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The spin Hall conductivity of a disordered two-dimensional electron gas has been investigated for a general
spin-orbit interaction. We have found that in the diffusive regime of electron transport, the dc spin-Hall
conductivity of a homogeneous system is zero due to impurity scattering when the spin-orbit coupling contains
only the Rashba interaction, in agreement with existing results. However, when the Dresselhaus interaction is
taken into account, the spin-Hall current is not zero. We also considered the spin-Hall currents induced by an
inhomogeneous electric field. It is shown that a time-dependent electric charge induces a vortex of spin-Hall
currents.
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Spintronics is a fast developing area using the electron
spin degrees of freedom in electronic devices.1–4 One of the
most challenging goals of spintronics is to find a method to
manipulate spins by electric fields. The spin-orbit interaction
sSOId, which couples the electron momentum and spin, can
serve as a spin-charge mediator. There have been several
suggestions to use the SOI in semiconductor quantum wells
sQWd to create the electron and hole spin currents and to
accumulate the spin polarization by applying an electric field
parallel5–8 or perpendicular9,10 to the QW. The spin current
induced by the parallel electric field and flowing perpendicu-
lar to it has been named the spin-Hall effectssee also
Ref. 11d. Since the prediction of this effect by Murakami
et al.5 and Sinovaet al.,6 there have been much discussions
concerning the effect of nonmagnetic impurity scattering on
the spin-Hall conductivity in systems with Rashba spin-orbit
coupling. Some groups predicted that the impurity scattering
should suppress the spin-Hall effect induced by a homoge-
neous and static electric field,12–15 even if the mean scatter-
ing timet is much longer than 1/D, whereD is the spin-orbit
splitting of the electron energyswe set"=1d. This result was
confirmed by an analysis of the sum rules in Ref. 16. Yet
some other groups came to different conclusions.17–19

In the present paper we use the diffusion approximation to
derive an expression of the spin Hall conductivity for a gen-
eral SOI, including both Rashba and Dresselhaus terms. For
pure Rashba SOI, as well as for linear Dresselhaus interac-
tion, we found that the dc spin-Hall conductivity of the ho-
mogeneous system becomes zero even for a weak disorder
scattering, confirming thus the results of Refs. 12–16. On the
other hand, when the cubic terms of Dresselhaus SOI is in-
cluded, a finite spin current is produced. In order to study the
effect of a spatially inhomogeneous electric field, our analy-
sis keeps finite frequencyV and wave numberQ of the elec-
tric field. We found that forV!DQ2, whereD is the elec-
tron diffusion constant, the flow of the spin-Hall currents is
dominated by the screening effects. Similar to formation of
an electron screening cloud around an external charge, the
spin Hall currents form a vortex.

We consider a typical III-V semiconductor QW with only
the lowest subband occupied. The spin-orbit coupling of con-
duction electrons has the form

Hso= hk · s, s1d

where s;ssx,sy,szd is the Pauli matrix vector, andhk a
function of the two-dimensional wave vectork. In general,
hk contains both the Dresselhaus and the Rashba terms. The
former exists also in bulk crystals,20 while the latter appears
only in asymmetric QWs.21 For a QW grown along thef001g
direction, which is set as thez axis, the Dresselhaus SOI is
given by22

hk
x = bkxsky

2 − a2d,

hk
y = − bkyskx

2 − a2d, s2d

where the parametera2 is the average of the operator
−s] /]zd2 with respect to the lowest subband wave function.
The Dresselhaus SOI in Eq.s2d contains terms both linear
and cubic ink. Usually, in heavily doped QWs, for electrons
at the Fermi energy both terms are of the same order of
magnitude.23 The Rashba interaction has the form21

hk
x = aky, hk

y = − akx. s3d

Let us apply an electric field along thex axis, and express
it as the gradient of a scalar electric potentialE=−=V. This
gauge is more convenient for studying the case of finite wave
numbersQ in the Fourier expansion ofE. The one-particle
spin-current operator isJj

i =ssiv j +v jsid /4, where the particle
velocity is

vi =
ki

m*
+

]

