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Resonant Optical Second Harmonic Generation 
and Mixing 

Abstract-Experimental and  theoretical  results  are  described on 
the  enhancement of optical second  harmonic generation (SHG) and 
mixing in KDP by the  use of optical resonance. Both resonance of 
the harmonic and of the  fundamental  are  considered. Large enhance- 
ments  are possible  for resonators with low loss. Using a plano- 
concave harmonic resonator containing 1.23 cm of KDP, the  authors 
achieved  a loss < 4 percent per pass.  This  resulted in an enhance- 
ment of - 500 times  the harmonic power internal  to  the  resonator 
and N 10 times  external  to  the  resonator.  When  resonating,  the 
fundamental  enhancements of N 5 were observed. 

The  theory  includes  the effect of double refraction. This  results in 
a coupling coefficient of the  generated harmonic power to the  trans- 
verse  modes of the harmonic resonator.  The experimental results 
are in substantial  agreement with the theory. 

I. INTRODUCTION 
HIS  PAPER DEALS  with the use of optical 
resonance to enhance the efficiency of optical 
second harmonic  generation  (SHG)  and mixing. 

Since the first  observation of SHG  by  Franken,  Hill, 
Peters,  and Weinreich (FHPW)  [l],  there  has been con- 
siderable  progress in understanding the factors  contribut,- 
ing t o  efficient conversion of fundamental t o  harmonic, 
and  to frequency mixing in general. Aside from finding 
new materials  with  larger  nonlinear coefficients, increases 
in efficiency at  fixed fundamental power have come about 
by  increasing the  interaction  length.  For  a given funda- 
mental  frequency  beam, Ohis is  the maximum  length of 
crystal  in which the polarization at  the harmonic fre- 
quency  radiates  cooperatively. 

The first  observations of SHG [l] were made  with 
pulsed ruby  lasers  and  a  nonlinear  crystal in which the 
dispersion in velocity  between the  fundamental  light 
and  the harmonic  light  limited the  interaction  length 
to  about  14 microns. The  introduction of phase-matching 
techniques [2],  [3] in  KDP permitted  a considerable in- 
crease in  the  interaction  length. In  the limit of infinite 
plane  wave beams, phase  matching gives an infinite 
interaction  length. In  practice beams are  finite in  extent, 
and  other  factors  such  as double refraction [4]-[7] and 
diffraction [6]-[8] serve to limit the  interaction  length. 
The  -first phase-matching  experiments [a], [3]  were not 
able  t’o  elucidate  these  factors.  There, the  interaction 
length was limited [6] to  the ,- 1 mm coherence length 
of the pulsed ruby laser. It was not  until  the introduction 
of the gas laser technique  [9]-[ll]  for  studying SHG that 
the  true limitations  on  interaction  length  under  phase- 
matched  conditions could be studied  experimentally in 
detail. 
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It was found that  the gas  laser, because of its single 
transverse mode  [12], [13] capability, could produce 
considerable SHG power on  a CW basis, in  spite of its 
relatively low power. Working in  the lowest-order trans- 
verse mode of a  3.4  mm  diameter  beam close t o  the beam 
minimum  permitted  observation of int,eraction over the 
full  length of a  1.2 cm-long KDP crystal,  and led to a 
new determination of the nonlinear coefficient  [9] of 
KDP.  Further work [7], [SI on  crystals  as long as 5 cm 
and 10 ern showed, both experimentally  and  theoretically, 
how double refraction  limits the  interaction  length  in 
essentially  parallel  beams of finite  transverse  extent. 
Due t o  the physical  separation of the ordinary  wave 
fundamental  beam  from the second harmonic  extraor- 
dinary  wave  beam, efficient interaction  can be maintained 
up to  a  length I,, called the  aperture length  [7], where 

w,, is the  fundamental  beam  radius a t  which the electric 
field amplitude is down to l / e  of its axial  value, and p is 
the double-refraction angle between  ordinary  and  extra- 
ordinary wave Poynting  vectors. 

The  harmonic power in  the phase-matched  direction 
for a plane  parallel  beam  when the effects of double 
refraction  and diffraction are neglected can be written 
[71 as 

where 

and o1 is the  fundamental  frequency, nl the index of 
refraction, d,, the nonlinear coefficient  [9], and e, the 
phase-matching angle as  measured  from the  optic axis. 
In  KDP  at  1.1526 p for the fundamental, K =  1.52 X 
esu. In  the region of full  interaction up  to I - I,, the 
harmonic power P, grows as 1’. Beyond Z,, the power 
grows linearly  as lZ,/w~. Thus, double  refraction  limits 
the  rapid growth of harmonic output for crystals of 
finite p in  the near field with  essentially  parallel  beams. 

Diffraction effects  become predominant if the  inter- 
action  extends into  the  far field. The effects of diffraction 
have  been  studied both theoretically  and  experimentally 
by KAB [8] in  an investigation of SHG from focused 
laser beams. They show that,  in  a  crystal of infinite 
length, the  SHG from  a focused fundamental beam, 
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including double refraction and dlffraction, is given by 

providing 1, << I,; 

is  defined as  the effective length of a focused beam; b is 
the confocal paranzeter of the  fundamental beam [la], [13]. 
It is related to  the  beam  radius  by 

w;kl = b (6) 

where k, = n , w l / c  is the propagation  constant of the 
fundament'al  in the medium of index n,. The  length b is 
the distance  between the two  points along the beam a t  
which the beam  radius  has increased by a factor of & 
over its  value at  the bean1 waist. 

If p can  be made zero, as  in the case of LiKbO, [14], 
[Is], the apert'ure lengt'h becomes  infinite. For  this case, 
and also  mhcn 1, >> I,, KAB show that  the  total SHG 
is given by 

Thus, for focused 
to  the  far field, it 
that  the effective 
equal to 1,. 

beams  where the  interaction  extends 
can  be said, as a good approximation, 
interaction falls off beyond a length 

We shall see that, for any situat,ion where the inter- 
action  length  is limit'ed by 1, or I f ,  optical feedback 
or resonance can  be used effectively to extend  t'he  inter- 
action  length and enhance the  amount of harnlonic 
conversion. Qualitatively, the idea is that, when the 
out'put  harmonic  beam begins to grow a t  less than  the 
maximum I' rate, it is rcflccted back  and refocused by  an 
optical  resonator  in  such a phase that it can  continue 
to interact  with  the  fundamental power. In t'his  way 
the effective length of imt'eraction can be increased greatly. 
Resonance of the harmonic  radiation to increase har- 
nzonic output  has been mentioned previously [4], [16]-[lS]. 
Also of relevance here is the possibility of resonat,ing 
the incident  fundamental  beam [4],  [17]-[20]. This is 
simply a means of storing  t,he  incident energy in a high 
Q cavity to increase the flux of fundanzental power passing 
through  the crystal,  thereby increasing the generation 
of second harmonic power. An  alternative  approach to  
these  resonant enhancenzent schemes is to use optical 
waveguide techniques [21] to increase the interaction 
length. 

Aside from the question of increased harmonic  out- 
put,, another  motivation  for  this  study of resonance 
effects  lies in  the application of nonlinear opt'ics t'o para- 
metric processes. As is well  lmown [4], [22]-[25], para- 
nzctric gain is  possible in nonlinear difference  mixing. 
Both  the signal wave and  the wave at   the difference 
frequency (idler wave) extract energy from the  pump 
wave and me amplified. This amplification, even if 
modest, can be utilized to make a parametric oscillator, 

if use  is made of a high Q optjical resonator to give feed- 
back.  Thus,  resonant SHG, mixing, and  parametric 
oscillators are closely related. 

In  Section IV it is shown how the realities of optical 
loss, mechanical instabilities, optical feedback, and reso- 
nator lineup  are  dealt  with. The experimental  results 
clearly show large resonant  enhancements which are  in 
good agreement with theory. Because of the high  optical 
Q achieved with harmonic resonance, it is possible to 
show in  graphic  form the det,ailed response to  the longi- 
tudinal mode spectrum of the lascr. I n  addition to har- 
monics of the individual modes, the sums of all pairs 
of modes are also shown. 

