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Abstract. Second-order susceptibilities are calculated for weak-coupling optical polaron system 
in the electric-field-biased parabolic quantum well SvUcNre. Most emphasis is devoted to the 
electron-LO-phonon interaction. The origin of the large optical rectification lies in the possibility 
of Nning independently the parabolic potential shape (force constant 0 in the potential is tunable) 
and the applied bias field F. The theoretical value of the optical rectification in this smclure is 
more than a factor of 10 higher in the structure where the electron-LO-phonon inferaction 
is ignored It has been shown that our results are independent of the elecuon-electron interanion 
and of the number of electrons in the parabolic quanhlm well. 

1. Introduction 

In the last two decades much attention has been focused on the study of polarons of reduced 
dimensionality in the context of the quantum-well-confined semiconductor shuctures. Of 
particular interest is the quasi-two-dimensional (Q2D) optical polaron, with most emphasis 
devoted to its strict two-dimensional (2D) characterization within the framework of an 
idealized approximation, accounting for the almost planar aspect of an electron in a thin 
quantum well and yet interacting with the bulk LO phonon modes of the well material [1,2]. 
The common theoretical prediction of the relevant work in the literature [l-51 is that the 
electron interacts more effectively with the phonons in two dimensions arid consequently 
certain polaron quantities scale by rather large factors over their corresponding bulk values. 

Wide parabolic quantum wells have recently been grown [Il l  by tailoring the 
conduction-band edge of a graded Al,Gal,As semiconductor. In comparison to square 
QWs, parabolic quantum wells (PQWs) have been shown to exhibit properties such as a 
nearly uniformly spaced density of states for the electrons and holes [6]. It is expected 
that the optical nonlinearities are more sensitive to non-square quantum well shapes than 
to square well shapes [7]. Quantum confinement of carriers in a semiconductor parabolic 
quantum wells leads to the formation of discrete energy levels and the drastic change 
of optical susceptibilities [SI. One of the most remarkable properties of these quasi-two- 
dimensional electronic systems is that optical transition between the sizequantized subbands 
are feasible. The electrons are quantized into subbands where their wave functions in 
the growth direction have the form of envelope functions with an extension equal to the 
effective well width, i.e. in the few-nanometre range. Electromagnetic waves may induce 
electronic transitions between these subbands. The dipole matrix elements associated with 
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these intersubband transitions have the same order of magnitude as the effective well width 
leading to extremely large absorption. The dipole matrix elements are thus in the nanometre 
range instead of the few picometres obtained in usual molecular or ionic system [9]. As 
even-order susceptibilities vanish in structures with inversion symmetry, finite second-order 
susceptibilities can only be observed if the symmetry of the conduction-band potential is 
broken through either the growth of an asymmetric well or the application of an external 
bias field. The optical non-linearities in parabolic quantum wells with an applied electric 
field have been studied [lo]. However, the polaron effects have never been considered in 
these papers. We report here on the calculations of optical nonlinearities of weak-coupling 
optical polarons in electriofield-biased parabolic quantum well media, with most emphasis 
devoted to the influence of electron-LO-phonon interaction on optical susceptibilities. As 
we know, there has been little work on the inclusion of polaron effects when calculating 
the nonlinear susceptibility or even the linear susceptibility in low-dimensional structures, 
although several authors [18-221 have calculated the polaron energy and impedance function 
and have shown that they scale by as much as a factor of 10 in two dimensions compared 
with bulk materials. It is interesting and important that our calculations show that this is true 
for the optical rectification coefficient. That means the polaron effect plays an important 
role in the calculation of the optical rectification coefficient for a parabolic quantum well 
in an electric field. 

It should be noted that for the present we take the confined electron as interacting with 
the bulk phonon modes only. Since in the most commonly studied compound materials 
(such as GaAs, for instance) the electron-phonon coupling is rather weak, an appropriate 
approach is to treat the Frohlich interaction as a perturbation. In the following we restrict 
our considerations solely to the weak-coupling repime. 
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2. Theory 

