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Abstract
Based on the Schrödinger–Bohm model, we have derived an effective
conduction-band edge (ECBE) equation by eliminating the density gradient
term. When applied to the Monte Carlo (MC) simulation of the quantum
corrected Boltzmann transport equation (BTE), this method has the
advantage of not being affected by density fluctuations. The utility and
accuracy of the ECBE method are tested on a simple problem of charge
confinement in an infinite potential well and also those of particle tunnelling
of a step potential barrier. Both results indicate that the ECBE method is a
viable approach to the quantum correction of the BTE.

1. Introduction

As semiconductor devices are scaled down to nanometre
dimensions, quantum mechanical (QM) effects start to affect
their characteristics. The conventional Monte Carlo (MC)
simulation, based on the semiclassical Boltzmann transport
equation (BTE), does not treat QM effects such as carrier
confinement and tunnelling. In order to include full QM
transport, methods such as the non-equilibrium Green’s
function formalism are necessary. However, for many
practical devices, an efficient alternative is to include quantum
correction within the framework of the semiclassical BTE.
Two major quantum correction methods have recently been
advanced to achieve this goal. One is based on the density
gradient (DG) method either through Bohm potential [1] or
through Wigner potential [2]. The other is the effective
potential (EP) method [3].

In this paper, we present another version of the DG method
in which the density gradient is eliminated. We call it the
effective conduction-band edge (ECBE) method.

2. Effective conduction-band edge equation

Starting from the single-particle Schrödinger equation

− h̄2

2m
∇2ψ + V (⇀r)ψ = ih̄

∂ψ

∂t
, (1)

where V (⇀r) represents the electrostatic potential (energy).
Assuming a complex form for the wavefunction ψ =
R exp(iS/h̄), one can arrive at the following two equations
[4, 1, 5] after separating the real and imaginary parts:

− ∂S

∂t
= 1

2m
(∇S)2 + V − h̄2

2m

∇2R

R
, (2)

and
∂P

∂t
+ ∇ · (P∇S/m) = 0, (3)

where P = R2 is the probability density. For the stationary state
under zero current conditions, the phase of the wavefunction
S is give by −Et + const [6]. Equation (2) then becomes

E = V − h̄2

2m

∇2
√

P√
P

, (4)

where E is the eigenenergy. We call equation (4) the
Schrödinger–Bohm total energy model. For a pure state, the
probability density P(⇀r) is proportional to the carrier density
n(⇀r). Under this assumption, equation (4) becomes

E ≈ V (⇀r) − h̄2

2m

∇2√n√
n

= V (⇀r) − h̄2

4m

[
∇2 ln n +

1

2
(ln n)2

]
.

(5)

Equation (5) is also known as the DG or the quantum
hydrodynamic (QHD) model [7–9], because the second term
on the rhs of equation (5) depends on the density gradient.
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The purpose of deriving the ECBE equation is to eliminate
the density gradient term in equation (5). To achieve this,
first, we replace the eigenenergy E in equation (5) by an
effective total potential (ETP), V ∗(⇀r). Second, in equilibrium,
n(⇀r) is proportional to exp[−V ∗(⇀r)/kBT ] and therefore
ln n(⇀r) = −V ∗(⇀r)/kBT + const. Substituting this ln n(⇀r) into
equation (5) gives

V ∗(⇀r) = V (⇀r) +
h̄2

4mkBT

[
∇2V ∗(⇀r) − 1

2

1

kBT
(∇V ∗(⇀r))2

]
(6)

This is our ECBE equation, or the field equation for the ETP,
V ∗, valid under the equilibrium condition. A more formal
derivation of equation (6) and its limitations are given in
appendix A. We believe that this is the first time such an
equation is presented.