The experimental part of this  study is a natural ex- 
tension of the previously reported  gas laser experiments 
[7], [9]. For resonance work, the high degree of mode 
control and  the continuous output are  particularly re- 
quired  for careful measurements. 

The analysis presented  in Sections I1 and 111 extends 
existing theory [7], [8] to handle  resonant nonlinear 
effects due to single transverse mode laser beams. The 
equilibrium  resonator fields are deduced on  the basis 
of a self-consisknt field approach which has  thc ad- 
vantage of easy physical understanding. Thc detailed 
transverse field distributions  are  used to determine a 
mode-coupling factor [26]  which  gives the coupling of 
the generated  light to  the Gaussian  resonator modes. 
Expressions for the  resonant half-widths and  the en- 
hancement  factors are  put  in  terms of resonator losses 
and coupling factors  in a form which  pernzits direct 
experimental comparison. The factors governing the 
choice of the resonator geomet,ry are  studied  in detail. 

11. RESONAXCE OF THE SECOND P-EARMONIC 
I n  this section we discuss the  theoret'icd effect of 

resonating the second harmonic  radiation  generated  in 
the nonlinear medium. Figure 1 shows  schenzatically 
the geometry of the harmonic resonance technique. The 
fundamental power is assumed to  male only a single pass 
through  the cryst'al. Mirror M, and M, are assumed to 
be highly reflect'ing for the harmonic, and aligned so as 
to reflect the generated  harmonic  back to  the  input, 
where it can  interact  again  in  the nonlinear crystal. 
One of the mirrors ( M 2 )  is made movable, so that  the 
mirror  separation, and therefore the phase of the re- 
flect'ed harmonic field, can  be  varied. The system con- 
stitutes a tunable  resonator. As the resonat'or is tuned 
through  the harmonic  frequency, the harmonic power 
generated shows a strongly  resonant response. Physically, 
one expects enhancement of the generated power in such 
a resonator, since the presence of harmonic elect'ric  field 
enhances the power radiated  from  the  harmonic polar- 
ization. The  fact  that harmonic power  grows as the 
square of the crystal  length in  the phase-matched di- 
rection is the simplest illustration of this  point. In  Section 
11-11 we relate  the resonant response to  the resonator 
losses, and compute t,he enhancement  factor which  gives 
the  ratio of the harmonic power at, the peak of the reso- 
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Fig. 1. Schematic of the geometry of the harmonic  resonance 
technique  as applied to a KDP nonlinear  crystal. Mirrors 1481 and 
M z  are  transparent  to  the  fundamental  and highly reflecting to  the 
harmonic. 

nance to the power generated  in  a single pass  through 
the crystal. In  Section 11-B we compute the  ratio of the 
change in mirror  separation between successive harmonic 
resonances (X2/2) to  the change in mirror  separation 
between half-power points of the resonance (6).  This 
ratio is observed directly  in the experiment  and  provides 
a  convenient  point of comparison  with the theory. Sec- 
tion 11-C considers the coupling of the harmonic  trans- 
verse field distribution to  the modes of the harmonic 
resonator. 

The transverse field distribution of SHG radiation 
is not  the same  as that of the fundamental,  due to  the 
effects of double  refract’ion, as was first  pointed out  by 
Kleinman [6] and  ABDP [4]. Recently,  BADK [7] have 
elaborated on this  in  detail for  a  parallel  beam,  and 
KAB [8] for  a focused beam.  They find the exact  shape 
of the asymmetric  harmonic  beam  generated by  an 
incident  Gaussian  fundamental beam. BADK [7] define 
an  aperture  length I ,  as  in (1). When I << I,, double re- 
fraction is negligible. The transverse field distribution of 
the harmonic is the closely Gaussian,  with  a  radius l/& 
times that of the fundamental. For I N I, or greater, 
the transverse field  becomes increasingly  asymmetric. 
In  the manner of Kogelnik [26], we find the coupling 
coefficient  which gives the fraction of the asymmetric 
power that couples to  the lowest-order Gaussian mode 
(TEN,,,) and  the next higher-order Gaussian mode 
(TEMlo) of the resonator.  This is done by expanding 
the field in  ternls of the conlplet,e set of eigenfunctions 
or modes of the resonator  via  a  Fourier  integral expansion. 
The result is given as  a  function of l / la .  The coupling 
coefficient is included  in  Sections 11-8  and 11-B as  a 
parameter,  and is finally evaluated  in  Section 11-C. 

A. Theory of Resonance  Effects 
We restrict  our discussion here to  the near-field case, 

where diffraction is  negligible.  We start by briefly re- 
viewing some of the results of BADK [7] for the single- 
pass  harmonic  generation  in the absence of any resonant 
feedback. Assume that  the fundamental  beam  travels  in 
the x direction of a  Cartesian  coordinate  system xyx, 
and that  the crystal  optic axis  lies in the xx plane. BADK 
[7] show that  the increment in harmonic  electric field E, 
in  the phase-matched  direction is proportional to  the 

fundamental  intensity X, (x, y) 

dB2 - = iJS, .  dx 

The imaginary i arises from the use of complex notation. 
In  (8) it serves to indicate that  the harmonic field is 90” 
out of phase  with the harmonic  polarization wave. J is a 
constant  containing the nonlinear coefficient. The har- 
monic electric field a t  the exit  surface x = I of the  crystal 
may be written  as in [7], eq. 3.22 

E 2 ( x ,  y) = iJS,lF(u, t ,  q)e-as1’2e-ue (9) 

where X, is the peak of the  fundamental Gaussian in- 
tensity described by 

y) = ~ o e - 2 ( + + u ’ ) / w o ”  (10) 
The function F used in (9) describes the transverse x 
variation of the harmonic  electric field at  the exit  surface. 

~ ( u ,  t ,  4) = - 1 I  / e-2qre-(u+r)s dT, (1 1) 
t o  

u and v are  normalized  transverse  coordinate  variables 
given by 

where x2 is the transverse  coordinate in  the x direction 
naeasured from Ihe p line, as defined in  BADK [7], eq. 3.18. 
The harmonic  beam  radius w2 is related to  the fundamental 
beam  radius wo by 

w2 = .\/z‘ 

WO 

iilso, t is a normalized  length, 

t = d271.- - 1  
1, 

and  the  quantity 

4 “ -  
W O  

2 d 5  P 
where 

is a  normalized loss parameter.  The  transversc field 
variation of the  extraordinary  wave  harmonic (9) at  t,he 
exit  surface is shown in Fig.  2  by the curve  labeled E; 
(single pass) for  the case of no loss. For reference, the 
incident  Gaussian  ordinary  wave  fundamental field is 
shown labeled EY(TEM,,). The  other  aspects of Fig. 2 
will be discussed later.  The  resulting SHG power in  a 
crystal of length I with no resonance effects may be 
written  (BADK [7], eq. 3.32). 
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surface E, was  defined in (9); r is  defined by 
I ,  

I ,  
I f  

I f  
I I  

'I 

i? = 4- - - a 2 2  rlr2 e , (22) 

The single-pass absorption of the harnlonic elect'ric field is 
' 1  E O ( T E M ~ ~ )  k 'p is the round-trip  phase  shift  within the resonator. 

I' 
1'  / '  LINE 

',I, 
~ KDP 

Thus, (I - r2 )  is the round-trip power absorption; 
i\ 
\\ I Can is t,he  electric field coupling coefficient between the 
\:% fi field distribution of the SHG and  the lowest- 
": '\\ / M,iJ ', order  transverse mode of the harmonic  resonator (cao '. INPUT 

SURFACE  SURFACE 
EXIT ,' 

will be evaluated later). From (21) one obtains 
Fig. 2. Sketch showing the  propagation of the  fundamental  and 

harmonic  beams in KDP, and  the  shape of t,he electric field 
distributions at the exit  surface for t,he case of no loss. ]<e = ___. 