For simplicity, we will use units for which 2m' = h = o L O  = e = 1 (m* is the effective 
electron band mass, ft is Planck's constant, 0 ~ 0  is the LO phonon frequency, and e is 
the electronic charge). The interactions between electrons in the conduction band can be 
separated into a Hartree term due to the electrostatic potential of the total electron density 
and an exchange-correlation term [15]. The exchange-correlation part of the ground-state 
energy can be described as a functional of the electron density [16]. It should be noted 
that our theory is limited to very low electron densities. In the local density approximation 
(LDA) this functional is assumed to have only local dependence on the electron density. 
Making this local approximation leads to a one-body Schrodinger-type equation, where 
the electrons move in a potential that is the sum of the external (parabolic) potential, the 
Hartree potential, and an exchange-correlation potential. The Hamiltonian describing the 
weak-coupling optical polaron systems in electric-field-biased parabolic quantum well media 
is given by 

where 

is the electron part, 
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is the phonon part, and 

He+ = V Q b Q  exp(iq. p) exp(iq,z) + HCI. (4) 
Q 

is the Frohlich interaction. In the above, (p, z) and (P, Pz) denote the electron position 
and momentum, F is the external bias electric field. The interaction amplitude is related to 
the electron-phonon coupling constant U and the phonon wavevector Q = (4. qr) through 
VQ = (41Cff)'/~/Q. 

The unperturbed wave equation for the electron is given by 

H,oB."(P,z)=E,(lc)ok."(P,z) n=0,1,2,  ... (5) 

where 

@k,n(P3 2) = (Pn(Z)$k(P). (6) 

We have 

(p: + v(z) + Vdz) + Vdz)  + Fz)yl,(z) = envn(z). (7) 

In this expression, V(z) = $uiz2 = i D z 2  is the parabolic potential, and WO = 
( D / ~ * W ~ ~ ) ' / ~ ' ( D  is the force constant in the potential, which will be treated as a 
tunable parameter referring to the degree of confinement in the z direction) stands for 
the dimensionless measure of the degree of confinement in the longitudinal (2) direction; 
V,,(z) is the exchangsorrelation potential [17]: 

V,,(z) = a$n'/3(z) 0.034 11111 + 18.376a;n'/'(z)I) (8 )  
Eo 

where a i  = ZEO (EO is the~vacuum permittivity); VH(z) is the Hartree term due to the 
electrostatic interaction'of the electrons with themselves, 

where N D  (z) is the density of positive charge necessary to maintain charge neutrality. The 
electron density n(z) is given by 

(11) 
1 

ni(z) = ~ ( ~ F - E , ) I P ~ ( z ) I ~ @ ( E F  - ~ i )  

where n&) is the contribution of the ith subband to the charge density, @@)is the Heaviside 
unit-step function (0 = 0 for E < 0 and 0 = 1 for E > 0), and EF is the Fermi energy 
obtained from the condition 
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N. - I(EF - E ~ ) @ ( E F  - E ; )  (13) 
I - 2rr 

where Nj is the number of electrons per unit area in the ith subband. The self-consistent 
solution of (7)-(13) gives us the charge-density profile, the Fermi energy, the subband 
energies, and the total potential. 

Since a! < 1 (i.e., a! = 0.06 in GaAs), we msume the electron to be almost free 
in the transverse directions and thus utilize a plane-wave representation for its motion 
parallel to the x-y plane, i.e., we take $k(p) - exp(ik. p). We begin by expressing 
the general total wave function in a product form of the electron and phonon parts, i.e., 
@ = Qk.n(p,~)xph = q%(z)h(p)xph. For the ground state we take the electron to be in 
the lowest subband (n = 0) and select ,ypn as the phonon vacuum 10) simply because at low 
temperatures (kT << h q o )  there will be no effective phonons. 

Since in the most commonly studied compound materials (such as GaAs) the 
electron-phonon coupling is rather weak, an appropriate approach is to treat the Frohlich 
interaction Ha+, as a perturbation. Up to fint order, 

Now we will present a formalism for the derivation of optical rectification in this 
model. Let us consider an electlomagnetic field of frequency w which is incident with 
a polarization vector normal to the quantum wells. The system is excited by an internal 
electromagnetic field EO) = Eocosot. The electronic polarization of the system due to 
the internal field E(r) can be expressed as 

