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Translating Inequalities between 
Hardy and Bergman Spaces 

Kehe Zhu 

1. INTRODUCTION. Let D be the open unit disk in the complex plane C. For 
0 < p < oo the Hardy space HP consists of analytic functions f in D such that 

IIfII 
=s 

1 r2f 
Ilf i 

Op 

= 
O sup 2 If 

(reit)lP 
dt < o0. 

0<r<l 27r o 

It is well known that each function f in HP has a finite radial limit, which we denote 
by f(?), at almost every point ? of the unit circle T. Furthermore, 

If llp, = - If (e") IPdt = lim - f (reit)lp dt 
27ro r-- 2r Jo 

for every f in HP. A good reference for Hardy spaces is [1] or [2]. 
When -1 < a < oo and 0 < p < 00 the (weighted) Bergman space AP consists of 

analytic functions f in D such that 

If iP = j If (z)Ip dA(z) <00, 

where 

dA.(z) = (a + 1)(1 - Iz12) dA(z) 

and dA is area measure on D normalized so that A (DI) = 1. General references for 
Bergman spaces are [3] and [4]. 

In this note we show how to translate certain classical inequalities for Hardy spaces 
to inequalities for Bergman spaces, and then how to translate them back to the original 
inequalities for Hardy spaces. 

2. THE INEQUALITIES. We consider three classical inequalities from the theory 
of Hardy spaces. The first one is the Fej6r-Riesz inequality. 
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Theorem 1. Let 0 < p < Xc. Then 

If (x)l 0dx < 
- 

If(ei)l dt 
-1 f20 

for all f in HP. Moreover, the constant 1/2 is best possible for each p. 

The second one we want to consider is an inequality of Hardy. 

Theorem 2. Suppose that 

00oo 

f(z) = Lanzn 
n=O 

is the Taylor series representation of a function in H'. Then 

Slan I lfH1 
n=0 

Moreover the constant rr is best possible. 

If finding the best possible constant is not a concern, then Hardy's inequality is a 
special case of the following inequality due to Hardy and Littlewood. 

Theorem 3. For each p in (0, 2] there exists a positive constant C, such that 

E(n + 
1)p-21na n1 Cp If (eit) dt 

n=0 0 

for each function f(z) = E•,•_ az" in HP. 

These three inequalities can all be found in [1]. 

3. THE TRANSLATION TO BERGMAN SPACES. We show how inequalities 
like the ones in the previous section can be translated to Bergman space versions using 
simple integration in the radial direction. We begin with the Bergman space version of 
the Fej6r-Riesz inequality. 

Theorem 4. Suppose that 0 < p < oo and -1 < a a oc. Then 

I(1 
- 

Ixl)+llf (x)lp 
dx 

< 
r |If (z)|I dA. (z) -1D 

for all f in AP. 

Proof Let f be a function in AP. For each r satisfying 0 < r < 1 the function fr 
given by z ? f (rz) is clearly in HP, so by the Fej6r-Riesz inequality 

If (rx)-p dx - 
If (reit)lp dt. (1) 

1 2 fo 
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We multiply both sides of (1) by 

1 
-(a + 1)r(1 - r2) dr 
2t 

and integrate from 0 to 1 to obtain 

+ r(1 - r2)adrf If(rx)p dx < If(z) I)IdA(z). 

A simple change of variables transforms the left-hand side to 

S(1 -I r2)' dr If (x)I Idx. 

We then use Fubini's theorem to rewrite this as 

a If (x)IP dx (1 - r2 adr. 
7t J-l lxi 

Since 

1 fl1 1)" 
(a l) (>-r2) (dr>(a + 1)I ( )-r2)drdr= 

-(1 - Ixi) 
1 I I 2. 

we conclude that 

(1 - Ixl)a+lIf(x)I| dx < r IDf (z)) IdAa(z), 
-1 D 

completing the proof of the theorem. U 

We are not certain that the constant 7r in Theorem 4 is best possible for any fixed 
a and p. However, because the constant 1/2 in the original Fej6r-Riesz inequality is 

sharp, results of the next section imply that if we want a universal constant that works 
for all a and p, then r is the best possible one. 

The counterpart of Hardy's inequality for Bergman spaces is expressed by the next 
result. 

Theorem 5. Suppose that -1I < a < 0c and that f (z) = ~ 
o anz is a function 

in A'. Then 

r (a + 
2)r(2 

+ 1) f 
o(n 

( 2 la 7r If(z) I dA(z). 
no(n 

+ 1)1'(n + 2 + a 

Proof For fixed r in [0, 1) we first apply Hardy's inequality to the dilated function fr, 
which has the Taylor expansion 

oo 

fr(z) = f (rz) = anr "zn 
n=l 
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and then integrate the resulting inequality with respect to the measure 

(a + 1)r(1 - r2)' dr 

on the interval [0, 1). The desired result then follows from the well-known properties 
of the gamma function that 

(1 - r)s-lr'-' dr = (s > 0, t > 0) 
Jo J (s + t) 

and 

(a + 1)f(a + 1) = F (a + 2). 

The Hardy-Littlewood inequality also has its analogue in the Bergman space setting. 