1 - re" 
c,oEz 

(23) 

where 

The function G represents the reduction in SHG power 
due  to double  refraction  from that given  by one-dimen- 
sional  considerations alone. In  the limit of p 3 O(Z << la)  
and no loss, G = 1 and (17) is identical t o  that given 

To treat t,he case of resonance of the harmonic,  let 
us refer  again t o  Fig. 1 and define E ,  as  the complex 
harmonic  electric field exist,ing in  the resonator at  t,he 
exit  surface just inside Ohe crystal.  Let rz be  t,he power 
reflection coefficient at  the right  side of the crystal,  as 
seen from  inside the crystal.  This coefficient,  mill t,hus 
include  surface reflection losses as well as external  mirror 
losses. Define the power transmission coefficient t,, relat- 
ing the  transmitted  electric field E ,  t o  the resonator 
electric field E,, as follows 

by (2). 

The  total unidirectional SHG powcr inside the reso- 
nator  is  obtained  from E ,  .E: as 

P,  = KP2 

(1 - 21. cos p + r2) (24) 

where the power coupling coefficient,  is 

The harmonic power transmit,ted  through the mirror 
on the right is given by 

At resonance, where 'p = 0, the resonant  enhancement 
factor  for the  transmitted harmonic power is 

Et  = a E e  (19) This  can be quite  large.  For example, if a2 = CY, = 0 and . .  

where n is t'he index of refraction of the harmonic in  the 
cryshal (since E,  is defined as the field inside the  crystal). 
Conservation of energy  requires 

rl = r2 = 0.99, the  transmitted power is enhanced  by  a 
factor of IOOK over that which  would occur without 
resonance. Inside the resonator, the harmonic power is 
enhanced  by 104~ .  The  value of K is typically between 

r2 + a, + t2 = 1 (20) 

where a, is the power-loss  coefficient  which includes  all 
of the losses in  the dielectric  mirror,  plus the losses a t  
the surface of the crystal, assuming that  this power is 
scattered  from  t,he  resonator. In  the experimental  situa- 
tion, the surface losses are low, being comparable  with 
mirror losses.  Also  define rl as the power-reflecDion  co- 
efficient a t  Dhe left  surface of the cryst,al,  as viewed from 

-0.3 and  unity. 
Derivations  similar t o  the one given in (21)-(27) for 

the lowest-order transverse mode also apply  for  each of 
the higher-order modes, if we simply interpret K,  'p, and 
r as  applying t o  the appropriate mode under considera- 
tion. In  general, we expect r t o  be independent of mode 
number; K and 'p, in general, vary with mode number. 
More will be said  about  these  later. 

within the nonlinear nledium. 

to  right, no second harmonic power is generated  as the  The width of the harnlonic resonance relative to the 
harmonic wave travels from right t,o left  after reflect,ion  spacing between successive resonance is derived  from 
from the right-hand The complex SI-IC; field (26) by considering the  variation Of P ,  for Small de- 
intensity E,  in  the lowest transverse mode of the har- Part,Ures from  resonance; that is, for << 1. Define 
monic resonator is given by  the self-consistency equation 

E, = reiWE, + caOE2 (2 1) 

Since the  fundamental  beam  travels only from  left B. Wid th  of Harmonic Resonance and Resonator Q 

€ = I - ? "  (28) 

as  the average one-way harmonic power  loss within the 
where the single-pass harmonic  electric field at  the exit  resonator.  The  phase  shift  wit,hin the resonator betwcen 



1966 ASHKIN ET -4L.: RESONANT OPTICAL HARMONIC AND MIXING 113 

MIRROR SEPARATION - 
Fig. 3. Expected resonant  behavior of the  harmonic power as 

the mirror separation of the harmonic resonator is varied. 

half-power points is 

for E << 1. 
To produce  a change in  the  round-trip phase  change 

of 2p, between half-power points of the resonance, we 
must change the mirror  separation  by an  amount Az = 6 
in free space, where 

2ph = 21c26 = 2e. (30) 

One can  shift  the longitudinal mode number  by unity 
by  a  change in  the  round-trip phase  shift of 27r, corre- 
sponding to  a  change in mirror  separation Az = X2/2 
in free  space. 

Consequently, 

21r x212 - n- - - - - -  
2% 6 E 

gives the  ratio of the spacing of the longitudinal reso- 
nances to  the width before half-power points, as illustrated 
in Fig. 3 .  

For comparison, consider the resonant response of a 
conventional  passive  resonator fed by  a fixed frequency 
source as the mirror  separation is varied.  From BG [12], 
the Q of a  resonator is given by 

- (31) 

stored  energy 2ad 
& =  - (32) 

energy loss per second EX 

where d is the effective optical  length of the resonator, 
X is the wavelength,  and E is the one-way  loss per  pass, 
including one reflection. As the frequency of the reso- 
nator is swept  by  varying the length d, the distance 6 
between half-power points is clearly 

From (32) and (33), one obtains 

x/2 7r - 
6 E  

(33) 

(34) 

which is the same as (31) for  harmonic  resonance.  This 
is, perhaps, obvious. It says that  the loss alone determines 
the resonant response, and  not  the  strength of the non- 
linear  interaction  driving  the  resonator. 

Fig. 4. Plano-concave  resonator and  the  relative  location of 
the  ordinary  fundamental  beam E1°(TEMoo) and  the  extra- 
ordina,ry harmonic beam E~"(TEMoo).  

C. Coupling Coeficient as a Function of l / l ,  
Figure 2 sketches the geometry and electric field  dis- 

tributions at  t'he  exit  surface of the  crystal needed  for 
the calculation of the coupling coefficient. The curved 
mirror M, and  the plane  mirror A I 2 ,  shown dotted  in 
Fig. 2, are  highly reflecting t o  the harmonic, but  trans- 
mitting for the  fundamental,  and  constitute a plano- 
concave harmonic  resonator,  as  shown in Fig. 4. The 
details of the choice of this resonator  are discussed in 
Section IV-A. The incident  ordinary wave fundamental 
field which drives the  crystal is a  TEM,,  Gaussian mode 
field, shown in Fig. 2 as E;(TEM,,) at  the exit  surface. 
The curve  labeled El (single pass)  represents the single- 
pass  extraordinary  wave  harmonic field generated  by  a 
single pass of E~(TER/I,,)  through  the  crystal  in  a non- 
resonant  interaction. As we see, the harmonic is no 
longer Gaussian and emerges asymmetrically  with re- 
spect to  the fundamental,  due to double  refraction. The 
field E; (single pass)  drives the various modes of the 
harmonic  resonator. In  particular, we calculate the 
coupling to  the lowest-order extraordinary  wave field 
of the harmonic  resonator,  shown in Fig. 2 as the Gaus- 
sian [labeled E;(TEM,,)] and  the next  higher-order 
exOraordinary wave field E;(TEM,,).  Both of these 
modes are  centered  around the p line at  the exit  surface. 

The coupling coefficient to these modes of the har- 
nlonic resonator will be  found  with  two  major  assump- 
tions.  First, that there is no loss [;.e., a, = a2 = q = 0 
in (12) and  (16)],  and,  second, that  the crystal is in  the 
near field of the resonator  mode, so that diffraction effects 
can be neglected. Both of these  assunlptions  are  valid 
for  t,he  resonator used, as will be seen in Section 177. We 
normalize the field El(TEM,,) and E: (single pass) to  
unit power, and  then compute the coupling. The 
E;(TEM,,)  eigenfunction  can be expressed in  terms of 
the transverse  coordinate x2 measured  from the p line, 

where we have replaced the beam  radius of the harmonic 
wz in  t,he  usual field expression by wO/& from (11). 
Note that 
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From  Section  3.1 of BADK [7], we write the transverse 
electric field distribution E; (single pass) as 

n 

where F and G are given in (11) and (18), with q = 0. 
Using (13) and (18), one can  verify that 

1-T f2(Xb2(Y)  dx dY = 1. (38) 

Define, following Kogelnik [26], the electric field coupling 
coeficient  due to the  aperture length to  the lowest transverse 
mode as 

coo = f(4g(Y)+oo(z, Y) dx dY 
(39) 

Substituting  from (12) for F ,  and interchanging the 
order of integration, one obtains successively 

2 
dX 

+m 

Thus 

In  the limiting case of t << 1, where t is defined by  (14), 
note that 

The power-coupling coefficient, is given by (25). Using 
the evaluation of G(t, 0)  from BADK [7], eq. 3.38,  with 
(41) and (25), we obtain  the curve of cEo(t) shown in 
Fig. 5. When Z = la, e:, = 0.35, and  the coupling to  the 
TEM,, mode of the resonator is 35 percent. In  the limit- 
ing case of large Z/Za(t >> I )  

c,2,(t) = - $ << 1. 1 
2t 2 (43) 

From (14) and (17) and BADK [7], eq. 3.39, one observes 
that for t >> 1 

(44) 

which  is independent of Z, showing that resonant  har- 
monic generation in  this mode has ceased t o  increase 
with  crystal  length. 