3. Application to quantum carrier confinement

To test the validity of equation (6), we consider a simple
problem of one-dimensional potential well with infinite
boundaries. Let us assume V (x) = 0, 0 < x < L, and
V (x) = ∞ at x = 0, L. This problem resembles the
charge confinement in an ultra-thin-body double-gate MOS
capacitor with negligible oxide tunnelling. The wavefunction
corresponding to the ground state with the eigenenergy E0 =
π2h̄2/2mL2 is

ψ0 = A sin(πx/L), (7)

where A is a constant. The carrier concentration is given by

nSchr(x) = n0 sin2(πx/L), (8)

where n0 is the peak density at the centre of the potential well
and x = L/2. Since n ∝ exp(−V ∗/kBT ), for the purpose
of comparison, we may define the effective total Schrödinger
potential as

V ∗
Schr = −kBT ln nSchr = −2kBT ln[sin(πx/L)] + V0, (9)

where V0 is an arbitrary reference potential. We shall use
V ∗

Schr with V0 = E0 as the ‘exact’ solution to compare with the
numerically obtained V ∗.

Numerical solution of equation (6) applied to the above
described quantum well is compared with V ∗

Schr in figure 1.
In this computation, the free electron mass m0 and L = 2 nm
were used. It is interesting to note that at room temperature,
V ∗

min = 83.9 meV at the well centre is very close to the
eigenenergy E0 = 94.0 meV. The corresponding carrier
density with n0 normalized to unity is shown in figure 2. In
fact, equation (6) has a property of producing the ground state
energy and wavefunction of a bound system in the quantum
limit T → 0. In the quantum limit, V ∗

min approaches E0, and
n(x) approaches nSchr(x) (see figure 3). In the classical limit
T → ∞, V ∗(x) reverts to the classical potential of infinite
potential well (also see figure 3).

It should be recalled that the results shown in figures 1
and 2 are not coupled to Poisson’s equation, i.e. they are not
self-consistent. In actual MC simulations, the MC calculated
n(x) is substituted into Poisson’s equation and the electrostatic
potential V (x) in equation (6) is updated. This iteration
procedure is repeated until both V ∗(x) and V (x) converge.

Figure 1. Comparison of V ∗ with V ∗
Schr in the infinite potential well.

Figure 2. Comparison of the carrier distribution in the infinite
potential well obtained by the ETP and Schrödinger models.

Figure 3. V ∗ obtained by equation (6) compared with the
Schrödinger solution as the temperature changes.

Even though such an iteration is not carried out here, the
solution for V ∗(x) without coupling to Poisson’s equation tells
us something about our ETP model. First, the QM repulsion
force at the infinite potential is correctly predicted. Second,
even at room temperature, V ∗(x) is very close to V ∗

Schr(x) (see
figure 1). Even though there is a small downward shift between
V ∗(x) and V ∗

Schr(x), their slopes are remarkably close. From
the QM corrected MC particle simulation point of view, what
matters is the gradients of V ∗(x) and not V ∗

min.
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Figure 4. A one-dimensional potential barrier considered in this
study.

Figure 5. Carrier density at different temperatures.

4. Application to quantum particle tunnelling

Next, we consider a single step potential barrier as shown in
figure 4. For the comparison purpose, the barrier tunnelling
probability based on the solution of the time-independent
Schrödinger wave equation is also computed. It is obtained as
follows: assuming waves are incident from both sides of the
potential barrier at x = ±L, the probability density P(ε, x)

can be found as a function of the wave number k = √
2m∗ε/h̄,

the barrier height V0 and the barrier width a (see appendix B).
If Boltzmann statistics is assumed for the electron energy
distribution, we can find the electron density,

nSchr ∝
∫ ∞

0
e− ε

kBT P (ε, x) dε. (10)

Again, we may define the effective total Schrödinger potential
V ∗

Schr for the barrier tunnelling problem as

V ∗
Schr(�r) = −kBT ln nSchr + V0, (11)

where V0 is an arbitrary reference potential.
Our ECBE equation, when applied to the tunnelling

problem, also has an interesting feature of producing the
transmission-coefficient-based Schrödinger solution in the
quantum limit T → 0. Shown in figure 5 is the comparison
between n(x) and nSchr(x), both normalized to unity at x = ±L.
At room temperature (300 K), nmin and nSchr,min are already
very close. The major difference between the two is that while
nSchr shows a carrier accumulation (n >1) near the potential
barrier, n shows a carrier depletion. As the temperature is