]ki shk · sd. s4d

This definition has to be used with caution, since the spin
current is not conserving in systems with SOI, as discussed
in Ref. 24. We are interested in calculating the spin current
polarized in thez direction and flowing iny direction. Since
hk in Eqs.s3d and s2d has noz components the spin-current
operator isJy

z=szky/ s2m*d. We will calculate the correspond-
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ing spin Hall current within the standard linear-response
theory25 and denote it asJ. So, the initial expression forJ is

J = − ieVo
k,k8
E dv

2p

]nFsvd
]v

kTrfGask−,k−8,vd

3Jy
zGrsk+8,k+,v + VdglVsV,Qd, s5d

wherek±k±Q/2, andnFsvd is the Fermi distribution func-
tion. In Eq.s5d the trace runs through the spin variables, and
the angular brackets denote the average over the random dis-
tribution of impurities. The terms containing the products of
the formGaGa andGrGr are neglected since their contribu-
tion to the spin Hall current is small.15 For simplicity we
assume that in the vicinity of the Fermi energyEF, the am-
plitude of impurity elastic scattering is isotropic and momen-
tum independent. In the quasiclassical approximation, when
EFt@1, the average of the product of the retarded and ad-
vanced Green functionsGr andGa can be calculated pertur-
batively. If we ignore weak localization effects, the perturba-
tion expansion of Eq.s5d consists of the so-called ladder
diagrams.25,26For smallV andQ these diagrams describe the
particle and spin diffusion processes. The spin diffusion also
includes the D’yakonov-Perel spin relaxation.27 Therefore,
the spin-Hall currents5d is determined by the combination of
spin and particle diffusion propagators.

To calculate and to combine these propagators for arbi-
trary hk, we will follow the formalism of Refs. 28 and 29. In
Eq. s5d the spin-current vertexJy

z is coupled to the spin-
independent potentialV. Such a spin-charge coupling has
two channels. In the first channel,Jy

z andV are coupled via
the spin-independent particle diffusion propagator. This con-
tribution to the spin-Hall current is denoted asJ1. For V
!1/t andvFQ!1/t, wherevF is the Fermi velocity, from
Eq. s5d we obtain

J1 = i
eV

2p
CDsV,QdVsV,Qd, s6d

where DsV ,Qd=fts−iV+DQ2dg−1 is the particle diffusion
propagator.26 The vertexC is

C = o
k

TrfGrsk+,EF + VdGask−,EFdJy
zg, s7d

whereGr,ask ,Ed are the Green functions averaged over ran-
dom impurity positions.

The second coupling channel is more complicated. The
spin current couples first to the spin diffusion-relaxation
propagator, which couples toV via the mixing of charge and
spin diffusion processes. The mixing of these diffusion pro-
cesses was pointed out explicitly by Burkovet al.17 The spin
Hall current due to this channel is denoted asJ2, and is
obtained as

J2 = i
eV

2p
ClDljsV,QdMjDsV,QdVsV,Qd, s8d

with the vertices

Cl = o
k

TrfGrsk+,EF + VdslGask−,EFdJy
zg. s9d

In Eq. s8d the superscriptsl and j are summed overx, y, and
z. The spin diffusion-relaxation propagatorDijsV ,Qd de-
scribes diffusion and relaxation of a spin density packet.
Therefore, this propagator satisfies the spin diffusion equa-
tion for spins polarized in thej direction when a source
creates spins polarized in thei direction. Mj is the spin-
charge mixing, defined as

Mj =
1

4ptN0
o

k

TrfGrsk+,EF + VdGask−,EFds jg, s10d

whereN0=m* / s2pd is the two-dimensionals2Dd density of
states.Mj makes the diffusion of spins polarized in the
j-direction dependent on the charge density distribution.17,13

This spin-charge coupling is weak and is proportional to the
small parameterhk/EF. Therefore, in Eq.s8d we keep only
the terms linear inMj. It should be noticed8 thatJ2 is closely
related to the electric field induced accumulation of the in-
plane polarized spin densitySl. For example, it can be shown
that J2=ClSl /2ptN0.

