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Quantum Monte Carlo Evidence for Superconductivity in the Three-Band Hubbard Model
in Two Dimensions
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A possibility of the electronic origin of the high-temperature superconductivity in cuprates is probed
with the quantum Monte Carlo method by revisiting the three-band Hubbard model comprising Cu
3d>—y» and O 2p, orbitals. Thed,._,» pairing correlation is found to turn into an increasing
function of the repulsion, within the 4 orbitals or thed-p level offsetAe, where the normalized
correlation grows with the system size. We have detected this in both the charge-transfer and
Mott-Hubbard regimes upon entering the strong-correlation regign ¢r Ae > bare bandwidth).
[S0031-9007(96)00358-4]
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The discovery of hight. superconductivity has kicked been attempted. In the limit of large level offséte >
off intensive theoretical studies, but we are still some waylU,, ,,), the system is equivalent to thsingle-band
from a complete understanding of what happens in thélubbard model described by the on-site interaction
realistic parameter range. Experimental and theoreticalnd the effective hopping.s = t,zip/As. If we further
studies have indicated that the essence of the cupratesnsider a limitU,; > t.y, the system reduces to the
lies in the two-dimensional CuOplane, for which it is s-J model where electrons, with double occupancies
generally recognized that Emery’s three-band Hubbardompletely inhibited, experience an exchange interaction
model [1] is the basic, starting model that describes botly = 4te2ff/Ud- Thus ther-J model is a natural limiting
the coppeBd and oxyger2p, and2p, orbitals. form of the three-band model in the Mott-Hubbard regime.

The model captures the essential feature of the system However, the real cuprates lie in the charge-transfer
with two key parametersiU; (the on-site Coulomb regime. Zhang and Rice [9] have proposed that even
repulsion between coppérholes) andAe (Cu3d—02p in this case, the low-lying states of the three-band model
level offset), where the energies are measured in units ghay be represented by the/ model, at least in the limit
the d-p hybridization, s,. The inequalityAe < Us is  of U, > Ae > 1,4,, and provided that the spin-triplet
usually used to identify the insulating host material as aj-, molecular orbitals may be neglected. In the
charge-transfer insulator, as opposed to the Mott-Hubbarghodel the superexchandeprovides a natural source of an
insulator withAe > U, [2]. Here we shall extend this effective attraction, and extensive theoretical works have
terminology into the doped case. The three-band Hubbarghdeed indicated that theJ model superconducts for a

Hamiltonian is given in standard notations as certain range of//7: In one dimension (1D) the phase
+ diagram has a finite pairing-dominated region around
H =14 Z (dicpjo + H.C) + 1), J ~ 2r [10]. In 2D, exact diagonalization results [11]
(i) indicate that the,._,--wave pairing correlation function
T is long tailed for sufficiently large/ ~ ¢, which is also
X i«Pire + H.C. o ' ;
<J§;0(p""p" 7 ) supported from variational Monte Carlo studies [12—14].