In a  similar  fashion, one may  evaluate the coupling to 

1.0 

0.5 

0.1 

0.05 

0.01 

0.005 
I 

0.001 
0.1 0.5 1.0 5 10 50 100 1000 5000 

t = G L  
t a  

Fig. 5. Variation of the power coupling coefficient to the TEMoo 
mode and ?'EMlo mode of the harmonic  resonator,  labeled ca02 and 
ca12, respectively,  as a flmction of the dimensionless length param- 
eter t. 

the TEM,, mode 

where 

One then obtains 

The  limiting cases for the power-coupling coefficient for 
this mode is,  from (25), given by 

1' 
c,",(t) 4 t << 1 

(48) 

and 

cfl(t) is plotted  in  Fig. 5, where it is seen that thc 
coupling t o  the TZ:M,, mode decreases rapidly for small 
t, as is reasonable.  The couplings to  thc other higher- 
order modes  were not explicitly calculated,  although 
we expect  them t o  decrease steadily  with  increasing  order. 

From Fig. 5, we see in  the limit t << 1 that c:,,(t) 3 1 
and c:,(t) 3 0, as do all the higher-order couplings. For a 
crystal like KDP with  finite p and  therefore  finitc Zo, 
small t implies a  short  crystal  length Z. However, for 
LiNbO,, where phase-matched  operation  normal to  the 
optic axis is possible, p = 0 and I, = 1141, [15]. Thus, 
for  such  crystals of any  reasonable  length Z, we are  still 
in the t << 1 limit, where there is 100 percent coupling to 
the lowest-order Gaussian mode of the harmonic  resonator. 
This  result,  although  derived for the near field only, 
applies more generally to  the  far field, arid implies that 
both  fundamental  and  harmonic  arc TE;M,, modes  which 
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diffract  together into  the  far field with coincident phase 
fronts.  Thus,  harmonic resonance with  LiNbOa  should 
be quite  favorable. 

111. RESONANCE OF THE FUNDAMENTAL 
Assume we have  a  fundamental  resonator  with  mirrors 

M, and M ,  which are highly reflecting at  the funda- 
mental  wavelength and perfectly  transmitting at  the 
harmonic  wavelength, as shown in  Fig. 6. If the reso- 
nator is properly  matched, then, at  resonance, the funda- 
mental power passing through  the  crystal inside the 
resonator is greater than  the single-pass power through 
the  crystal  in  the  absence- of the mirrors. Since SHG 
power is proportional to  the  square of the  fundamental 
power, enhanced SHG is possible, using the  fundamental 
resonator. 

The power inside the resonator  and the matching 
condition  can  be  derived, following the approach of 
Sect,ion 11-A. Rack  and Biazxo [27] have  derived  similar 
results  from  a  different  approach.  Referring to Fig. 6, 
define rl and rz as the power-reflection coefficients, and 
tl and t, as  the transmission coefficients at  the lossless 
mirrors l i ,  and M,. Let t be the  fundamental power- 
transmission coefficient of t'he  crystal. r,, rz and t are  all 
close to  unity.  By  definition 

r1 + t ,  = 1 = rz + t z .  (50) 

Define P,, P,, and PC, respectively,  as the incident pow-er, 
reflected power, and  the power inside the mirror M, of 
the resonator  incident  on the crystal. We express these 
powers in  terms of the  round-trip phase  shift  within the 
resonator y and  a reflectance parameter defined as 

rm = t2r2. (5 1) 

We find 

The power transmitted  through  the resonator is equal to  
t,tP,, where PC is given in (52). At  resonance, sin' y / 2  = 0, 
and the reflected power  is given by 

If the  input mirror  reflectivity rl = r,, the reflected 
power P,  = 0, and  the resonator is matched.  This  match 
condition implies that  the coupling loss 1 - rl is  equal 
to  the  sum of all  other losses 1 - t2rz, as  for microwave 
and  other  resonators. Let PC, be the power in the  cavity 
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Fig. 6. Fundamental resonator with mirrors M I  and &C2, which are 
highly reflecting to  fundamental light and  transmitting  to  har- 
monic light. 

0-=- 1 -K 
1 - 6  

Fig. 7. Variation of the normalized power inside the  fundamental 
resonator with  the  mismatch  parameter U. 

that is, rl = rm and sin' y / 2  = 0. Then 

The  square of (55), that is, 1/(1 - r,)', gives the reso- 
nant enhancement of SHG due to  fundamental resonance. 

We now find the sensitivity of PC to  departures of r ,  
from the ideal  matching  situation.  From (sa), (50), and 
(551, at  resonance, 

where 

u =  1 - v'r, 
1 - d r m  

- > 0. (57) 

If (1 - r l )  << 1 and (1 - r,) << 1, then u w (1 - rl)/ 
(I - rm),  and 

This is plot,ted in Fig. 7. From  the  fact  that  the curve is 
symmetrical  about u = 1 on  a log plot, we conclude that, 
for  a given deviation  from  match, it is better to  be over- 
coupled (u > 1) than under-coupled (u < 1). Note that 
significant  deviations  from  match  still give considerable 
enhancement of the  fundamental power P ,  wit,hin the 

at  mirror M ,  when we are  matched  and at  resonance;  resonator. 
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IV. DESCRIPTION OF THE EXPERIMENT 
The experimental setup selected for this  study con- 

sisted of a fixed-frequency gas laser and a separate  tunable 
external  resonator containing the nonlinear crystal. By 
separating the laser resonator  from the external resona,tor, 
one achieves the greatest flexibility in  the choice of 
parameters for each of the resonators. Furthermore, if 
one can succeed in optically isolating the source from the 
tunable resonator, one is then able to measure and 
interpret separately the characteristics of the laser source 
and t,he harmonic out,put, of the cxt'ernal resonator. 
These features  are highIy desirable in  an experimental 
study. Under different  circ,unzstances,  however, it might 
be desirable to work internally to  the laser cavity, to  take 
advantage of the high internal energy flux. 

A. Resmatoy ConsideTations 
1) Harmonic  Resonator: The harmonic resonator used 

is shown schematically in Fig. 4. The 1-meter curved 
mirror M, and  the flat mirror M, were separated by 3 
cm and were highly reflecting for the harmonic and highly 
hransmitting for the fundamental. The  actual sample 
used for the resonance work consisted of a 1.23 em length 
oi KDP, with a pair of 1 mm  thick antireflection-coated 
fused quartz plates optically joined to  the KDP with 
index matching fluid. This  type resonator is inherently 
high Q and relatively insensitive Do small angular mis- 
adjustments. Quantitative  experimentd comparisons with 
other  resonator geometries, as discussed in Section V, 
bear out these  statement's.  Table I contains a summary 
of various harmonic resonator  and  sample  parameters 
used. 