After averaging over the impurity positions, the retarded
and advanced Green functions are obtained as

Grsk,Ed = fGask,Edg† = sE − Ek − hk · s + iGd−1, s11d

where G=1/s2td and Ek=k2/ s2m*d. For the case of short-
range impurities and the constant density of states nearEF,
the scattering rateG is independent of momentum.25 Using
Eq. s11d , for smallV andQ, one gets from Eqs.s7d, s9d, and
s10d

C =
ipN0

2G
elmzQns¹k

nhk
l dhk

mvyZk,

Cl = − pN0elmzvyhk
mZk,

Mj =
i

2G
Qms¹k

mnk
j dhk

3Zk, s12d

where Zk=sG2+hk
2d−1 and nk;hk /hk. The overbar ins12d

denotes the average over directions ofk which has the mag-
nitudek=kF. In Eq.s12d elmz is the antisymmetric tensor with
exyz=1, and all doubly repeated superscripts should be
summed overx, y, andz.

DijsV ,Qd satisfies the spin diffusion equation.13,30 For
QvF!hkF

we can neglect in this equation the diffusion and
spin precession terms which are proportional to the gradient
of the spin propagator. We then have

− iVDmjsV,Qd = 2Gdmj − GmlDljsV,Qd, s13d

whereGml is the spin relaxation matrix element. At low fre-
quency the relaxation term dominates and soDmjsV ,Qd is
simply given by the inverse ofGml, and

Gml = 2Gfdmlhk
2 − hk

mhk
l gZk. s14d

This equation differs by a factorG2Zk from the standard defi-
nition of the spin relaxation matrix, for example, in Ref. 28.
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This factor is not unity because we consider the situation that
the spin splittingD=2hk can be comparable to the electron
elastic scattering rate 2G.

Let us first consider the case of Rashba SOIs3d. We then
setQy=0 andE=−iQxV to calculateC, Cy, andMy from Eq.
s12d. In this case both the spin relaxation matrix and the spin
diffusion-relaxation propagator are diagonal. Substituting the
so calculatedC, Cy, My, andDyy into Eqs.s6d and s8d, the
currentsJ1 andJ2 are obtained as

J1 = − J2 = E
e

8p

D2

4G2 + D2

V

V + iDQ2 , s15d

whereD=2akF. Hence, the total currentJ1+J2 vanishes even
for small impurity scattering rateG!D, in agreement with
the existing results.12–16 We should mention that in deriving
this result forV!Gyy, in the denominators−iV+Gyyd of the
spin diffusion-relaxation propagator the frequency term has
been removed. If we retainV, J1, and J2 will cancel each
other not exactly, but the accuracy13 is up toV /Gyy. As was
pointed out by Mishchenkoet al.,13 near the sample bound-
ariesJ2 can also differ fromJ1 because of the rapid spatial
variation of the spin diffusion propagator. We have ignored
this effect by neglecting the gradient terms in the diffusion
equations13d. If necessary, in our approach we can consider
the boundary problem by substituting into Eq.s8d the com-
plete solutionDmjsV ,Qd of the spin diffusion equation.30

Our main goal is, however, to show that the spin current is
not zero in the bulk of the sample when the Dresselhaus SOI
is taken into account. In this case the total spin accumulation
near the sample edge will be determined by a direct inflow of
the spin polarization from the bulk.

Let us assume that the SOI contains only the Dresselhaus
interactions2d, which has terms both linear and cubic ink.
When the cubic interaction is ignored, there is no spin-Hall
effect because the linear Dresselhaus SOI can be obtained
from the Rashba SOI via a unitary transformation of the spin
operators.16 For the complete Dresselhaus interactions2d,
following Eqs.s6d, s8d, ands12d–s14d, the calculation of the
spin-Hall current is straightforward. We obtain the total spin
currentJ=J1+J2 as

J = EssH
V

V + iDQ2 , s16d

where ssH is the DC spin-Hall conductivity atQ→0. The
calculatedssH/ se/16pd is plotted in Fig. 1 as a function of
a/kF, for three values ofG2/b2kF

