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Quantum Monte Carlo Evidence for Superconductivity in the Three-Band Hubbard Model
in Two Dimensions

Kazuhiko Kuroki and Hideo Aoki
Department of Physics, University of Tokyo, Hongo, Tokyo 113, Japan

(Received 6 December 1995)

A possibility of the electronic origin of the high-temperature superconductivity in cuprates is probed
with the quantum Monte Carlo method by revisiting the three-band Hubbard model comprising Cu
3dx22y2 and O 2ps orbitals. The dx22y2 pairing correlation is found to turn into an increasing
function of the repulsionUd within the d orbitals or thed-p level offsetD´, where the normalized
correlation grows with the system size. We have detected this in both the charge-transfer and
Mott-Hubbard regimes upon entering the strong-correlation region (Ud or D´ . bare bandwidth).
[S0031-9007(96)00358-4]
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The discovery of highTc superconductivity has kicke
off intensive theoretical studies, but we are still some w
from a complete understanding of what happens in
realistic parameter range. Experimental and theore
studies have indicated that the essence of the cup
lies in the two-dimensional CuO2 plane, for which it is
generally recognized that Emery’s three-band Hubb
model [1] is the basic, starting model that describes b
the copper3d and oxygen2px and2py orbitals.

The model captures the essential feature of the sys
with two key parameters:Ud (the on-site Coulomb
repulsion between copperd holes) andD´ (Cu3d –O2p
level offset), where the energies are measured in unit
the d-p hybridization, tdp. The inequalityD´ , Ud is
usually used to identify the insulating host material a
charge-transfer insulator, as opposed to the Mott-Hubb
insulator withD´ . Ud [2]. Here we shall extend thi
terminology into the doped case. The three-band Hubb
Hamiltonian is given in standard notations as

H ­ tdp
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where dy creates a Cu3dx22y2 hole andpy an O2ps

hole, tdpstppd is the nearest-neighbord-p sp-pd transfer.
Here the repulsion within thep orbitals and the repul
sion betweend and p orbitals have been neglected f
simplicity.

Great efforts have been made to search for super
ductivity in this model [3–7], but indications of the of
diagonal long-range order have not been detected so
There is also a variational Monte Carlo study [8], b
the justification of the variational wave functions rema
somewhat open.

Subsequently, reductions of the original three-ba
model into effective Hamiltonians in some limits ha
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been attempted. In the limit of large level offset (D´ ¿
Ud , tdp), the system is equivalent to thesingle-band
Hubbard model described by the on-site interactionUd

and the effective hoppingteff ­ t2
dpyD´. If we further

consider a limitUd ¿ teff, the system reduces to th
t-J model where electrons, with double occupanc
completely inhibited, experience an exchange interac
J ­ 4t2

effyUd . Thus thet-J model is a natural limiting
form of the three-band model in the Mott-Hubbard regim

However, the real cuprates lie in the charge-trans
regime. Zhang and Rice [9] have proposed that e
in this case, the low-lying states of the three-band mo
may be represented by thet-J model, at least in the limit
of Ud ¿ D´ ¿ tdp, and provided that the spin-triple
d-p molecular orbitals may be neglected. In thet-J
model the superexchangeJ provides a natural source of a
effective attraction, and extensive theoretical works h
indeed indicated that thet-J model superconducts for
certain range ofJyt: In one dimension (1D) the phas
diagram has a finite pairing-dominated region arou
J , 2t [10]. In 2D, exact diagonalization results [11
indicate that thedx22y2 -wave pairing correlation function
is long tailed for sufficiently largeJ , t, which is also
supported from variational Monte Carlo studies [12–14

Now, even if thet-J model can be superconductive, th
following fundamental questions do remain for the origin
three-band Hubbard model: (i) Does the perturbative p
ture that maps the three-band model intot-J model in the
limit of tdpyD´, tdpyUd ! 0 remain valid for finite, real-
istic values of parameters? In real materialsD´ , 2.5tdp

[15] is only moderate, where the validity of the perturb
tion is not at all clear. (ii) Even if the perturbation is
remain valid through, e.g., renormalizations, whether
resultantJyt can become large enough to guarantee a h
Tc is also highly nontrivial. (iii) Does a qualitative differ
ence exist between the Mott-Hubbard and charge-tran
regimes concerning the appearance of superconduct
via, e.g., different effectiveJyt mentioned in (ii)?

All these points evoke another basic question; i
does thesingle-bandHubbard model, which shares th
© 1996 The American Physical Society
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e
he
t-J model as an effective Hamiltonian in the stron
correlation limit, have a superconducting phase? In
the conformal field theory indicates that no matter h
Uyt is increased, the superconducting correlation fails
become dominant [16,17], indicating a behavior disti
from the situation when we letJ , t in thet-J model. In
the 2D Hubbard model, quantum Monte Carlo calculatio
up to U ­ 4t still show no sign of the off-diagonal long
range order [18]. To reconcile this, we have to conside
possibility that either the effectiveJyt is small, orU ­ 4t
is already outside the perturbative region. If the sing
band Hubbard model remains normal for the whole ra
of parameters, while the three-band Hubbard model w
finite, realistic values of parameters does superconduct
Mott-Hubbard and charge-transfer regimes may poss
belong to different universality classes.