Now, even if ther-/ model can be superconductive, the
+ Ae Z "fa + Ua Z nﬁnﬁ ) (1)  following fundamental questions do remain for the original
jo i three-band Hubbard model: (i) Does the perturbative pic-
where dt creates a CBd,>—,> hole andpt an O2p, ture that maps the three-band model intd model in the
hole, 74,(1,,) is the nearest-neighbai-p (p-p) transfer.  limit of z,,/Ae,t4,/Us — 0 remain valid for finite, real-
Here the repulsion within the orbitals and the repul- istic values of parameters? In real materials ~ 2.574,
sion betweend and p orbitals have been neglected for [15] is only moderate, where the validity of the perturba-
simplicity. tion is not at all clear. (ii) Even if the perturbation is to
Great efforts have been made to search for supercomemain valid through, e.g., renormalizations, whether the
ductivity in this model [3—7], but indications of the off- resultant//r can become large enough to guarantee a high
diagonal long-range order have not been detected so far.. is also highly nontrivial. (iii) Does a qualitative differ-
There is also a variational Monte Carlo study [8], butence exist between the Mott-Hubbard and charge-transfer
the justification of the variational wave functions remainsregimes concerning the appearance of superconductivity
somewhat open. via, e.g., different effectivd /r mentioned in (ii)?
Subsequently, reductions of the original three-band All these points evoke another basic question; i.e.,
model into effective Hamiltonians in some limits have does thesingle-bandHubbard model, which shares the
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t-J model as an effective Hamiltonian in the strong-correlation functions shown below. We have also adopted
correlation limit, have a superconducting phase? In 1Dthe stabilization algorithm used by several authors to
the conformal field theory indicates that no matter howinvestigate ground-state and low-temperature properties
U/t is increased, the superconducting correlation fails tg21]. Finally, the so-called negative-sign problem makes
become dominant [16,17], indicating a behavior distinctthe statistical errors large for large interactions. Here we
from the situation when we let ~ ¢ in thes-J model. In  have increased the strength of the interactions up to the
the 2D Hubbard model, quantum Monte Carlo calculationgoint where the ratio of the total sign to the total number
up to U = 4t still show no sign of the off-diagonal long- of samples decreases to 0.5. When all these conditions are
range order [18]. To reconcile this, we have to consider &atisfied, the CPU time required was typically 50 hours on
possibility that either the effectivgé/r is small, orU = 4¢r  HITAC S-3800 supercomputer for the largest and U,
is already outside the perturbative region. If the single-considered here.
band Hubbard model remains normal for the whole range As for the symmetry of the pairing, we have considered
of parameters, while the three-band Hubbard model withi,- - ,»-wave( f; = cos;, — cosy,) and extended-wave
finite, realistic values of parameters does superconduct, tHegf; = cosy, + cosg,) pairing, for which we have calcu-
Mott-Hubbard and charge-transfer regimes may possibliated thek = 0 Fourier component of the real-space cor-
belong to different universality classes. relation function,S, = (1/2N)<A*A + A ALY, with
These problems have remained a long-standing puzzlé, = >, f4(q) (dgd—q + pgpZq + qup q)
which is exactly our motivation to revisit the three-band In this Letterwe focus on the hole doping case [22], and
Hubbard model, where we cover a hitherto unexploredyo from 18 holes fod X 4 unit cells § = 0.125), 42 for
range of parameters. If the answer is positive, we will6 X 6 (6 = 0.166), to 74 for8 X 8 (6 = 0.156). Here
have a stronger ground to consider the superconductivitthe doping concentratiod is defined bys = [(number
in cuprates to be of electronic origin. of holeg/(number of unit cellg) — 1. These fillings are
We employ the quantum Monte Carlo (QMC) method,chosen so as to satisfy (i) the proximity & ~ 0.15,
where our motivation described above calls for special emand (ii) the closed-shell condition (with a nondegenerate
phasis upon the following. (i) We consider the range ofone-electron ground state) to ensure that the negative sign
Ae and U, extending to the bare widthy, of the most problem becomes less serious [23]. We haversgt=
relevant (Cl8d—-02p,, antibonding) band. We define the —0.4z4, [15].
case where bothe andU,; are comparable witV to be In Fig. 1 the dependence of; on Ae (a) or Uy
the strong-correlation regime in the following sense. Thgb) is shown. For smallAe and/or U,, S, decreases
relevant energy to be compared with should be the ef- with Ae or U;. An increase inAg or U, implies an
fective repulsion within thel-p Wannier orbital, which increased ratio (electron-electron repulsjfmandwidth),
should be greater than Mise, U,}, the minimum cost of  which will indeed work unfavorably for superconductivity
energy for two holes occupying the same Wannier orbitalin the weak-correlation regime. Howevéy, dramatically
This is, in fact, illustrated in the low-lying spectra of finite begins to increase with these parameters for larger values
systems, where the levels of the three-band model witlof Ae and/orU,. The crossover to this behavior occurs
Ae = 3.6 eV andU,; = 10.5 eV are best fit with those in the “strong-correlation” regime where boftx andU,
of the single-band Hubbard model witth ~ 5 eV [15]. exceed the bandwidthv of the antibondingd-p band
(if) The carrier doping is kept close to the experimentally(W ~ 2.33t,, for Ae = 2.7t;, andt,, = —0.414,).
known optimum valued ~ 0.15) for the superconductiv- At the same time, the pairing correlation startgtow
ity. (iii) Since a reliable detection of the pairing correlation with the system size right above the strong-correlation
is required, we adopt the ground-state (or projector) QMQegime. Although this does not guarantee an off-diagonal
formalism with the projection imaginary time) of atleast long-range order, it can be interpreted as a tendency
12/t4, to ensure convergence. (iv) The sample-size detoward the formation of such order. This is in sharp
pendence is studied for lattice sizes uBtx 8 unit cells  contrast with the weak-correlation regime, whétghas
(192 atoms), which is combined with a real-space analyan inverse size dependence.
sis to probe the range of the pairing correlation. To our To check that we are really looking at the long-range
knowledge, previous calculations do not satisfy all of thesgpart of the pairing correlation, we have looked into their
conditions simultaneously. behavior in a real space. If we decompdseinto a sum
The details of the QMC calculation are the following. over the real-space distandar, S, = > 4, s«(Ar) with
We have employed the discrete Hubbard-Stratonovick,(Ar) being the correlation function in real space. In
transformation introduced by Hirsch [19]. We have usedFig. 2 we represent;(Ar) by S;(R) defined by restricting
the Trotter decomposition, where the imaginary time in-the sum in the above formula tRAx|,|Ay| = R (in
crement pr = 7/(number of Trotter slice§ is taken to  the periodic boundary condition), whefar = (Ax, Ay).
be =0.05. The systematic errors due to the decomposiWe can see thaf;(R) monotonically increases as we
tion, which should be smaller thaf(A72) [20], is neg- include more distant correlations, which implies that the
ligible compared with the system-size dependences of thgrowth of the k = 0 component,S,, is indeed caused
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*<:/ variations ind mentioned ealier. Nonetheless, in any case,
0 8X8 RN ] we see a clear difference between the size dependence of
o0 6X6 \i}———% S4(R) and that ofS(R) or S(;..(R).
36 & 4X 4 We now move on to the Mott-Hubbard regimé ( <
- Aeg) with large A&, which leaves few @p holes to give
2 3 a natural way to approach tlsngle-bandHubbard model
U as mentioned earlier. In Fig. 3, we show the dependence