6 =10−4, 10−3, and 10−1. The
ratio a/kF is a measure of relative strength of the linear to
cubic terms in Eq.s2d. As expected, thessH vanishes for
large a. It is important to notice the singular behavior at
small G of ssH in the vicinity of a/kF=1/Î2 anda/kF=0.
The singularities appear because at these points the spin-
orbit splitting 2hk vanishes for certaink directions. As a re-
sult, in such angular integralsZk

−1→` when the elastic scat-
tering rateG→0. It is also interesting to notice that in the
range 0,a/kF,1/Î2, asG→0 the spin Hall conductivity
has a plateau shape with the universal value ofssH=3e/8p.
This plateau and the sharp change of sign ata/kF=1/Î2 can
be useful in device applications.

We would like to elaborate the nonanalytic behavior of
Eq. s16d when bothV andQ approach zero, a consequence
of the diffusion denominator inJ. WhenQ→0 first, Eq.s16d
gives the dc flow of the spin Hall current induced by the
spatially homogeneous electric field. At the opposite regime
DQ2@V, we neglect theV in the denominator and rewrite
Eq. s16d in a coordinate independent form as

Jl =
iVssH

DQ2 el jzEj . s17d

Here Jl is the z-polarized spin current flowing along thel
axis. To arrive at Eq.s17d we have assumed thatDQ2 is
much less than the spin relaxation rate. Otherwise, the term
DQ2 should be added to Eq.s13d.

Equations17d yields the hydrodynamics of the spin Hall
current flow. SinceE=−iQV is a longitudinal field, we have

= ·J = 0, s= 3 Jdz =
ssH

D

]V

]t
. s18d

The first equation indicates that the spin current is conserv-
ing. The second equation tells us that in each spatial point the
flux is perpendicular to the local electric field, similar to the
spin Hall effect in a homogeneous field. In the field of
spherically symmetric potential a circular vortex flow of the
spin current is thus induced around a central charge. The
physics of this effect is similar to the screening of scalar
potential by electric charges. To clarify this analogy, let us

introduce the conjugate currentJ̃x=Jy andJ̃y=−Jx, as well as
the vortex “charge” densityr defined by the continuity equa-
tion

e= J̃ =
]r

]t
. s19d

We can then rewrite the second equation in Eq.s18d as

r = e
ssH

D
V, s20d

which has the same form as the equation for the electrostatic
screening of the scalar potentialV, with essH/D playing the
role of the inverse screening length.

It should be noted that because of the above-mentioned
close relationship between the spin Hall effect and the
accumulation of in-plane spin polarization, the latter will

FIG. 1. Spin Hall conductivity as a function ofa/kF for
G2/b2kF

6 =10−4, 10−3, and 10−1.
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also appear as a screening cloud around the external charge.
The in-plane polarization, in its turn, can give rise to a
z-polarized component via the spin precession term of the
diffusion equation.30 This precession is proportional to
vFQ/G, which is small in the diffusion approximation and
was neglected in Eq.s18d. Consequently, the spin Hall cur-
rent turns out to be conserved, as one can expect in the
absence of the relaxation ofz polarization. On the other
hand, in the near vicinity of the vortex core, the precession
term becomes more important because of the larger gradient
of the electric field. Hence, the accumulation of thez polar-
ized spin density will be expected in the region of the core.
The detailed analysis of this phenomenon is outside the
scope of the present paper. It is worthwhile to notice that the
core has a macroscopic size about"vF /D, which is of the
order microns. Therefore, the spin accumulation in the vortex
core can be observed by, for example, the method of Faraday
rotation.31

In conclusion, within the quasiclassical perturbation
theory we have shown that, in agreement with existing re-
sults, impurity scattering reduces the dc spin Hall current to
zero if the SOI is due to the Rashba interaction. On the other
hand, the spin Hall current remains finite for the Dresselhaus
SOI. Nevertheless, this current becomes zero if it is induced
by aspatiallyvarying dc electric field. The field must be time
dependent in order to produce a finite effect. In this case the
spin-current flow in the field of a scalar potential has the
form of a vortex. The physics of this phenomenon is for-
mally equivalent to the screening of external electric poten-
tial by electrons.
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