TABLE I 

h W2 62 EKDP la [ / l a  

3 1 . 4 c m  0.017cm 1.08 X 0.030 1 . 4 c m  0.87 

In  arriving a t  the results of Table I, correct account 
must  be  taken of the presence of the 1.43 cln of dielectric 
in  the resonator. The problem of an optical  resonator 
partially filled with dielectric is of importance in practice, 
and  has  not been treated  in  the  literature.  What is re- 
quired is to find the equivalent length of the air-dielectric 
combination in a problem involving the diffractive spread 
of a beam. Kogelnik [28] has described the  ray matrix, 
or ABCD method, for reht'ing  the transverse posiOion 
and slope of a ray  at  the  input  and  out'put reference 
planes of an optical system. This can be applied to  
resonators where we ca,n  specify hhe charact'eristics of 
the resonat'or by relating the position and slope at one 
mirror to  the same quantities at  the  other mirror. Look- 
ing at  Fig. 4, we see that  the region between mirrors 
can  be divided into  three optical regions by imagining 
two additional reference planes placed in  air  adjacent 
to the dielectric material of length I and index n. For the 

dielectric  region, the matrix is  easily  shown to be [82] 

To get the  matrix for the other  two regions containing 
only air, let n = 1. The product of thcse Lhree matrices 
is then  the matrix-relating positions and slopes of rays 
at  the two reference planes at  t'he mirror 

1 1  

where I ,  is the  total  air  length within the resonator  on 
both sides of the crystal. The matrix (60) indicates that 
the equivalent  air  length of the resonat,or is 

I 
d, = I ,  + - n 

irrespective of the location of the  crystal within the 
resonator. For  the plano-concave resonator, the equiva- 
lent confocal parameter b is [12], 

(61) 

bz 2 4dbl - 4d2 (62) 

where b, is the  curvature of mirror M, and d is the length 
of the resonator in  air (vacuunz).  Using 6, = 1 m, I ,  = 1.6 
cm, I = 1.4 em, n = 1.5, and d = de = 2.53 em, we get 
0 = 31.4  em, as shown in  Table I, using  (61) and (62). 

It is inlportant t o  note  that  there is a second equivalent 
length which applies to  the calculation of the axial mode 
spacing or free spectral range of a resonator. For a reso- 
nator containing only air (vacuun1), this is c /2d ,  where d 
is the resonator lengt,h. For a resonator part'ially filled 
with an antil-eflection-coated dielectric, d = d: where 

d: = I ,  + nl (63) 

since the  actual number of wavelengths in  the dielect,ric 
is  increased by  thc index of refract'ion n. 

The beam  radius w, of the harmonic at  the plane 
mirror of the plano-concave resonator is found  from (5), 
using b and the free-space propagation  constant. The 
far-field  diffraction angle [?I, 1112) is given by 

and is listed as 6, in  Table I for t,he harmonic resonator. 
The parameter [ 121 

is a normalized distance that determines the diffractive 
spread of the beam, according to 

'10, = w%(l + g) (66) 

where wo is the beam  radius at  the beam minimum, and 
w is t,he radius at distance E away. If E << 1, beam  spread 
or diffraction is small, and one is in  the near field. Thus, 

X d / b  X 0.030 gives the diffractive spread in  the 
KDP crystal,  and is small. The  aperture length I, is 
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Fig. 8. Sketch of the experimental setup. 

defined in (1). The  quantity l / l ,  gives the  ratio of the 
sample  length to  the  aperture length. 

2) Fundamental  Resonator: The plano-concave reso- 
nator of Fig. 4 could be used for  studying resonance of 
the fundamental, if mirrors M I  and M ,  were made  highly 
reflecting at  the fundamental  and  highly  transmitting 
at  the harmonic. Only a  limited  amount of work was, 
in  fact,  done in resonance of the  fundamental  and, for 
this,  a  plane-parallel  resonator was used. 

3) Resonator for Simultaneous  Harmonic  and  Funda- 
mental  Resonance: Sinzultaneous resonance of fundamental 
and harmonic  frequencies is an  attractive  thought. How- 
ever,  as  mentioned  by  Kingston  and  McWhorter [18], if 
the  standing wave nulls of the electric field of the funda- 
mental  and  harmonic coincide as at  a common conductive 
mirror, the  interaction between harmonic and  fundamental 
becomes  zero because of the  equal  and opposite effect of 
waves traveling in  both directions  within the resonator. 
They [IS] point out  that  this may be overcome experi- 
mentally  by  separate  mirror  surfaces  for  fundamental 
and  harmonic, or possibly by  operating  with some phase 
mismatch. 

This will not be pursued  further  here, since no experi- 
ments were attempted. 

B. Experimental  Setup 
Figure 8 shows a  sketch of the experimental  setup, 

showing the laser  source,  external  resonator,  with its 
KDP sample  clad in antireflection-coated  quartz  plates, 
and  all  other  relevant  components. The external reso- 
nator consisted of a  pair of dielectrically  coated  mirrors 
which  could be adjusted  in angle and whose separation 
could be varied by piezoelectrically scanning one of them. 
A sample holder located the nonlinear  crystal  with the 

optic axis, as shown between the mirrors,  with  adjust- 
ments on its angle and  position.  By  changing  mirrors  in 
the external  resonator, it was possible to  study resonance 
of the harmonic and of the  fundamental  separately. 
The use of the scanning  technique  not  only  permits one 
to  obtain  directly the complete resonant response of the 
harmonics  from the  external resonator, but also avoids 
what would otherwise  be the difficult problem of setting 
on the peak of the optical  resonance. 

The resonator,  including  detector, was located  inside 
a  light-tight box with  adjustments emerging through 
flexible joints. A long wavelength  pass  filter  on the  input 
end of the box excluded visible light  and passed the 
fundamental  beam at 1.15 p .  The  detector, which wa.s a 
6199 photomultiplier or, occasionally, a  lP21, was shielded 
from the 1.15 p radiation  and exposed t o  the 0.57G 1.1 

harmonic  radiation  by  a  short  wavelength  pass filter. 
The  output of the photomultiplier was processed by  a 
phase-sensitive  detection  circuit  having  a  suitable  time 
constant  and  displayed  on  a  chart  recorder  driven  in 
synchronism  with the piezoelectric mirror  drive. 

The scanning  Fabry-Perot  spectrometer [29] set up 
on the back  end of the laser  measured the amplitudes 
and  spacings of the longitudinal modes of the 1.15 p 
laser used t o  drive the external  resonator. It also could 
detect coupling of the  external resonator a t  resonance 
to  the laser. Coupling causes a  considerable  increase  in 
the  jitter of the amplitudes  and  spacings of the modes. 
In  the harmonic  resonator  experiments, the coupling 
was due to  residual  mirror reflections at  the funda- 
mental  frequency. A polarizer  and  quarter-wave  plate- 
type isolator  was not used in the final measurements, 
since it introduced loss and operated  with  degraded 
isolation,  due t o  differences in the reflection coefficient 
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of the resonator for ordinary and extraordinary polari- 
zations. It was found that  the coupling  could  be reduced 
to tolerable levels by using a very high-reflectivity mirror 
as  output mirror in the laser. 

Coupling was more noticeable when resonating the 
fundamental. However,  for our experiment, it was not 
bothersome, due to  the low Q of t'he plane-parallel  reso- 
nator used, as will be discussed later. In  principle, if the 
reflectivity of the  input mirror rl = T,, as given in (51), 
t,hen the resonator is matched and  there is no reflected 
power. I n  practice a special mirror of continuously vari- 
able reflectivity was slid across the  beam  to  adjust for 
best  match.  This  mirror  had  tapered dielectric layers 
which caused the reflectivity to  vary with position across 
the mirror. Over one inch of travel,  the reflect'ivity changed 
continuously from N 96 percent to  - 30 percent.  This, 
unfortunately,  was so rapid a change that variations 
over the beam  diameter were  significant. For  this reason, 
and  partly for reasons associated with  the low Q, it was 
not possible to achieve a perfect match. A true  Faraday 
rotation isolator with low  loss  would have been the 
ideal solution to  the isolation problems for harmonic 
and  fundament'al resonance. 

The purpose of ,the lenses L, and L, shown in Fig. 8 
was to  match  the  fundamental beam  from the laser to  
the external harmonic resonator  and scanning Fabry- 
Perot resonator.  When properly mat'ched to a scanning 
Fabry-Perot [a91 (in beam  radius and phase front curva- 
ture), all the incident power  couples to  the lowest-order 
resonator mode. In  the case of the harmonic resonator, 
we fed i t  with a fundamental  beam of radius fi times 
larger than  the beam  radius of the lowest order harmonic 
mode w2 = 0.017  em (see Table I), according to (13), 
and adjusted the beam minimum to be at  the plane of 
the flat mirror of the plano-concave resonator. In  spite 
of this matching, as we have  already calculated for 
harmonic resonators  with p # 0, double refraction causes 
coupling to  the higher-order  modes. 

