] − e2

mc
A�∗�, (32)

by the gauge invariant quantity, does not change. Note that

J = − e2

mc
A�∗� (33)

at the gauge (31).
The probability current density is shown in figure 3 in which the coordinates x, y, z are

measured in units of a.
The vector field J can be treated semiclassically. Let the two-dimensional vector field j

be a complex quantity j = jx + ijy in any plane z = constant whose components jx and jy are
functions of the complex variable v = x + iy and depend on z. The vector field j(x, y) is a
vortex field. Computing C = [∇ × j], we obtain

[∇ × j] = ∂jy

∂x
− ∂jx

∂y
= A

π

(
1 − vv∗

2a2

)
exp

(
−vv∗

2a2

)
, (34)

where A = eh̄F (z)/ lma4, the function

F(z) = exp

(
−2|z|

l

)
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Figure 4. Probability current density in the z = 0 plane.

should be calculated on the plane z = constant and v∗ is the complex conjugate of v. In each
plane z = constant the vector j(x, y) determines the vector field of a point-like vortex located
at the point x, y = 0.

One can write j in the form

j = iI (v)

2πv∗ , (35)

where

I (v) = Avv∗ exp

(
−vv∗

2a2

)
(36)

is the vortex intensity that is the vector-field circulation j(x, y) on any closed contour encircling
the vortex at the point x, y = 0.

The normalized two-dimensional vector field j(x, y) is shown in the plane z = 0 in
figure 4 in which the coordinates x, y are measured in units of a.

One can see from equation (27) that the probability current density resembles a stack of
‘pancake vortices’ whose circulating ‘currents’ around the magnetic field direction (z-axes)
are mostly concentrated within the plane z = 0.

4. Effect of a homogeneous electric field on the bound electron

Now we consider the effect of a weak constant homogeneous electric field on an electron
bound by an attractive singular potential in the presence of a constant uniform magnetic field.
Related problems are the ionization of negative charged ions in accelerators as well as the
removal of electrons from trapping potentials by a constant electric field. It is worthwhile
to note that the problem concerning the removal of a charged nonrelativistic particle from a
spherically symmetric potential well by a constant homogeneous electric field was first partly
solved in [17] and the more rigorous formulae were given in [18] for the total and in [19] for
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the differential probability. Here, we consider this problem for the model studied with the
inclusion of a weak constant homogeneous electric field specified by the potential

U(z) = −|e|εz, (37)

where ε > 0 is the electric-field strength.
The inclusion of the electric field in the model under discussion leads to the quasistationary

of the bound electron state and the appearance of the nonzero particle flux at large distances
from the potential well. It is apparent that for the considered electromagnetic field combination
we need to calculate only the particle flux in the z-direction far from the potential well.

Let us find the decay probability of the bound state per unit time, which is equal to
the electron flux across the plane perpendicular to the z-axis. To find this flux we need the
Schrödinger equation solutions for an electron far from the potential well. So far as the
electron flux is of interest in the z-direction the magnetic field cannot be taken into account far
from the well. Solutions of the Schrödinger equation for an electron in field (37) are expressed
via the Airy functions (see, for example, [19]).

So far as the particle flux has to be nonzero in the z-direction we must choose the solution
with the complex Airy function for the real z:

ψp1,p2,E = e−iEt/h̄ ei(p1x+p2y)/h̄V (Z), (38)

where

Z =
(

2m|e|ε
h̄2

)1/3 (
p2

1 + p2
2

2m|e|ε − E

|e|ε − z

)
, (39)

p1, p2 are the eigenvalues of the operator of generalized momentum and V (Z) is the complex
Airy function for the real Z. For Z � 1

V (z) =
√

π

z1/4

[
exp

(
2z3/2

3

)
+

i

2
exp

(
−2z3/2

3

)]
. (40)

Note that only keeping the exponentially small term in solution (40) will give rise to the
nonzero flux.

Outside the well, the electron wavefunction for large z can be written as the superposition
of solutions in the electric field with E = −E0,

ψ(r) = e−iE0t/h̄

∫
dp1 dp2 ei(p1x+p2y)/h̄V (Z)F (p1p2). (41)

The appearance probability of an electron far from the well in unit time w is equal to the flux
across the plane perpendicular to the z-axes

w = − ih̄

2m

∫
dx dy

(
ψ∗ ∂ψ

∂z
− ψ

∂ψ∗

∂z

)
. (42)

The function F(p1p2) is found for large z from equation (41) by the Fourier transform

F(p1p2) = 1

4π2V (Z)

∫
dx dy ψ(r) ei(E0t−p1x−p2y)/h̄. (43)

In a weak electric field ε � m1/2|E0|3/2/h̄|e| ≡ ε0 the electron wavefunction (41) differs
insignificantly from the wavefunction of the bound state (26) (we just consider this case) for
|z| �

√
h̄2ε0/2m|E0|ε, so for such z we can substitute the function (26) instead of ψ(r) in

equation (43).
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Carrying out simple calculations, we obtain

F(p1p2) = C exp(−i − |z|/l)

4π2V (Z)

∫
dx dy exp

(
−x2 + y2 − 2ixy

4a2
+ i

p1x + p2y

h̄

)

≈ Ca2 exp(−|z|/l)

πV (Z)
exp

(
−

(
p2

1 + p2
2

)
a2

h̄2

)
, (44)

where C = 1/(a
√

2πl) is the normalization constant of the wavefunction of the bound state.
Finally, for the total probability one obtains

w = − 2
√

πh̄a2|e|ε
l2a2m|e|ε + lh̄2

(
1 +

ml3|e|ε
2(a2ml|e|ε + h̄2)

)
exp

(
− 2h̄2

3ml3|e|ε
)

. (45)

5. Summary

It is of interest to compare wavefunction (26) with the electron wavefunction of the bound
state in the only singular attractive h̄2λδ(r)/2m potential. The latter can be easily obtained in
the form

�(r) =
√

1

2πl0

e−r/ l0

r
, (46)

where l0 =
√

h̄2/2m|E0| and E0 < 0 is the electron energy and the wavefunction (46) is
normalized as follows:∫

|�(r)|2 dV = 1. (47)

The distribution of probabilities of different coordinates of the electron

|�(r)|4πr2 dr = 2 exp

(
−2r

l0

)
dr

l0

is spherically symmetrical. Here r =
√

x2 + y2 + z2. One sees that without a magnetic field
the electron is localized in the region ∼l0 and the probability current density for the state (46)
is equal to zero everywhere.

The distribution of probabilities of different coordinates of the electron in the state (26)

|�0(r)|2πρ dρ dz = ρ

a
exp

(
− ρ2

2a2
− 2|z|

l

)
dρ

a

dz

l

has the cylindrical symmetry. Here ρ =
√

x2 + y2, z are the cylindrical coordinates. The
electron is located in the region x, y ∼ √

2a in the x, y plane perpendicular to the magnetic
field and z ∼ 2l along the magnetic field direction.

It is of importance that the probability current arises even when the electron is in the
bound state in a superposition of a constant uniform magnetic field and a single attractive
λδ(r) potential. This (electric) current is the gauge invariant (physically observable) quantity
and, therefore, it must involve (and exercise influence on) the electron scattering.
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