~ ( t )  = eoX(')(o)Ee-'W' + &ox~)(o)EZe-2'at + cc + ~oxf')(o)E~ (15) 

where x("(w) and xz,(o) (2) are the linear and the second-order optical susceptibility 
coefficients. The last term of (15) indeed predicts the generation of a dc electric field 
by an optical beam; xf) is the optical rectification coefficient. Using the same density 
matrix formalism as in [121 and [131. we have calculated the expression of x?) for this 
model: 

where POI = I(wk.O.phIZI*lc.l.Fh)l. 601 = (*k , l .p f~lZl*k , l ,ph)  - (*k.O.phlZIwk.O.ph), e is the 
electronic charge, 010 = ( € 1  - ~ ~ ) / h  is the Bohr frequency, I j y  is the dephasing time of the 
ground state and first excited state, and a.r is the density of electrons in the parabolic quantum 
well. The optical rectification coefficient is at its miximuni near resonance (w - 010, 

Y << 010): 
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3. Results and discussions 

For a gives concentration of carriers, the optical rectification coefficient may be optimized by 
choosing a structure maximizing the product of the oscillator strength with the induced dipole 
(proportional to &$I). In our model, we can tune independently the 'force constant D iq 
the parabolic potential and the applied electric field to optimize piISoI. 

As an illustration, p&$,l is computed as a function of the eIectric field F for three 
different force constants D, and the results %e shown in figure 1. From figure 1, we show 
that &&l increases with the enhancement of the applied electric field F. As the force 
constant D increases, /L&&L decreases. We note that the magnitude of p;,601 is proportional 
to the applied bias field F .  

Figure 1. Variation of the product of dipolar matrix elements I L ~ , S O ~  JS a function of the 
electric field F. It is plotted for three different force eonsttnm D in the pmbolic pQ1'"i: (a) 
D = 5.0 x kg m s-': (c) D = 1.5 x IOm7 kg m s-'. It 
shows that & S O ,  increases with the enhancement of the applied electric held F,  and increases 
with the decrease of the force constant D in the parabolic potentid. 

kg m s-'; (b) D = 1.0 x 

In figure 2, the optical rectification X'*' is plotted as a function of the energy of 0 1  
the fundamental photon. The'best set of parameters we have found for optimum optical 
rectification are~u,r = 5 x 10" m-3, F = 2.0 x IO7 V m-',, and D =.SO. We have also 
used the usually quoted value for l / y  of 0.14 ps [14]. Our curve is compared with'the 
one given in [lo], in which the electron-LO-phonon interaction is ignored. We can see that 
the value of xr) of this study is over 10 times larger $an that of [IO]. This means that, 
when we take account of the electron-LO-phonon interaction, the theoretical value of xi2) 
will be more pronounced. It is interesting that both i n  figure 1 and in figure 2, the results 
are independent of the electron-electron interaction and of the number of electrons in the 
parabolic quantum well. 

Next we will give the physical explanations for this polaron enhancement. First, it is 
known that the LO phonon in ionic crystals involves the relative motion of positive and 
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Figure 2. Calculated optical rectification xh2) as a function of the energy of the fundamental 
photon. The resub are compared with those in 1101. (d )  taking account of the electron-LO- 
phonon interaction (this study); (e) ignoring the electron-LO-phonon interaction [IO]. 

negative ions. This follows polarization and has a strong interaction with electromagnetic 
waves. Thus the LO phonon has a marked influence on the optical properties of ionic 
crystals. Second, in the literature, the so-called optical rectification usually refers to the 
generation of a dc electric polarization by an intense monochrome laser beam in a nonlinear 
medium. This dc electric polarization does not radiate electromagnetic waves, but forms 
a dc electric field in the medium. Therefore, when we take account of the electron-LO- 
phonon interaction, the dc electric polarization induced by the laser beam will increase 
notably. Thus, it is not surprising that the optical rectification coefficient scales by as much 
as a factor of 10, while the electron-LO-phonon interaction is taken into account. For the 
above reasons, the result of the paper should be of importance to future calculations of the 
second-order susceptibility in low-dimensional structures, and thus the work is useful and 
should be of relevance to experiment. 

In conclusion, we  have studied the optical rectification of the weak-coupling optical 
polaron systems in electric-field-biased parabolic quantum well media. Of particular interest 
is the electron-LO-phonon interaction and tbe fact that the results are independent of the 
electron-electron interaction and of the number of the electrons in the parabolic quantum 
well. Because of taking account of the electron-LO-phonon interaction, the theoretical value 
of xf) is in good agreement with the experimental measurements. The results open up the 
way to synthetic nonlinear semiconductors for future use in far-infrared signal processing. 
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