C .  Lineup Technique 
The t,echnique for lining up  the harnlonic resonator 

was complicated by  the use of t'wo wavelengths, t,he 
combination of ordinary  and ext,raordinary beams in 
the resonator, and t,he  need to  adjust  the crystal angle 
for phase matching. The harmonic resonator was first 
adjusted for resonance, with the crystal only approxi- 
mately  adjusted in angle with  an  extraordinary wave 
0.6328 p beam, for which the mirrors have  about  the same 
reflectivity as  at 0.576 p .  This was done first with lens 
L, removed and  an isolator in place. The curved mirror 
M, was adjusted  square to the beam,  using smoke which 
made the beam trajectory visible enough to judge the 
coincidence of the incident and reflected beam at dl,. 
Without  touching the resonator, L,  was inserted and 
positioned for resonance again. This assures that  the 
lens has been introduced  with its axis  along the original 
beam axis. Thus, when the wavelength is changed to 
1.15 p ,  the beam axis  will not  shift. Irises I l  and I ,  are 

used to reference the bean1 during the change to 1.15 p. 
The final adjustment  for phase matching was madc 

at  1.15 p with LW, removed. When  reinserted, we expect 
harmonic resonance. If this fails, the entire lineup pro- 
cedure can  be  repeated  with an increasing chanw of 
success. Crucial to  this procedure is the  fact  that  the 
beam was introduced at  the curved mirror M, of the 
plano-concave resonator where the axes of the ordinary 
fundamental  and the extraordinary harmonic are co- 
incident (see Fig. 4). Final trimming adjustments were 
made visually by  tilting  the  output' mirror so as to 
coalesce the  many harmonic beam reflect,ions into a single 
spot which closely corresponds to  optimum interaction 
with the lowest-order mode of the harmonic resonator. 

v. EXPERIMENTAL RESULTS 

In  this section, we describe the results of experinlents 
using the  apparatus described in Section IV  and show 
how t,hey are interpreted in  terms of Section I1 and 111. 

A.  Harmonic  Resonator  Loss  Measurements and Resolution 
The loss per pass E at  0.576 p ,  associated with the 

extraordinary wave for various harmonic resonator geo- 
metries, was deduced from nleasurements a t  0.6325 p ,  
where the mirror reflect,ivities are essentially the same; 
E was  found  by using (34) and  dat,a of the  type illustrated 
in Fig. 3. 

Measurements  with a plano-concave resonator with 
no crystal gave values of E expected from the mirror 
reflectivities. However, for a plane-parallel resonator 
with no crystal,  there  was an additional 10 percent loss 
per pass beyond that expected from mirror reflectivities. 
This is probably  due to slight inaccuracies in  the piezo- 
electric scanner  and mechanical instabilities associated 
with t,he long path used between laser and resonator 
(- 1 m),  both of which  affect the plane-parallel gcomct,ry 
more  seriously. Most work was done  with the plano- 
concave resonator, in order not  to incur the measured 
additional loss. 

When a, KDP slab  was inserted into  the plano-concave 
resonator, there was an additional 12 percent loss per 
pass beyond that expected from mirror reflectivitics and 
bulk  absorption; 8 percent comes from the dielectric 
discontinuit'y; the  ot'her 4 percent we att,ributed  to surface 
imperfections. With a crystal cut  at  the Brewster angle, 
the loss per pass dropped - 9 percent, which still  left 
an additional 3 percent t o  be  accounted for by  surface 
imperfections. The lowest  loss arrangement and  thc one 
used  for the  actual harmonic resonance measurement 
involved att'aching a pair of 1 mm-thick antireflection- 
coated quartz plates to a 1.23 cm-long KDP crystal 
with index matching fluid. This reduced surface reflec- 
tions to less than 0.1 percent, but introduced - 0.4 
percent transmission loss  for both surfaces. This crystal 
in a plano-concave resonator  with 99 percent mirrors 
gave a measured value of E - 0.04, or 4 percent, which is 
reasonable, considering the bulk absorption. 

Figure 9 illustrates the resolution possible with the 
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Fig. 9. Response of the plano-concave harmonic  resonator to 
0,6328 p light consisting of two  longitudinal modes - 345 mc 
apart.  The principal response is in the TEMoo mode of the reso- 
nator. A weaker response in  the TEMlo mode displaced -200 mc 
away from  each of the two TElMoo modes is also illustrated. 

plano-concave resonator  containing the KDP sample 
clad with  the two  antireflection-coated  quartz  plates. 
It is also typical of the loss measurements.  This data was 
taken  with M ,  a 99 percent 1 m curved  mirror,  and M, 
a 97 percent  flat  mirror.  The  laser was 42 cm long, oscil- 
lating at  0.6328 p in  the  extraordinary wave. The figure 
shows the resonant response of the  external resonator  as 
it is scanned  in  length.  Every  time c/2d; = 4050 me 
[see (63)], we expect the resonances to  repeat.  This corre- 
sponds to moving the mirror M 2  a  distance of A/2. Since 
the piezoelectric mirror  drive  on A&, is linear, it con- 
veniently  provides an abscissa on Fig. 9 which is  linear 
in frequency,  from which we deduce that  the 0.6328 
p laser was oscillating in two well-resolved modes, - 345 
me apart. From the laser  length, we expect  longitudinal 
modes spaced  every 360 me. The  ratio A/26 yields a 
value of E = 0.5, as expected  from the earlier discussion. 

Figure 9 also  shows another  feature of the harmonic 
resonator which will be important  in  the  interpretation 
of the harmonic resonance data. This is the presence of 
the small  satellite resonance ,- 200 me away  from  each 
large resonance. These  are  due to  the  TEM,, mode of 
the resonator. In  this case, this mode is being excited 
because of residual  beam  misalignment or slight  errors 
in  the beam-matching  conditions. The mirror  separation 
d a t  which the various TEM,,,  modes of a plano-concave 
resonator  in  vacuum (or air)  are  resonant  is given by 
Boyd and Kogelnik [13], eq. 48 

?@ = q + (1 + m + n) cos-, (1 - F) (67) x 
1 

where b ,  is the  radius of the curved  mirror,  and m ,  n, 
and q are  integers  appropriate to  the mode under con- 

sideration.  For  a  resonator  partially filled with  dielectric, 
we use d = d: [see (63)] on the left-hand  side of (67). 
On the right-hand  side in  the c0s-l term, we use d = d. 
[see (Sl)]. For our resonator b, = 1 m  and de = 2.53 cm. 
From (67), the difference in  mirror  separation -- between the 
TEM,,, and  TEM,,, resonances is A / 2 d d , / b l ,  which 
corresponds to  - 204 me. This  agrees  with Fig. 9. We 
emphasize that  the 204 me separation between the TEM,,, 
and  TEM,,, modes, as used here, is merely a  convenient 
way of quoting the mirror  separation  between  transverse 
modes of the same  frequency. 

Since we expect  essentially the same Q and  resolution 
when looking at  harmonic  resonance at  0.576 p as at  
0.6328 p [see (31) and (34)], we conclude that  the Q is 
adequate  in  this  resonator  to resolve the harmonics of 
the longitudinal modes of the 1.15 p fundamental oscil- 
lator. As we shall see, we can also resolve the sum  fre- 
quencies of the various  longitudinal modes. 