Figure 6. The dimensionless parameter r(n) versus the carrier
density n.

reduced to T =100 K, nmin becomes almost the same as nSchr,min,
implying that V ∗

max ≈ V ∗
Schr,max. At T =10 K, as seen in figure 5,

nSchr shows a pattern of oscillatory distribution between
accumulation and depletion. In the limit T → 0 and L → ∞
(not shown in figure 5), this oscillatory behaviour of nSchr

ceases to exist and n coincides with nSchr.
Before presenting more results for this barrier tunnelling

problem, we may modify our ECBE equation (6) by inserting
a dimensionless factor r [10, 11] so that it becomes

V ∗(⇀r) = V (⇀r) +
h̄2

4mrkBT

[
∇2V ∗(⇀r) − 1

2

1

kBT
(∇V ∗(⇀r))2

]
.

(12)

Typically, r is chosen between 1 and 3 [11, 12] or one may
use a density-dependent expression given by Perrot [13],

r(n) =
(

NC

n

)
[F−1/2(η)]2

dF−1/2(η)

dη

(13)

where Fj (η) = 1
j

∫ ∞
0

xj

1+ex−η dx is the Fermi–Dirac integral,
n = NCF1/2(η) and NC is the conduction-band effective
density of states. The plot of r(n) versus n is shown in figure 6.
It is seen that in the low density limit, r approaches 1 and in
the high density limit, r approaches 3. V ∗ with r = 1 in
equation (12) corresponds to the use of Bohm quantum
potential and V ∗ with r = 3 corresponds to the use of Wigner
quantum potential [12].

Note that for the QM corrected MC solution of the BTE,
equation (6) for V ∗(x) must be solved at each field adjustment
time (e.g., at every 0.2 fs) right after Poisson’s equation is
solved for V (x). The QM corrected force

⇀

F ∗ = −∇V ∗ is
then used to advance particles. Numerical solutions for V ∗

obtained from equations (12) are compared with V ∗
Schr(x) in

figure 7. The peak of V ∗(r = 3) is substantially higher than
that of V ∗(r = 1). Shown in figure 8 is the MC solution
of V ∗ self-consistently solved with Poisson’s equation,
compared to the non-self-consistent one. The barrier peak
of the self-consistent V ∗ is lower than that of the non-
self-consistent one. The MC results for V ∗(r = r(n)) and
V ∗(r = 1) are very close, as expected, because the carrier
density over (‘tunnelling’ through) the barrier is small. Both
V ∗(r(n)) and V ∗(r = 1) are remarkably close to VSchr in
figure 8.
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Figure 7. Comparison of V ∗
B and V ∗

W with V ∗
Schr for the 1D potential

barrier.

Figure 8. Comparison of self-consistent V ∗
B and V ∗

W obtained from
the MC simulation with V ∗

Schr for the 1D potential barrier. Also
shown is the results obtained from the Bohm-based model with a
density-dependent r.

Figure 9. Electron distribution in space and energy, obtained by the
MC simulation based on the Bohm model for the 1D potential
barrier.

Figure 9 shows electron distributions in space and energy
for the ECBE model obtained from the ensemble MC
simulation. Also shown is the uncorrected conduction-band
edge V (x) which has discontinuities at the barrier boundaries.
The MC calculated electron density nMCand the quantum
corrected electron density n = const × exp(−V ∗

B /kBT )

based on the ECBE–Poisson model are shown in figure 10,

Figure 10. Comparison of carrier distribution for the 1D barrier.

together with nSchr based on the solution (10). Both
density distributions show a charge accumulation before the
tunnelling and a presence of non-negligible charges within the
barrier. However, it should be recalled that this comparison
is, strictly speaking, not proper because nSchr is obtained
without coupling to Poisson’s equation and scatterings are
not considered. Nevertheless, we may conclude that V ∗ is a
good approximation to V ∗

Schr, if r = 1 or r(n) given by (13) is
used for the tunnelling problem.