These problems have remained a long-standing puz
which is exactly our motivation to revisit the three-ba
Hubbard model, where we cover a hitherto unexplo
range of parameters. If the answer is positive, we w
have a stronger ground to consider the superconduct
in cuprates to be of electronic origin.

We employ the quantum Monte Carlo (QMC) metho
where our motivation described above calls for special
phasis upon the following. (i) We consider the range
D´ and Ud extending to the bare width,W , of the most
relevant (Cu3d –O2ps antibonding) band. We define th
case where bothD´ andUd are comparable withW to be
the strong-correlation regime in the following sense. T
relevant energy to be compared withW should be the ef-
fective repulsion within thed-p Wannier orbital, which
should be greater than MinhD´, Udj, the minimum cost of
energy for two holes occupying the same Wannier orb
This is, in fact, illustrated in the low-lying spectra of fini
systems, where the levels of the three-band model w
D´ ­ 3.6 eV and Ud ­ 10.5 eV are best fit with those
of the single-band Hubbard model withU , 5 eV [15].
(ii) The carrier doping is kept close to the experimenta
known optimum value (d , 0.15) for the superconductiv
ity. (iii) Since a reliable detection of the pairing correlatio
is required, we adopt the ground-state (or projector) Q
formalism with the projection imaginary timestd of at least
12ytdp to ensure convergence. (iv) The sample-size
pendence is studied for lattice sizes up to8 3 8 unit cells
(192 atoms), which is combined with a real-space an
sis to probe the range of the pairing correlation. To
knowledge, previous calculations do not satisfy all of th
conditions simultaneously.

The details of the QMC calculation are the followin
We have employed the discrete Hubbard-Stratonov
transformation introduced by Hirsch [19]. We have us
the Trotter decomposition, where the imaginary time
crement [Dt ­ tysnumber of Trotter slicesd] is taken to
be #0.05. The systematic errors due to the decompo
tion, which should be smaller thanOsDt2d [20], is neg-
ligible compared with the system-size dependences of
-
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correlation functions shown below. We have also adop
the stabilization algorithm used by several authors
investigate ground-state and low-temperature proper
[21]. Finally, the so-called negative-sign problem mak
the statistical errors large for large interactions. Here
have increased the strength of the interactions up to
point where the ratio of the total sign to the total numb
of samples decreases to 0.5. When all these condition
satisfied, the CPU time required was typically 50 hours
HITAC S-3800 supercomputer for the largestD´ andUd
considered here.

As for the symmetry of the pairing, we have consider
dx22y2 -waves fd ­ cosqx 2 cosqyd and extendeds-wave
s fs ­ cosqx 1 cosqyd pairing, for which we have calcu
lated thek ­ 0 Fourier component of the real-space co
relation function,Sa ­ s1y2Nd kDy

aDa 1 DaDy
al, with

Da ­
P

q fasqd sdq"d2q# 1 px
q"p

x
2q# 1 p

y
q"p

y
2q#d.

In this Letter we focus on the hole doping case [22], a
go from 18 holes for4 3 4 unit cells (d ­ 0.125), 42 for
6 3 6 (d ­ 0.166), to 74 for 8 3 8 (d ­ 0.156). Here
the doping concentrationd is defined byd ­ fsnumber
of holesdysnumber of unit cellsdg 2 1. These fillings are
chosen so as to satisfy (i) the proximity tod , 0.15,
and (ii) the closed-shell condition (with a nondegener
one-electron ground state) to ensure that the negative
problem becomes less serious [23]. We have settpp ­
20.4tdp [15].

In Fig. 1 the dependence ofSd on D´ (a) or Ud

(b) is shown. For smallD´ and/or Ud , Sd decreases
with D´ or Ud. An increase inD´ or Ud implies an
increased ratio (electron-electron repulsion)y(bandwidth),
which will indeed work unfavorably for superconductivit
in the weak-correlation regime. However,Sd dramatically
begins to increase with these parameters for larger va
of D´ and/orUd. The crossover to this behavior occu
in the “strong-correlation” regime where bothD´ andUd

exceed the bandwidthW of the antibondingd-p band
(W , 2.33tdp for D´ ­ 2.7tdp andtpp ­ 20.4tdp).

At the same time, the pairing correlation starts togrow
with the system size right above the strong-correlat
regime. Although this does not guarantee an off-diago
long-range order, it can be interpreted as a tende
toward the formation of such order. This is in sha
contrast with the weak-correlation regime, whereSd has
an inverse size dependence.