B. Harmonic  Resonance 
A convenient  condition  for  observing the harmonics 

and mixing of axial modes is achieved  by using a rela- 
tively  short 1.15 laser  oscillating  in two longitudinal 
modes of equal  amplitude  having  frequencies f l  and f2, 

spaced  by Af = f a  - f, G c /2L.  We  then expect an  out- 
put at  three  frequencies 2f,, f l  + f2, and 2f2, having 
relative powers 1, 4, 1, respectively,  spaced  by Af. If 
the length of the laser tube L is increased, the number 
of oscillating modes increases  and  their  separation de- 
creases. This  reduces the separation of the harmonic 
and  sum  components  and  makes  their  resolution  in the 
external  resonator  more difficult. Suppose,  for example, 
we have  four  fundamental  longitudinal modes spaced 
by c /2L,  as shown in Fig. 10(a),  with frequencies fl, fz ,  
f3, and f4 .  We expect an  output of harmonic  and mixed 
components at  seven frequencies, as shown in  Fig. 10(b). 
The  central  three  output modes are made  up of two 
contributions each. For instance, output  at 2f2 consists 
of the second harmonic of f 2  at 2f2 and f l  + f 3  = 2f,, 
taken  in  proper  phase. In  actual  lasers, dispersion and 
saturat,ion effects result in  a  spectrum of longitudinal 
modes slightly different from c /2L,  with each mode 
having  a  phase  independent of its neighbors [30]. These 
small  shifts in spacing  split the degeneracy of each of 
the central three modes of Fig. 10, so that,  in  fact, we 
have  three closely-spaced doublets  and  a total of ten 
different output frequencies. In  our  apparatus,  these 
closely-spaced pairs would not  be  resolved. With higher 
numbers of longitudinal modes oscillating, the  output 
would consist of even larger  numbers of unresolved lines, 
spaced  approximately c /2L.  Fluctuations  in  the  laser 
mirror spacings, gas  discharge,  and  small  amounts of 
coupling back  from the external  resonator also give rise 
to  amplitude  and  frequency  fluctuations  in  the  laser 
modes. These effects complicate the multimode  situation 
and  contribute to  the observed instabilities  under  these 
conditions. 

It is  important  to  note that Fig.  10(b)  describes  only 
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Fig. 10. Spectrum of harmonic and mixed frequency  components 

modes. 
generated by four equally-spaced fundamental logitudinal 

the frequency spect,rum of the harmonic output.  This 
output couples predominantly to  the TEM,, mode of the 
harmonic resonator and,  to  a lesser extent,  to  the TEM1,, 
mode and  other higher-order modes. Thus, for each 
frequency present, there will be  a series of resonances of 
decreasing amplitude, each of which occurs a t  a different 
value of the mirror separation, as determined by (67). 

Figure 11 shows the laser output from  a L = 42  em 
tube oscillating a t  1.15 p, as monitored by  the scanning 
Fabry-Perot. The  tube is oscillating in two longitudinal 
modes with  somewhat  unequal amplitudes, spaced - 360 me S c/2L. The harmonic power output P ,  from 
these  two modes is shown in Fig. 12 as  a  function of the 
mirror  separation of t'he  plano-concave resonator, with 
mirror reflectivities 11/1, = 98.8 percent and M, = 97 
percent. We see successive groups of resonances spaced - c/2cZ: 4050 me,  from which we deduce that  the 
separation between the most  prominant resonances of 
each group is - 340  nzc. Thus, referring to Fig. 10(b), 
we conclude that we must be observing the sun1 fre- 
quency  as well as  the harmonics of the two incident 
longitudinal modes. The poorly resolved structure of 
Fig. 12, which constit,utes the high  base  from which 
the  three  dominant resona,nces  emerge, is taken  as evi- 
dence of the higher-order modes. It is typical of these 
harmonic  resonance  measurements that  the successive 
groups of resonances are  not completely identical. 

By  comparing P ,  at  the peak of the cent'ral resonance 
(65 units of power) with  the single-pass power obtained 
by removing the  rear mirror M ,  of the resonator (12 
units of power), we get  a  measure of the power enhance- 

Fig. 11. Laser output  from a L = 42 ern tube as  monitored on 
the scanning Fabry-Perot.  The two modes at N I. 15 p are spaced 
N 360 mc N c/2L. 

k/28 1-30 

340-? 
I 

MIRROR SEPARATION 3 

Fig. 12. Harmonic output P t  from  the harmonic  resonator vs. 
mirror separation for L = 42 em. The principal response consists 
of three resonances spaced - 340 me apart c/2L. 

ment  factor P, /P ,  in (27). From  the  relative  amplitude 
of the harmonic  components seen in  Fig. 12,  we deduce 
that  the single-pass power in the  central resonance  is - .6 X (12 units), or 7.2 units of power. Therefore, 
P J P ,  = 65/72 = 9.0 (measured) for the  central rcso- 
nance. We compare this  factor  with  the  theoretical  value 
computed  from (27), making the assumption that only 
the lowest-order Gaussian mode of the resonator is ex- 
cited. Thus, K = 0.43 = e:, for Z / Z a  = 0.87 (see Table I and 
Fig. 5). Also, E = 0.05 = (I - r )  and t2 = 0.03, which 
gives P J P ,  = 5.2 (calculated).  From (31), X/26 = 63 
(calculated),  whereas X/28 2 30 (measured). From (24), 
setting 9 = 0, we deduce that  the resonant  enhance- 
ment  factor for harmonic power inside the resonator is 
l/tz times  the enhancement  factor for t'ransmitted power 
(27). Thus,  internal  to  the resonator, we have  an en- 
hancement of P J P ,  = 9.0/0.03 = 300 (measured). 
These results, using the  L = 42 cnz laser, are  summarized 
in Table 11. 

With L = 64 em, the laser oscillated predominantly 
in four longitudinal modes, separated  by  about 235 me. 
The harmonic resonakor output consisted of about, seven 
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TABLE I1 

e PtIPZ PJP2 P e P z  PJPZ x/2 6 x/2 6 
measured  measured  calculated  measured  calculated measured  calculated 

L = 42 em 0.05 9.0 5 . 2  300 173 -30 63 

L = 64 cm 0.04 - -40 79 

L = 145  cm 0.04 -7.0  3.2 -580 266 -40 79 

- - - 

AVERAGE 
235 MC 

I 
MIRROR  SEPARATION 

a b a 
MIRROR  SEPARATION -3 

Fig. 15. Response of, the  harmonic  resonator Pt to  the incident 
fundamental light from  the L = 145 cm laser, as a function of the 
mirror  separation of the  harmonic resonator. 

Fig. 13. Harmonic resonator output Pt from a 1.15 p laser with 
L = 64 cm  oscillating  mainly in  four longitudinal modes separated 
by - 235 mc. 

I 
MIRROR  SEPARATION d 

Fig. 16. Response of the harmonic resonator  with an expanded 
scale showing the b resonances of Fig. 15 in detail. 

Fig. 14. Multiple exposure photograph of the laser output  spectrum 
at   1 .15 p for L = 145 em. The spacing of modes is - 103 mc. The 
laser discharge was oscillating a t  - 400 Kc. 

clearly resolved resonanms,  separated  by 235 nzc, as 
seen in  Fig.  13.  These resonances are more closely spaced 
than  the resonances of Fig. 12, and yet  appear  better 
resolved. The reason is  probably  associated  with the 
fact  that  the separat,ion  in position of the various  trans- 
verse modes of a given frequency corresponds to  - 204  mc, 
which is close to the 235 mc separation between sum and 
mixed frequency  components.  Thus, each resolvable 
resonance represents the sum of a TEMoo response at  
one  frequency,  and  a TEM,, response of a  neighboring 
frequency  c/2L = 235  mc away, and possibly even some 
lesser contributions from other  transverse modes at  

still  more  remote frequencies. In  this experiment, M I  
and M ,  had reflectivities of 98.8 percent. The value of 
X/26 increased  somewhat to - 40, consistent  with the 
higher Q.  

having  a 103 mc longitudinal mode spacing.  Figure 14 
is  a  photograph of the  output  spectrum a t  1.15 p.  The 
harmonic  resonator  with  two 98.8 percent  mirrors  gave 
harmonic output P,, as shown in Fig. 15, with  a  separa- 
tion of resonances of about 109  mc. Figure 16  shows 
data on the b resonances  taken on  an expanded scale. 
The  situation here is similar to  that of Fig.  13.  Each 
resonance represents,  principally, the response to  the 
TEM,, mode and, to  a lesser extent,  the  TEM,, mode 
having a frequency which is now 2(c/2L) = 206  mc 

Data was also obtained  from  a  laser  with L = 145 em, ’ 
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away, plus some smaller higher-order mode cont,ribut,ions. 
The  ratio of the  output power P,  at  the peak of the 
highest b resonance to  the single-pass  power  mit'h the 
output mirror removed was unity.  From  the fraction 
of the single-pass  power in  the highest b resonance, we 
deduce the enhancement  ratios shown in  Table 11. The 
table also  shows the measured value of x/26 and  the 
comparisons with  theory, assuming again that coupling 
occurs only to  the lowest-order Gaussian mode. 