5. Discussion

In the Introduction section, we mentioned the effective
potential (EP) approach to the QM correction of the BTE.
It may be worthwhile to compare our ETP to the EP, which is
defined in 1D as [3]

Veff(x) = 1√
2πa

∫ ∞

−∞
V (x + ξ) e−ξ 2/2a2

dξ, (14)

where a2 = h̄2/8m∗kBT . If V (x) is a smooth function and can
be expanded in Taylor series, equation (14) can be expressed
as [14]

Veff(x) ≈ 1√
2πa

∫ ∞

−∞

[
V (x) + ξ

∂V

∂x
+

ξ 2

2

∂2V

∂x2
+ · · ·

]
e−ξ 2/dξ

= V (x) + a2 ∂2V

∂x2
+ O(a4). (15)

Since Veff ≈ V (x)+a2 ∂2V
∂x2 +O(a4), to the first-order accuracy

in O(a2), one can further approximate V appearing in the
second derivative term on the rhs of equation (15) by Veff and
obtain

Veff(x) ≈ V (x) + a2 ∂2Veff

∂x2
+ O(a4). (16)

Comparison of equation (16) with our ECBE equation (6)
shows that apart from a factor of 2 in a2, the two equations
look similar but are not the same. The difference is in a missing
quadratic term in the first derivative of Veff in equation (16).
Without this quadratic term in the first derivative of Veff, the EP
formulation is not equivalent to our ECBE formulation even
at lowest order in a2. In fact, a similar quadratic term also
appears in the quantum hydrodynamic equation derived by
Ferry and Zhou using the density matrix [15]. The similarity
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and difference between our ECBE equation and their EP
equation are detailed in appendix C.

The effective classical potential W(x) used by Feynman
and Kleinert [16] to calculate the QM partition function of
anharmonic oscillators is more involved than the one given by
equation (14). Their smeared potential Va2(x) is exactly the
same as Veff(x) but the final solution to W1(x), an upper bound
for W(x), is determined by minimizing an auxiliary potential
W̃1(x, a2,�)with respect to a2(x) and a parameter �2(x) =
∂2Va2/∂x2, at each position x. This results in a very good
agreement with the exact solution for the calculation of the
free energy of anharmonic oscillators. It is not difficult to find
the reason behind this good agreement. First, the parameter
a2 used for the width of the Gaussian integration kernel in
equation (11) is locally determined in a self-consistent manner.
Second, the relation between W1(x) and V (x) is non-linear,
although the relation between Va2(x) and V (x) is linear.

In fact, V ∗ in our ECBE equation plays a similar role
as Feynman and Kleinert’s W1(x). Equation (6) is a second-
order non-linear equation of V ∗(x) and the relation between
V ∗(x) and V (x) is also non-linear. Both approaches produce
the same result in the classical limit (T → ∞) and in the
quantum limit (T → 0) for the free energy (refer to figure 3).
The main difference is that while W1(x) is introduced for the
purpose of calculating the partition function, we introduced
V ∗(x) (or E∗

C) for the purpose of calculating the QM
corrected carrier density. Thus, we may view equation (6)
as the Schrödinger representation of the ‘effective classical
conduction-band edge’, analogous to the ‘effective classical
potential’ dealt with by Feynman and Kleinert using the path
integral representation [17], but perhaps with less accuracy
because of the ‘pure’ state approximation being used (see
appendix A).