To check that we are really looking at the long-ran
part of the pairing correlation, we have looked into th
behavior in a real space. If we decomposeSa into a sum
over the real-space distanceDr, Sa ­

P
Dr sasDrd with

sasDrd being the correlation function in real space.
Fig. 2 we representsdsDrd by SdsRd defined by restricting
the sum in the above formula tojDxj, jDyj # R (in
the periodic boundary condition), whereDr ­ sDx, Dyd.
We can see thatSdsRd monotonically increases as w
include more distant correlations, which implies that t
growth of the k ­ 0 component,Sd, is indeed caused
4401
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FIG. 1. The dx22y2-wave pairing correlation,Sd , is plotted
(a) againstD´ for a fixed Ud ­ 3.2, and (b) againstUd for
a fixed D´ ­ 2.7. We assume the hopping integralstdp ­ 1,
tpp ­ 20.4. Number of holes and the sizes of the syste
are 18 holesys4 3 4d unit cells (n), 42ys6 3 6d (s), and
74ys8 3 8d (h). For 8 3 8 a wider range is displayed in the
inset of (a) to show the change in sign of the gradient. T
dashed lines are guide for the eye.

by the extension of the pairing correlation beyond t
system size.

An indication that this kind of caution is really necessa
is shown in inset (a) of Fig. 2. Namely, although the e
tendeds-wave pairing correlation,Ss, also increases with
the system size, its real-space behavior,SssRd, remains
almost a constant, indicating that the size depende
only signifies a short-range correlation. We have a
made a similar real-space analysis for the staggered m
netic correlation functionSsp, pd ­

P
i,jksSd

i dzsSd
j dz 1

sSpx

i dzsSpx

j dz 1 sSpy

i dzsSpy

j dzl s21ds jx2ixd1s jy2iyd. The re-
sult [inset (b) of Fig. 2] shows a behavior similar to th
for the extendeds-wave pairing, indicating a short-rang
spin-spin correlation [24]. There is some possibility th
4402
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FIG. 2. The dx22y2-wave pairing correlation,SdsRd, the ex-
tendeds-wave pairing correlation,SssRd [inset (a)], and the
staggered magnetic correlation,Ssp ,pdsRd [inset (b)] are plotted
as a function of the range,R, in real space.

the increase ofSd with system size might be due to th
variations ind mentioned ealier. Nonetheless, in any cas
we see a clear difference between the size dependenc
SdsRd and that ofSssRd or Ssp,pdsRd.

We now move on to the Mott-Hubbard regime (Ud ,

D´) with large D´, which leaves few O2p holes to give
a natural way to approach thesingle-bandHubbard model
as mentioned earlier. In Fig. 3, we show the depende
of Sd on D´ with a fixedUd ­ 1.8tdp (a) or onUd with
a fixedD´ ­ 3.6tdp (b) with the same system sizes an
band fillings as in Fig. 1. Strikingly enough, a positiv
dependence on the system size does appear as wel
largerD´ andU just as in Fig. 1.

If we now combine these results in the Mott-Hubba
and charge-transfer regimes, the following pictu
emerges. Suppose we compare the relevant energ
the Mott-Hubbard regime, MinhD´, Udj ­ Ud , with the
width of the antibonding band, which isW ­ 1.87tdp

for D´ ­ 3.6tdp (and tpp ­ 20.3tdp which we have as-
sumed here). The region at which the pairing correlati
emerges is preciselyUd , W , which is a counterpart to
D´ , W in the charge-transfer regime. Hence,no matter
what the regime in the three-band model,a tendency to-
ward dx22y2-wave pairing superconductivity emerge
when the relevant energy (Ud or D´) exceedsW , i.e., when
our definition of the strong-correlation criterion is met.

If we now recall our initial reasoning, the resu
summarized above amounts to either (i) the single-ba
Hubbard model withUyt as large as the bare bandwidt
should concomitantly exhibit superconductivity or (ii) w
are looking at a regime where the finiteness ofD´ makes
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FIG. 3. Similar plot forSd as in Fig. 1 in the Mott-Hubbard
regime, U , D´. Sd is plotted (a) againstD´ for a fixed
Ud ­ 1.8, and (b) againstUd for a fixedD´ ­ 3.6 for tdp ­ 1,
tpp ­ 20.3.

the universality class of the three-band model distin
from that of the single-band Hubbard model throug
e.g., different ranges of the effectiveJyt. The former
possibility that the three-band model already resemb
the one-band Hubbard model whenD´ is increased up
to 3.6tdp does not contradict the previous one-band QM
results [18], where the largestU so far studied is only
half the bandwidth,4t. U ­

1
2 W can be mimicked by the

three-band model withUd , tpd for D´ ­ 3.6tdp , which
belongs to the region where the sign of pairing is abs
in the present result as well. We believe this proble
deserves further investigations.

In summary, we have detected a possible indicat
of superconductivity in the strong-correlation region
the three-band Hubbard model in both of the charg
transfer and Mott-Hubbard regimes, and in both of t
hole-doped and electron-doped cases [22]. Since al
these regimes and cases share thet-J model as some
t
,

es

nt

n
f
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e
of

limiting cases, this might suggest a scenario in which
superconductivity as conceived in thet-J limit extends
well into the realistic parameter regime.
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