The alternation in  the amplitude of successive groups 
of resonances observed in Fig. 15 was ascribed to a 
chance coincidence of the harmonic resonance and  the 
funda,mental resonance  caused by  the residual reflections 
of the mirrors a t  1.15 p. This coincidence  does not always 
occur, due  to  the dispersion of the  quartz plates, index 
fluid, and mirrors. It is interesting to  note  that  the 145 
em tube was operating  with a discharge oscillation at  
400 kc. This affected the amplitude of the modes, as 
seen on the scanning Fabry-Perot. The Fig. 14 photo- 
graph was taken with a long exposure t'inle and repre- 
sent's an average over a great  many sweeps. Apparently, 
this oscillation did not adversely affect the resonator 
output,  as seen in Fig. 15. In  fact,  simihr  data on tubes 
of comparable length which were free of oscillat,ions 
showed somewhat greater variat,ions in  the heights of 
successive  resonances. Possibly, the oscillation inhibited 
any locking of the modes to each other or to  the external 
resonator. 

In  Table 11, the comparisons between the measure- 
ments  and calculations based  on the excitation of only 
the lowest-order Gaussian mode show that  the calculated 
values of the power enhancement are too low, and  t'he 
calculated resonant width  too  narrow. 

These discrepancies,  which are  at most a factor of 
t'wo, can be reduced at certain places in  Table I1 by 
including the coupling to  the TEM,, and  other higher- 
order modes. Thus, a t  L = 145 em (data of Figs.  15 
and  16), the inclusion of the coupling to  the TEM,, 
mode (see Fig. 5) would  increase P J P ,  calculated and 
P J P ,  calculated by a factor of (e:, + C ~ , ) / C ~ ~  2 1.6. The 
extent of the contribution of the higher-order mode  cou- 
plings at  L = 42 cm (data of Fig. 12)  is  less  clear, although 
these modes may  be causing an overestimate of the meas- 
ured value of 6. The agreement between experiment and 
t,heory in Table I1 is  considered satisfactory. The com- 
plication of higher-order modes  could have been  elimi- 
nat'ed,  at'  the price of a little additional loss, by adding an 
iris of appropriate  diameter to  the harmonic reso- 
nator.  In our short resonator, with its small spot size, 
this was difficult, and t,herefore was not done. There 
was direct evidence of coupling to  the higher-order  modes 
from visual observation of the resonant harmonic light. 
At optimum  mirror  alignment, there always was a resid- 
ual halo about  the central  spot,  predonlinantly elongated 
i n  the z direction, which indicates the presence of t,he 
1 E,lL'Z,, and ot'her higher-order modes. 

In  the harmonic experiments described, the geometry 

r -  7 

used  was a compromise between the need for adequate 
signal-to-noise  level at the detector, the desire to  have a 
sample of sufficient length to display the effect,s of double 
refraction, and  the need for adequate Q t o  resolve the 
longitudinal modes of the laser. No real attempt was 
made at optimization. 

Keeping within the near-field restrictmion << l) ,  
we see from (27) that considerable improvements in 
resonant power are still possible. Reducing 1 and w, in 
the same ratio decreases E = (I - 1.) and keeps K and 
P, fixed, and  thus increases P,. Depending on E ,  a re- 
duction in I may increase K/E'  more than  it reduces p,, 
and  thus increase P,. 

C. Fundamental  Resonance 
We  will  consider our  data  on resonance of the funda- 

ment'al, taken  with  the external  resonator equipped with 
two plane mirrors, coated to give high reflectivity a t  
1.15 p and high transmission at  the harmonic wave- 
length. The  input mirror M, was of variable reflectivity, 
as previously  described  for matching purpose. M, had 
a reflectivity of 99.5 perccnh at 1.15 p. The sample used 
was a 3.5 mm  thick KD1' crystal,  cut  at  the Brcwster 
angle for the fundamental. The previous results  on loss 
per pass for a plane-parallel resonator  with no sample 
showed  10 per cent more loss per pass than could be 
accounted for by  the mirrors. This  in itself is an incli- 
cation that  the results which include the sample will  be 
considerably degraded. It was found that  it was not pos- 
sible t o  achieve a perfect match at resonance by varying 
the  input mirror reflectivity. The reflected  power went 
through a broad minimum of - 30 percent of the inci- 
dent power  for an  input mirror reflectivity of 0.89.  Also, 
as expected  for this resonator, the response of the de- 
tected harmonic light as  the fundamental goes through 
resonance  (seen in Fig. 17)  is rather broad, and yields 
a loss per pass E = 0.28. Taking 5 percent loss for the 
bulk  absorption of the fundamental, 3 percent loss due  to 
imperfections in  the Brewster surface, 53 percent for 
the known mirror reflectivities, and 10 percent additional 
loss for the plane parallel resonator in our setup, accounts 
for 234 percent of the 28 percent' observed. 

From  the measured E = 0.28 and t,he mirror reflec- 
t,ivitics,  we compute an efYective value of the transmission 
t,hrough the nonlinear material t = 0.77. Substituting in 
(51) and (56), we find that  the power at  the  input of the 
crystal inside the resonat'or a t  resonancc P G m  = 1.6 l',. 
Thus, we expect an enhancement of harmonic output 
of (1.6)' = 2.6 at  resonance, compared wit,h the single- 
pass power generated in the absence of resonance. The 
enhancement was measured experimentally by removing 
mirror M,,  which subjects the crystal t'o the incident 
power P I .  The experimental value of enhancement 
found was 5.  This agreement must  be considered fair, 
especially since we are applying a theory which  assunles 
a perfect resonator to a situation where we strongly 
suspect that beam walkoff is the origin of the additional 
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MIRROR  SEPARATlOfl 4 

Fig. 17. Harmonic  output  from a plane parallel  resonator con- 

mental light. 
taining KDP, which is tuned for resonance of the incident  fnnda- 

unaccounted loss and  the  inability  to  achieve  a  perfect 
match.  Had  a perfect  match been achieved with no ad- 
ditional loss a t  r1 = T, = 0.89, we  would have  expected  a 
harmonic  enhancement,  from (56), of 1/(1 - T ~ ~ ) ~  = 121. 

VI. SUMMARY 
The use of optical  resonance as  a means of enhancing 

the efficiency of second-harmonic generation  and  fre- 
quency nixing in  nonlinear  crystals  has been investi- 
gated  experimentally  and  theoretically.  This  included 
resonance of the incident  fundamental  light a t  1.15 p 
and also the generated  harmonic  light a t  .576 p .  A plano- 
concave harmonic  resonator  containing KDP had  an 
overall loss per  pass of - 4 percent  and  adequate Q 
to resolve the harmonics  and  sum  frequency  components 
of the individual modes of the incident  fundamental 
laser  light.  Large  resonant  enhancements were observed. 
The harmonic power internal to the resonator could be 
increased by - 500 times  and  external to tthe  resonator 
by - 10 times.  Clear  resonant effects were observed 
when resonating the fundamental  in  a  plane-parallel 
resonator,  and  an  enhancement of 5 was seen. The re- 
sults  make  it clear that  the optimum signal sources for 
resonant  nonlinear effects are in a single transverse  and 
longitudinal mode. 

A theoretical  calculation of the expected enhancements 
due to  resonance was presented,  including the specific 
transverse  energy  distributions of the incident  and 
generated  light beam which gives rise to coupling factors 
to the relevant  resonator modes. Satisfactory  agreement 
between experiment  and  theory was obtained, using 
the measured optical loss for the resonators. The results 
suggest that  further extensions of the experimental 
technique  can  lead to  even larger  enhancements  in 
harmonic resonance, and especially in  fundamental reso- 
nance using KDP or LiXbO, phase  matched  normal  to 
the  optic axis. 

This  study, although specific to  SHG  and mixing, 
has  direct  theoretical  and  experimental  relevance to 

parametric  oscillators. The resonance technique as used 
here for the second-order nonlinear  polarization coefficient 
may  be useful in the measurement of other weaker non- 
linear  interactions which, at  present, are beyond the 
range of single-pass measurements. 
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