Our ECBE method, in terms of accuracy, is about the
same as the conventional DG method because it is based
on the same density gradient quantum correction. In this
quantum correction formulation, exchange and correlation
effects are neglected in the expression of the Hamiltonian.
However, there is one important difference. In the heretofore
used DG-base MC method, the form of the QM corrected
force used is

⇀

F ∗ = −∇[V − (h̄2/2m)(∇2√n/
√

n)] which
requires input of the density gradient from the MC simulation
[18–20]. As a result, it suffers from statistical density
fluctuations. Our method does not have such a problem
because V ∗ is solved from the ECBE equation and the density
gradient is totally bypassed. Compared to the conventional
macroscopic DG method used in the QHD equations [10, 12],
the ECBE method embedded in the MC simulation is
not affected by the proper modelling of the mobility,
the assumption for the form of the distribution function,
or the closure problem associated with the hierarchy of
QHD equations. Compared to Feynman and Kleinert’s
EP method, the ECBE method is much simpler although
it may be less accurate. The former, when applied to
non-symmetric potentials V (x) of arbitrary shape, requires
intensive computation in minimizing W̃1(x) through the
optimization of a2(x) at each position x.

6. Conclusions

We have presented a new approach to the ‘self’-QM correction
of the semiclassical BTE as applied to carrier confinement
and barrier tunnelling. By including the quantum potential
into the ETP and treating the eigenenergy as the ETP, a new
second-order differential equation for the ETP is obtained. The
density-gradient-dependent quantum correction is properly
embedded in the ETP. The ECEB equation has a feature of
producing the ground state wavefunction and energy in the
quantum limit T → 0 for the carrier confinement problem.
Through two simple examples, its validity is tested. Our ECBE
method has a definitive advantage over the heretofore used DG-
base MC method in that the numerical solution obtained for V ∗

is always stable and smooth, and the direct evaluation of the
density gradient is avoided. The validity of equation (6) or (9)
is limited to equilibrium or near equilibrium. The extension
of the ECBE method to the study of barrier tunnelling under
non-equilibrium (biased) conditions will appear in our future
publication [21].
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Appendix A

The single-particle density matrix in a quantized system is
given by [17]

ρ(x, x) = 1

Z(β)

N∑
i=1

e−βEi |ψi |2 (A1)

where Z(β) is the partition function, β = 1/kBT , Ei is
the eigenenergy and ψi is the wavefunction of the ith state.
Assuming only the ground state is occupied, we have for the
pure state approximation,

ρ(x, x) ≈ A0 e−βE0ψ2
0 (A2)

where ψ0 = real. We would like to cast ρ(x, x) into
Boltzmann statistics to describe

nCL(x) = C e−βV ∗
(A3)

where C is the normalization constant. Equating (A2) and
(A3) gives

ψ0(x) = C ′ e− 1
2 βV ∗

(A4)

where C ′ is a new normalization constant. Substitution of (A4)
into the time-independent single-particle Schrödinger equation
yields[

d2V ∗

dx2
− β

2

(
dV ∗

dx

)2
]

ψ0 = 4m

h̄2β
[E0 − V (x)]ψ0. (A5)

Equation (A5) is still the Schrödinger equation. We have
simply changed the dependent variable from ψ0(x) to V ∗(x).
As is well known, equation (A5) is an eigenvalue equation.
The solution for ψ0 in equation (A5) exists only if E0 takes
a specific eigenvalue for the given boundary conditions. We
may drop ψ0 from both sides of the equation and replace
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E0 by V ∗(x) so that V ∗(x) approaches V (x) in the classical
limit β → 0. Equation (A4) then becomes our ECBE
equation (6) which is no longer an eigenvalue equation.
The solution for V ∗(x) exists for any given V (x) for the
appropriate boundary conditions. Thus, equation (6) differs
from Schrödinger’s equation, although they are closely related.
Interesting enough, this equation gives correct Schrödinger’s
solution in the quantum limit β → ∞ for the ground state.
Even at room temperature, the solution V ∗(x) is very close
to the exact solution V ∗

exact(x) = −2kBT ln |ψ0(x)| + V0, as
seen in figures 1 and 2. Note that this alternative derivation
of equation (6) yields the same result as that when the DG-
dependent quantum potential is used.