Theorem 6. Suppose that 0 < p < 2 and -1 < a < oc. If C, is the constant from 
Theorem 3, then for each function f (z) = 

Jn'o 
anzn in AP it is the case that 

" F(a + 2)F(np 1) r S np+ 2 + (nan 27rCpI| If(z)IPdA,(z). 
n=O o 

p + 2 + a) D 

Proof The proof is similar to that of Theorem 5. M 

Corollary 7. Suppose that 0 < p < 2 and -1 < a < oc. Then there exists a con- 
stant C > 0 (depending on p and a) such that 

3(n + 1)P-a-3 anP < C f (z)l dA,(z) 
n=O 

for every function f (z) = -Cno anzn in AP. 

Proof This follows from Theorem 6 and Stirling's formula for the gamma function. 

If we do not strive for the best possible constants, then Theorem 1 is a consequence 
of Carleson's characterization of positive measures /t on ID such that 

if (z)[p 
d(z) 5< C f (e")p dt 

for all f in HP (see [1] or [2]). Similarly, Theorem 4 would follow from the corre- 
sponding characterization of positive measures it on ID such that 

fI lf(z)lP dt(z) < 
C 

fDf 

(z) 11IdAa(z) 

for all f in AP (see [4] or [3]). 

4. THE TRANSLATION BACK TO HARDY SPACES. We now show how the in- 
equalities obtained in the previous section for weighted Bergman spaces can be used to 
recover the original counterparts for Hardy spaces. The key is the following realization 
of the Hardy space HP as the limit of AP as a 

-- 
-1+. 
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Proposition 8. Suppose that 0 < p < oo and that f is in HP. Then f belongs to AP 
for every a in (-1, 0x). Moreover, 

lim |IfllAP = IlflIHP a - +1+ 

Proof By switching to polar coordinates, we find that 

Ilfll - (a + 1) 
fID 

f(z)IP(1 - 
Iz12•adA(z) 

= r r(1 - r2)a dr If(reit)Ip dt 

< 
2(a + 

1)llfll, r(1 -r2 dr 

= Ilfllp. 

This shows that f belongs to AP for all a in (-1, oc) and that 

lim sup II fI1AP < IIflHP. (2) 

On the other hand, for any E > 0 there exists some a in (0, 1) such that 

27r If (re')lp dt > IlfllP - 27f If Ho 

for all r in (a, 1). It follows that 

If iIp =a r(1 - r2)( dr I2 f(reit)lP dt 
AP 

+"2 

-+ r(1 - r2)a dr If (reit)lp dt 

> 2(a! + I)(llfll ,, -p c) 
r(l 

- 
r2)a dr 

= (IOf Pl, - 0)(1 - a2)2+1l 
Letting a -- - 1+, we obtain 

lim inf1f | f I p |I f ||1 p p 
t 

-_ l_ 

+ A 
p -a-H 

Since E is arbitrary, we must have 

lim inf Ilf A > Ilfl H. (3) 
-+-* 1+ 

In combination with (2), (3) completes the proof of the proposition. U 

Proposition 8 is certainly well known to experts in the field of Hardy and Bergman 
spaces. We included a proof here for completeness and for the lack of a specific refer- 
ence. 

524 @ THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 111 



We can now recover the three classical inequalities cited in section 2 from the results 
of section 3 by taking the limit as a -- -1+. In fact, it is clear that the Fej6r-Riesz 
inequality (Theorem 1) follows from Theorem 4, Proposition 8, and Fatou's lemma; 
Hardy's inequality (Theorem 2) is a consequence of Theorem 5, Proposition 8, and 
Fatou's lemma; and the Hardy-Littlewood inequality (Theorem 3) can be deduced from 
Theorem 6, Proposition 8, and Fatou's lemma. 
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A Simple Proof of Descartes's Rule of Signs 
Xiaoshen Wang 

"Descartes' Rule of Signs is a staple of high school algebra, but a proof is seldom seen, 
even at the college level" [2]. A proof of the theorem is usually several pages long [2]. 
In this note we give a simple proof. 

Theorem (Descartes's Rule of Signs). Let p(x) = aoxbo + alxbl + ... + anxbn de- 
note a polynomial with nonzero real coefficients ai, where the bi are integers satisfying 
0 < bo < bl < b2 < ... < bn. Then the number ofpositive real zeros of p(x) (counted 
with multiplicities') is either equal to the number of variations in sign in the sequence 
ao, ... , an of the coefficients or less than that by an even whole number. The number 
of negative zeros of p(x) (counted with multiplicities) is either equal to the number of 
variations in sign in the sequence of the coefficients of p(-x) or less than that by an 
even whole number 

In the following we denote the number of variations in the signs of the sequence of 
the coefficients of p by v(p) and the number of positive zeros of p counting multiplic- 
ities by z(p). We need the following simple lemma. 

Lemma. Let p(x) - aoxbo + alxbl + ... + anxbn be a polynomial as in the theorem. 
If aoan > 0, then z(p) is even; if aoan < O, then z(p) is odd. 

Proof We consider only the case when ao > 0 and an > 0. The other cases can be 
handled similarly. Because p(O) > 0 and p(x) -- oc as x -- oc, it is clear that the 
graph of p crosses the positive x-axis an even number of times, where we count cross- 
ings without regard to multiplicity. If x = a is a point at which the graph of p touches 
but does not cross the positive x-axis, then the multiplicity of a is even. If the graph 

1The theorem would be false if the positive real roots were counted without multiplicity, as the example 
2 - 2x + 1 shows. 
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