FIG. 1. Thed,_,-wave pairing correlationS,, is plotted  Of Sa on Ae with a fixed Us = 1.814p (a) or on Ua with
(a) againstAe for a fixed U, = 3.2, and (b) against/, for  a fixedAe = 3.614, (b) with the same system sizes and
a fixedAe = 2.7. We assume the hopping integrals = 1,  band fillings as in Fig. 1. Strikingly enough, a positive

tpp = —04. Number of holes and the sizes of the systemgependence on the system size does appear as well for
are 18 holes/(4 X 4) unit cells (), 42/(6 X 6) (O), and IargerAs andU just asyin Fig. 1 PP

74/(8 X 8) (). For8 x 8 a wider range is displayed in the ) C )

inset of (a) to show the change in sign of the gradient. The If we now combine these results in the Mott-Hubbard

dashed lines are guide for the eye. and charge-transfer regimes, the following picture
emerges. Suppose we compare the relevant energy in
] o ] the Mott-Hubbard regime, Mid e, U,} = Uy, with the
by the e?<ten5|on of the pairing correlation beyond theyidin of the antibonding band, which i% = 1.871,,
system size. o o for Ae = 3.6t4, (andt,, = —0.3t4, Which we have as-
An indication that this kind of caution is really necessarygmed here). The region at which the pairing correlation
is shown in inset (a) of Fig. 2. Namely, although the €X-emerges is preciselyy, ~ W, which is a counterpart to
tendeds-wave pairing correlations,, also increases with A . — w in the charge-transfer regime. Henoe, matter
the system size, its real-space behavifi(R), remains \yhat the regime in the three-band modeltendency to-
almost a constant, indicating that the size dependengggq d_,:-wave pairing superconductivity emerges
only signi_fie_s a short-range corrglation. We have alsQynen the relevant energy(; or Ae) exceeds, i.e., when
made a similar real-space analysis for the dstag%ered Magyr definition of the strong-correlation criterion is met.
netic correlation functionS(s, ) = 2. {(87):(87): + If we now recall our initial reasoning, the result
(S7)(S7 ). + (8787 )y (=1)Usm*(h=h) - The re-  summarized above amounts to either (i) the single-band
sult [inset (b) of Fig. 2] shows a behavior similar to that Hubbard model withl/ /¢ as large as the bare bandwidth
for the extended-wave pairing, indicating a short-range should concomitantly exhibit superconductivity or (ii) we
spin-spin correlation [24]. There is some possibility thatare looking at a regime where the finitenes\ef makes
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L B limiting cases, this might suggest a scenario in which the
s& (a) i superconductivity as conceived in the/ limit extends
. well into the realistic parameter regime.
O 8X8 P Numerical calculations were done on HITAC S3800
O 6X6 i 280 at the Computer Center of the University of Tokyo,
A 4X4 e ] and FACOM VPP 5040 at the Supercomputer Cen-
o 7 ter, Institute for Solid State Physics, University of Tokyo.
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