Appendix B

Consider three regions in figure 4. For the wave (particle)
incident from the left at x = −L with energy lower than the
barrier height ε < V0, the solutions to the time-independent
Schrödinger equation in each of the region are, respectively,

ψ1,I = eik1(x+a/2) + R1 e−ik1(x+a/2), (B1)

ψ1,II = A1 e−κ(x+a/2) + B1 eκ(x+a/2), (B2)

ψ1,III = T1 eik1(x+a/2), (B3)

where k1 =
√

2mε/h̄2 and κ =
√

2m(V0 − ε)/h̄2.
For the wave incident from the right at x = L, the respective

solutions are

ψ2,III = eik1(x−a/2) + R2 e−ik1(x−a/2)+iθ , (B4)

ψ2,II = A2 eκ(x−a/2) + B2 e−κ(x−a/2), (B5)

ψ2,I = T2 e−ik1(x−a/2)+iθ , (B6)

where θ is a phase displacement relative to the wave incident
from the left. The reflection and transmission coefficients
are determined by matching the boundary conditions that the
wavefunction and its derivative are continuous at x = −a/2
and x = a/2 [22]. Let the total wavefunction be ψ = ψ1 +ψ2.
After integrating |ψ |2 over θ from 0 to 2π and dividing by 2π ,
for 0 < ε < V0, we obtain

|ψI|2 = 4
{
κ2

(
k2

1 cosh2 κa + κ2 sinh2 κa
)

sin2 k1(−x − a/2)

+ k2
1(k

2 sinh2 κa + κ2 cosh2 κa) cos2 k1(−x − a/2)

+ k1κ
(
k2

1 + κ2
)

sinh κa cosh κa sin[2k1(−x − a/2)]

+ k2
1κ

2
}/[(

k2
1 + κ2

)2
sinh2 κa + 4k2

1κ
2
]
, (B7)

|ψII|2 = 4
{
k4

1[sinh2 κ(x − a/2) + sinh2 κ(x + a/2)]

+ k2
1κ

2[cosh2 κ(x − a/2) + cosh2 κ(x + a/2)]
}

/[(
k2

1 + κ2
)2

sinh2 κa + 4k2
1κ

2
]
, (B8)

|ψIII|2 = 4
{
κ2

(
k2

1 cosh2 κa + κ2 sinh2 κa
)

sin2 k1(x − a/2)

+ k2
1

(
k2

1 sinh2 κa + κ2 cosh2 κa
)

cos2 k1(x − a/2)

+ k1κ
(
k2

1 + κ2
)

sinh κa cosh κa sin[2k1(x − a/2)]

+ k2
1κ

2
}/[(

k2
1 + κ2

)2
sinh2 κa + 4k2

1κ
2
]
, (B9)

Similarly, for ε > V0, we have

|ψI|2 = 4
{
4k4

1 sin2 k2a + cos2[k1(−x − a/2)]

+ 4k4
2 sin2 k2a sin2[k1(−x − a/2)] + 4k2

1k
2
2(1 + cos2 k2a)

+ 2k1k2
(
k2

1 − k2
2

)
sin(2k2a) sin[2k1(−x − a/2)]

}/
[
4k2

1k
2
2 +

(
k2

1 − k2
2

)
sin2 k2a

]
, (B10)

|ψII|2 = {
4k4

1 sin2[k2(x − a/2)] + 4k2
1k

2
2 cos2[k2(x − a/2)]

− k2
1

(
k2

1 − k2
2

)
cos[2k2(x + a/2)] + 2k2

1

(
k2

1 + k2
2

)}/
[
4k2

1k
2
2 +

(
k2

1 − k2
2

)
sin2 k2a

]
, (B11)

|ψIII|2 = 4
{
4k4

1 sin2 k2a + cos2[k1(x − a/2)]

+ 4k4
2 sin2 k2a sin2[k1(x − a/2)] + 4k2

1k
2
2(1 + cos2 k2a)

+ 2k1k2
(
k2

1 − k2
2

)
sin(2k2a) sin[2k1(x − a/2)]

}/
[
4k2

1k
2
2 +

(
k2

1 − k2
2

)
sin2 k2a

]
, (B12)

where k2 =
√

2m(ε − V0)/h̄
2.

Finally, the probability density function P(ε, x) can be
expressed as

PI(ε, x) = A(ε, L)|ψI|2, −L < x < −a/2 (B13)

PII(ε, x) = A(ε, L)|ψII|2, −a/2 < x < a/2 (B14)

PIII(ε, x) = A(ε, L)|ψIII|2, a/2 < x < L (B15)

where A(ε, L) is a normalization constant satisfying the
normalization condition∫ −a/2

−L

PI(ε, x) dx +
∫ a/2

−a/2
PII(ε, x) dx +

∫ L

a/2
PIII(ε, x) dx = 1.

(B16)

Appendix C

Starting from the density matrix ρ(x, x′, t) and using the
‘centre of mass’ coordinates

R = 1
2 (x + x′) and s = x − x′, (C1)

Ferry and Zhou [15] arrived at their equation (25):

−Q(R, s) +
ms2

2h̄2β2
− d

2β
= h̄2

8mρ
∇2

Rρ − h̄2β

2m
∇2

s (W + Q)

+
h̄2

2m
∇2

s J +
h̄2

2m
[−β∇s(W + Q) + ∇sJ ]2, (C2)

where Q(R, s) represents the quantum potential, d is the
dimensionality of the system (taken to be 1 here), W(R, s) =[
cosh

(
1
2 s · ∇R

)
V

]
and J (R, s) = ipd·s

h̄
− m

2β

( s
h̄

)2 − d
2 ln(β)

which results from the assumption that the Wigner distribution
function, W(R, p), is a drifted Maxwellian. For the
equilibrium case, pd = 0, and equation (C2) is reduced to

−h̄2β

2m
∇2

s (W + Q) +
h̄2β2

2m
[∇s(W + Q)]2 + s · ∇s(W + Q)

+ [Q(R, s) + W(R, s)] = − h̄2

8mρ
∇2

Rρ + W(R, s). (C3)

This is equation (27) in [15] except that the quadratic term
∝ [∇s(W + Q)]2 has been retained. Ferry and Zhou called the
rhs of equation (C3) the total effective potential. By neglecting
the quadratic term, they were able to solve equation (C3)
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using Green’s function. The result is a smoothed potential for
(W + Q).

On the other hand, from equations (20) and (23) of [15],
for the case of pd = 0, we have

ρ(R, s)

= A exp

{
−β[W(R, s) + Q(R, s)] +

m

2β

( s
h̄

)2
− 1

2
ln β

}
.

(C4)

Using (C4) to evaluate 1
ρ
∇2

Rρ on the rhs of equation (C3), we
obtain

−h̄2β

8m
∇2

R(W + Q) − h̄2β

2m
∇2

s (W + Q) +
h̄2β2

8m
[∇R(W + Q)]2

+
h̄2β2

2m
[∇s(W + Q)]2 + s · ∇s(W + Q)

+ [W(R, s) + Q(R, s)] = W(R, s). (C5)

If we further define W ∗(R, s) = W(R, s) + Q(R, s),
ξ = x + x′

λD
and η = x − x′

λD
where λ2

D = h̄2β

2m
, equation (C5)

then reads as(∇2
ξ + ∇2

η

)
W ∗ − β[(∇ξW

∗)2 + (∇ηW
∗)2] − η · ∇ηW

∗

= W ∗ − W, (C6)

which is analogous to our ECBE equation (6), except that it is
obtained through a Wigner–Weyl transform.

Thus, the major difference is that while Ferry and Zhou
used the Wigner–Weyl-based quantum potential (equation (19)
in [15])

−F(R, s) = Q(R, s) − S(R, s)

= − 1

ρ(R, s)

{
h̄2

8m
∇2

R +
h̄2

2m
∇2

s

}
ρ(R, s), (C7)

we adopt the Bohm-based quantum potential

QB(r) = − h̄2

2m
√

ρ(r)
∇2

r

√
ρ(r) (C8)

without the Weyl transform.
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